
Efficient Computations

P = {L | some poly time bounded deterministic Turing
machine accepts L}.

NP = {L | some poly time bounded nondeterministic Turing
machine accepts L}.

coNP={L | L ∈ NP}.

P=NP?

– p. 1/24

NP

Proposition: Suppose L ∈ NP.
Then there exists a (deterministic) polynomial time
computable predicate P (x, y), and a polynomial q(·) such
that
x ∈ L iff (∃y | |y| ≤ q(|x|))[P (x, y)].

Proof: Suppose N is a q(n) time bounded NDTM accepting
L.
Without loss of generality assume that N has exactly two
choices in each state.

– p. 2/24

P (x, y) is defined as follows.
Let y = y1y2 · · · ym.
If m > q(|x|) then reject.
Otherwise simulate N , where at step i, choose the next

state based on whether yi is 0 or 1.
P (x, y) is 1 iff N accepts in the above simulation.

Now, (∃y | |y| ≤ q(|x|))[P (x, y)] iff N(x) has an accepting
path.

– p. 3/24

In the proposition one often calls y such that P (x, y) = 1 as
a “certificate” or “proof” that x ∈ L.
Thus one can consider NP as class of languages for which
“proofs” can be easily (in polynomial time) verified.

– p. 4/24

Reducibility

L1 ≤
p
m L2 (read: L1 is poly time, many-one, reducible to L2):

there exists poly time computable function f such that
x ∈ L1⇔f(x) ∈ L2.

L1 ≤
p
T L2 (read: L1 is poly time, Turing, reducible to L2):

there exists a polynomial time oracle Turing machine M ,

such that the ML2 accepts L1.

L1 ≤
log space
m L2 (read: L1 is log-space many-one reducible to

L2):
there exists a function f , which is computable by a log
space bounded Turing machine, such that
x ∈ L1⇔f(x) ∈ L2.

– p. 5/24

NP-completeness

A set L is said to be NP-complete iff
(1) L ∈ NP, and
(2) (∀L′ ∈NP)[L′ ≤p

m L].

If (2) is satisfied, then the problem is said to be NP-hard.
The interest in NP-complete problems arises from the fact
that many of the interesting combinatorial problems are
NP-complete.

– p. 6/24

Proposition: ≤p
m is reflexive and transitive.

Proof:
Reflexive: Any L can be reduced to itself by identity function
f(x) = x.

Transitive: Suppose L1 ≤
p
m L2 and L2 ≤

p
m L3.

Suppose f, g are polynomial time computable functions
such that
x ∈ L1⇔f(x) ∈ L2 and x ∈ L2⇔g(x) ∈ L3.
Let h(x) = g(f(x)). Clearly h is polynomial time computable.
Now x ∈ L1⇔f(x) ∈ L2⇔g(f(x)) ∈ L3.
Thus x ∈ L1⇔h(x) ∈ L3.

Thus L1 ≤
p
m L3. This shows that ≤p

m is transitive.

– p. 7/24

Corollary: If L is NP-complete, L′ ∈ NP and L ≤p
m L′ then L′

is NP-complete.
The above corollary allows us to prove that a problem
L′ ∈ NP is NP-complete by just showing that L′ ∈ NP and
some KNOWN NP-complete problem is polynomial time,
many one reducible to L′.

– p. 8/24

Graph: G = (V,E). V is a set of vertices/nodes. E ⊆ V × V

is a set of edges.

Directed graph: Edge (u, v) ∈ E, is directed from u to v.
Undirected graph: Edge (u, v) ∈ E is undirected. That is, if
(u, v) ∈ E, then (v, u) ∈ E. The set of edges is symmetric.

