

Homomorphisms

Suppose Σ and Γ are two alphabets. Suppose h is a mapping from Σ to Γ^* . Extend h to strings as follows.

$$h(\epsilon) = \epsilon.$$

$$h(aw) = h(a) \cdot h(w), \text{ for any } a \in \Sigma, w \in \Sigma^*.$$

Above h is called a homomorphism.

Show: If L is regular then $h(L) = \{h(w) \mid w \in L\}$ is also regular.

Homomorphisms

By induction on the length of the regular expression M , we give $R(M)$, the regular expression for $h(L(M))$.

$$R(\emptyset) = \emptyset$$

$$R(\epsilon) = \epsilon$$

$$R(a) = h(a), \text{ for } a \in \Sigma$$

$$R(M + N) = R(M) + R(N)$$

$$R(M \cdot N) = R(M) \cdot R(N)$$

$$R(M^*) = (R(M))^*$$

To see that above works, note that for $M + N$:

$$\begin{aligned} L(R(M + N)) &= L(R(M) + R(N)) \\ &= L(R(M)) \cup L(R(N)) \\ &= h(L(M)) \cup h(L(N)) \text{ (by induction).} \end{aligned}$$

Also, $h(L(M + N)) = h(L(M)) \cup h(L(N))$. Thus,

$$L(R(M + N)) = h(L(M + N)).$$

It can be similarly shown that $L(R(M \cdot N)) = h(L(M \cdot N))$ and $L(R(M^*)) = h(L(M^*))$.