

Relationship among complexity classes

Theorem: (a) $\text{DTIME}(S(n)) \subseteq \text{DSPACE}(S(n))$.

(b) If L is in $\text{DSPACE}(S(n))$, and $S(n) \geq \log n$, then there exists a constant c , which depends on L , such that L is in $\text{DTIME}(c^{S(n)})$.

(c) If L is in $\text{NTIME}(T(n))$ then there exists a constant c , which depends on L , such that L is in $\text{DTIME}(c^{T(n)})$.

Proof: (a) is trivial.

(b) Otherwise there will be a repeat of the Instantaneous description.

(c) The simulation of non-deterministic TM we did earlier.

Hierarchy Theorems

Idea: Similar to arbitrary complex functions. Just need to be careful on how much space/time is needed to construct the diagonalizing function.

Space hierarchy

Theorem: Suppose L is accepted by a $S(n) \geq \log n$ space bounded machine. Then L can be accepted by a $S(n)$ space bounded machine which halts on all inputs (i.e. it either accepts or rejects every string).

Let M_0, M_1, \dots denote some recursive ordering of all the TMs using 2-tapes and alphabet $0, 1, B$.

Theorem: Suppose $S_2(n)$ and $S_1(n)$ are both $\geq \log n$.
Suppose that $S_2(n)$ is fully space constructible and

$$\lim_{n \rightarrow \infty} \frac{S_1(n)}{S_2(n)} = 0$$

Then there is a language in
 $\text{DSPACE}(S_2(n)) - \text{DSPACE}(S_1(n))$.

Proof: We construct a machine M which is $S_2(n)$ space bounded.

M has fixed number of tapes (atleast 3).

Let L denote the language accepted by M .

L will not be in $\text{DSPACE}(S_1(n))$.

M rejects all inputs of the form 1^k .

M on input of the form 1^k0x works as follows:

Mark out space $S_2(|1^k0x|)$ on the work tape. (Note that S_2 is fully space constructible)

Simulate machine M_x on input 1^k0x . If this simulation of machine M_x attempts to use more space than $S_2(|1^k0x|)$, then M rejects the input.

If M_x halts on input 1^k0x in the above simulation (without using more than $S_2(|1^k0x|)$ space) then M accepts iff M_x did not accept the input.

In the above simulation, one can assume that M_x uses only 2 tapes and uses alphabet $\{0, 1, B\}$.

Claim: Language accepted by M is in $\text{DSPACE}(S_2(n))$ and not in $\text{DSPACE}(S_1(n))$.

M is $S_2(n)$ space bounded, thus L is in $\text{DSPACE}(S_2(n))$.

Suppose by way of contradiction that M' is $S_1(n)$ space bounded and accepts L . Then, there exists another 2-tape machine M_x which accepts L using alphabet $0, 1, B$ and uses space $\leq dS_1(n)$, for some constant d . Without loss of generality assume that M_x halts on all inputs.

Note that the simulation of M_x by M above requires space $cS_1(n)$, for some constant c .

c may depend on x but does not depend on k ;

Let k be large enough so that $c * S_1(|1^k 0x|) < S_2(|1^k 0x|)$. Then the simulation of M_x by M on input $1^k 0x$ must complete, and thus M accepts $1^k 0x$ iff M_x did not.

Thus M_x accepts a different language than the language L accepted by M . QED

Time Hierarchy

The proof for time hierarchy theorem is similar. The machine M as in the space hierarchy theorem, must have a constant number of tapes, whereas it must simulate an arbitrary machine M' .

This causes a slack factor in the time.

We lose a factor of \log in speed when we simulate using two tapes.

Theorem: Suppose $T_2(n)$ is fully time constructible and $T_2(n), T_1(n) \geq (1 + \epsilon)n$. Suppose that

$$\lim_{n \rightarrow \infty} \frac{T_1(n) * \log(T_1(n))}{T_2(n)} = 0$$

Then there exists a language in $\text{DTIME}(T_2(n))$ which is not in $\text{DTIME}(T_1(n))$. (Note that $T_1(n), T_2(n) \geq n$ by our assumption on time.)

Proof: We construct a machine M which is $O(T_2(n))$ time bounded. Let L be the language accepted by M . Clearly, L is in $\text{DTIME}(T_2(n))$ (by linear speed up theorem).

Consider a machine M with at least 5 tapes (it may be more depending on number of tapes needed for fully time constructibility of $T_2(n)$).

M on any input, of length n , first marks out time $T_2(n)$. In the construction it simultaneously counts the number of steps taken in the construction. If the number of steps taken reaches $T_2(n)$, then M stops and the input is rejected. (Note that this is why we need $T_2(n)$ to be fully time constructible).

M rejects all inputs of the form 1^k .

M on input of the form 1^k0x works as follows:

M simulates M_x on input 1^k0x . If this simulation takes more than $T_2(|1^k0x|)$ time then M rejects the input.

If M_x halts on input 1^k0x in the above simulation then M accepts iff M_x rejected the input.

In above construction, we consider only M_x which use 2 tapes and fixed alphabet say $\{0, 1, B\}$.

Let L be the language accepted by M .

M is $O(T_2(n))$ time bounded, thus L is in $\text{DTIME}(T_2(n))$ (by linear speed up theorem).

Suppose by way of contradiction that M' is $T_1(n)$ time bounded and accepts L .

Then, there exists another 2-tape machine M_x which accepts L using alphabet $0, 1, B$ and is $d * T_1(n) \log T_1(n)$ -time bounded, for some constant d .

Note that the simulation of M by M_x above requires time $c * T_1(n) \log(T_1(n))$, for some constant c (which may depend on x but does not depend on k). To do the simulation, M copies x into a new tape, and then simulates M_x step by step on input $1^k 0x$ using the input and another tape.

Let k be large enough so that

$$c * T_1(|1^k 0x|) * \log(T_1(|1^k 0x|)) < T_2(|1^k 0x|).$$

Then the simulation of M_x by M on input $1^k 0x$ must complete, and thus M accepts $1^k 0x$ iff M_x rejects it. Thus M_x accepts a different language than the language L accepted by M . QED