Cycles: v1, v2, . . . , vk, v1 such that (vi, vi+1), for 1 ≤ i < k and
(vk, v1) are (directed) edges in the graph. Here we assume
that the edges used, (vi, vi+1), for 1 ≤ i < k and (vk, v1) are
all pairwise distinct.
Acyclic: There are no sequence of vertices v1, v2, . . . , vk
such that (vi, vi+1), for 1 ≤ i < k, and (vk, v1) are (directed)
edges in the graph (where the edges used, (vi, vi+1), for
1 ≤ i < k and (vk, v1), are all pairwise distinct).
Child, Parent: For directed graph, (u, v) ∈ E, then v is child
of u, and u is parent of v. – p. 9/24

Some famous NP complete problems

1. Satisfiability:
INSTANCE: A set U of variables and a collection C of
clauses over U .
QUESTION: Is there a satisfying truth assignment for C?
Here, a clause is of the form (A ∨ B ∨ ¬C).
Thus, satisfiability problem is of the form
(A ∨ B ∨ ¬C) ∧ (E ∨ F ∨ ¬A) ∧ (F ∨ B ∨ ¬C)
A,¬A,B,¬B . . . are called literals.

3-SAT: Each clause has at most (exactly) 3 literals.

– p. 10/24

2. 3-Dimensional Matching:
INSTANCE: Three disjoint finite sets X,Y, Z, each of
cardinality n, and a set S ⊆ X × Y × Z.
QUESTION: Does S contain a matching? i.e. is there a
subset S′ ⊆ S such that |S′| = n and no two elements of S′

agree in any coordinate?

– p. 11/24

3. Vertex Cover:
INSTANCE: A graph G = (V,E) and a positive integer
K ≤ |V |.
QUESTION: Is there a vertex cover of size K or less for G?
i.e. is there a subset V ′ ⊆ V such that, |V ′| ≤ K and for
each edge (u, v) ∈ E, at least one of u, v belongs to V ′?

– p. 12/24

4. MAX-CUT:
INSTANCE: An undirected graph G = (V,E), and a positive
integer K ≤ |E|.
QUESTION: Is there a cut of G with size > K? Here (X,Y)
is said to be a cut of G, if (X,Y) is a partition of V . That is,
X ∩ Y = ∅ and X ∪ Y = V . Size of a cut (X,Y) of G, is
|{(v, w) | v ∈ X and w ∈ Y and (v, w) ∈ E}|. That is, size of a
cut (X,Y) is the number of edges in G which connect X
and Y .

– p. 13/24

5. Clique:
INSTANCE: A graph G = (V,E) and a positive integer
K ≤ |V |.
QUESTION: Does G contain a clique of size K or more?
i.e. is there a subset V ′ ⊆ V , such that |V ′| ≥ K, and for all
distinct u, v ∈ V ′, (u, v) ∈ E?

6. Independent Set:
INSTANCE: A graph G = (V,E) and a positive integer
K ≤ |V |.
QUESTION: Does G contain an independent set of size K

or more? i.e. is there a subset V ′ ⊆ V , such that |V ′| ≥ K,
and for all distinct u, v ∈ V ′, (u, v) 6∈ E?

– p. 14/24

7. Hamiltonian Circuit:
INSTANCE: A graph G = (V,E)
QUESTION: Does G contain a Hamiltonian circuit? i.e. is
there a simple circuit which goes through all the vertices of
G?

– p. 15/24

8. Partition:
INSTANCE: A finite set A and a size s(a) > 0, for each
a ∈ A.
QUESTION: Is there a subset A′ of A such that∑

a∈A′ s(a) =
∑

a∈A−A′ s(a)?

Note: Here s(a) is given in binary for each a ∈ A. So the
length of the input is proportional to |A|+

∑
a∈A log s(a).

9. Set Cover:
INSTANCE: A finite set A, a collection {S1, S2, . . . , Sm} of
subsets of A, and a number k.
QUESTION: Is there a subset Y of {1, . . . ,m}, of size at
most k, such that A ⊆

⋃
i∈Y Si.

– p. 16/24

10. Traveling Salesman Problem:
INSTANCE: A complete weighted graph G = (V,E), and a
bound B.
QUESTION: Is there a Hamiltonian circuit of weight ≤ B?
Note: Here weights of the edges and B are given in binary.
So the length of the input is proportional to
|V |+ |E|+ logB +

∑
e∈E logwt(e).

– p. 17/24

Theorem: (a) If one of the NP-complete problems is solvable
in polynomial time, then all the problems in NP are solvable
in polynomial time. In other words, P = NP.

(b) If P 6= NP, then none of the NP-complete problems are
solvable in polynomial time.

Part (b) follows from (a). So we prove part (a).

– p. 18/24

Proof:

Suppose L is NP-complete, and L ∈ P.

Thus, for some polynomial h, there is a h(|x|) time
bounded TM A(·) which accepts L.

Consider any problem L′ ∈ NP.

Suppose x ∈ L′ iff f(x) ∈ L, where f is computed by TM
M which is q(|x|)-time bounded, for some polynomial q.

Consider A′(x) = A(M(x)). Note that A′ accepts L′.

A′ is q(|x|) + h(q(|x|))-time bounded, which is polynomial
in |x|.

Thus, L′ ∈ P.

– p. 19/24

Vertex Cover

To see that Vertex Cover is in NP, given a graph (V,E),
guess a V ′ ⊆ V , and verify that
(i) |V ′| ≤ k, and
(ii) for all (v, w) ∈ E, at least one of v, w is in V ′. If the
verification is successful, then accept; otherwise reject.

– p. 20/24

To show that Vertex Cover is NP-hard, consider the
following reduction from 3SAT.
Suppose U = {x1, x2, . . . , xn} is the set of variables and
C = {c1, c2, . . . , cm} is the set of clauses, where
ci = (li,1 ∨ li,2 ∨ li,3).

Then form the vertex cover instance G = (V,E), where
V = {ui, wi : 1 ≤ i ≤ n} ∪ {zj,1, zj,2, zj,3 : 1 ≤ j ≤ m}.

Let
E = {(ui, wi) : 1 ≤ i ≤ n} ∪ {(zj,1, zj,2), (zj,2, zj,3), (zj,1, zj,3) :
1 ≤ j ≤ m} ∪ {(zj,r, ui) : lj,r = xi} ∪ {(zj,r, wi) : lj,r = ¬xi}.

Let k = 2m+ n

– p. 21/24

Intuitively, ui represents xi and wi represents ¬xi. zj,r
represents the literal lj,r. Clearly the above reduction can
be done in polynomial time.
It is easy to verify that in any vertex cover, one must have (i)
at least one of ui, wi for each i, 1 ≤ i ≤ n and (ii) at least two
of zj,1, zj,2, zj,3, for each j, 1 ≤ j ≤ m. Thus, any vertex cover

for G of size at most 2m+ n must contain exactly one of
ui, wi for each i, 1 ≤ i ≤ n and exactly two of zj,1, zj,2, zj,3, for

each j, 1 ≤ j ≤ m.

– p. 22/24

If the 3SAT problem (U,C) has a satisfying assignment,
then by correspondingly choosing ui in V ′ iff xi is true, wi in
V ′ iff xi is false, and choosing two of zj,1, zj,2, zj,3 to be in V ′

such that if zj,r is left out of V ′ then the literal lj,r is true, we

can easily verify that V ′ is a vertex cover of G.

If the Vertex Cover problem (V,E) has a vertex cover, then
consider the truth assignment: xi is true iff ui is in the vertex
cover. It can now be shown that if zj,r is not in the vertex

cover then, lj,r must be true (otherwise, both the vertices of

the edge (zj,r, si) are not in the vertex cover, where si is ui,

if lj,r = xi, and si is wi, if lj,r = ¬xi.)

– p. 23/24

Clique/Independent Set

It is easy to verify that clique is in NP: guess a subset
V ′ ⊆ V of size k, and verify that V ′ is a complete graph.
Similarly for Independent Set

Suppose G = (V,E) is a graph. Then, one can show that
G = (V,E) has a vertex cover of size k iff G = (V,E) has an
independent set of size |V | − k iff G′ = (V,Ec) has a clique
of size |V | − k. Here Ec = {(u, v) : u, v ∈ V, u 6= v} − E.

To see this note that V ′ is a vertex cover of G iff V − V ′ is an
independent set of G iff V − V ′ is a clique of G′.
This proves that Clique and independent set are
NP-complete.

– p. 24/24

	Efficient Computations
	NP
	Reducibility
	NP -completeness
	Some famous NP complete problems
	Vertex Cover
	Clique/Independent Set

