Efficient Computations

o N

P = {L | some poly time bounded deterministic Turing
machine accepts L}.

NP = {L | some poly time bounded nondeterministic Turing
machine accepts L}.

coNP={L | L € NP}.

P=NP?
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NP
- -

roposition: Suppose L € NP.
Then there exists a (deterministic) polynomial time
computable predicate P(z,y), and a polynomial ¢(-) such
that
x € Liff Jy | [y] < q(|z])[P(z,y)].

Proof: Suppose N is a ¢(n) time bounded NDTM accepting
L.

Without loss of generality assume that N has exactly two
choices in each state.
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P(x,y) is defined as follows.

Let y = y1y2 - ym.

If m > q(|z|) then reject.

Otherwise simulate N, where at step i, choose the next
state based on whether y; is 0 or 1.

P(x,y)is 1 iff N accepts in the above simulation.

Now, (Fy | |y| < q(|z|))|[P(x,y)] iff N(z) has an accepting
path.
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ﬁn the proposition one often calls y such that P(x,y) =1 as
a “certificate” or “proof” that x € L.
Thus one can consider NP as class of languages for which
“oroofs” can be easily (in polynomial time) verified.
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Reducibility
-

L1 <, Lo (read: L; is poly time, many-one, reducible to Ls):
there exists poly time computable function f such that
r € 1 f(x) € L.

-

Ly <7. Ly (read: L, is poly time, Turing, reducible to Ls):
there exists a polynomial time oracle Turing machine M,
such that the M2 accepts L;.

Ly <:085Pace 1o (read: Ly is log-space many-one reducible to
LQ):

there exists a function f, which is computable by a log
space bounded Turing machine, such that

r e Lisf(xr) € L.
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NP-completeness

A N

set L is said to be NP-complete iff
(1) L € NP, and
(2) (VL' eNP)[L' <7, L.

If (2) is satisfied, then the problem is said to be NP-hard.
The interest in NP-complete problems arises from the fact
that many of the interesting combinatorial problems are

NP-complete.
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Proposition: <%, is reflexive and transitive.
Proof:
Reflexive: Any L can be reduced to itself by identity function

flz) = .

Transitive: Suppose L1 <}, Lo and Lo <;,, Ls.
Suppose f, g are polynomial time computable functions
such that
v € Lisf(r) € Loand z € Losg(x) € Ls.
Let h(x) = g(f(x)). Clearly h is polynomial time computable.
Now z € L1 f(x) € Lag(f(z)) € Ls.
Thus x € Li<h(x) € Ls.
LThus L1 <P L5. This shows that <P is transitive. J
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Corollary: If L is NP-complete, L' € NP and L <}, L' then L’
IS NP-complete.

The above corollary allows us to prove that a problem

L’ € NP is NP-complete by just showing that L’ € NP and
some KNOWN NP-complete problem is polynomial time,
many one reducible to L.
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. . . B

raph: G = (V, E). V is a set of vertices/nodes. E CV xV
IS a set of edges.

Directed graph: Edge (u,v) € E, is directed from u to v.
Undirected graph: Edge (u,v) € E Is undirected. That is, if
(u,v) € E, then (v,u) € E. The set of edges is symmetric.

Cycles: vy, v, ..., v, v1 such that (v;,v;11), for 1 <i < k and
(v, v1) are (directed) edges in the graph. Here we assume
that the edges used, (v;,v;11), for 1 <i < k and (v, vy) are
all pairwise distinct.
Acyclic: There are no sequence of vertices vy, v9, ..., v
such that (v;,v;11), for 1 <i < k, and (v, v1) are (directed)
edges in the graph (where the edges used, (v;, v;11), for
LC< i < k and (v, v1), are all pairwise distinct).
hild, Parent: For directed graph, (u,v) € E, then v is child
of u, and w is parent of v.



Some famous NP complete problems

- N

1. Satisfiability:

INSTANCE: A set U of variables and a collection C of
clauses over U.

QUESTION: Is there a satisfying truth assignment for C'?
Here, a clause is of the form (AvV B Vv =C).

Thus, satisfiability problem is of the form
(AVBV-CYN(EVFV-AANFEVBYV-C)....

A, —A,B,-B...are called literals.

3-SAT: Each clause has at most (exactly) 3 literals.
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f2. 3-Dimensional Matching:
INSTANCE: Three disjoint finite sets X, Y, Z, each of
cardinality n,andaset S C X xY x Z.
QUESTION: Does S contain a matching? i.e. is there a
subset S C S such that |S’| = n and no two elements of S’
agree in any coordinate?
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3. Vertex Cover:

INSTANCE: A graph G = (V, E) and a positive integer

K <|V]|.

QUESTION: Is there a vertex cover of size K or less for G?
.e. is there a subset V! C V such that, |V’| < K and for
each edge (u,v) € E, at least one of u, v belongs to V'?
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4. MAX-CUT:

INSTANCE: An undirected graph G = (V, E'), and a positive
integer K < |E|.

QUESTION: Is there a cut of G with size > K? Here (X,Y)
is said to be a cut of G, if (X,Y") is a partition of V. That is,
XNY=0and XUY =V. Sizeofacut (X,Y) of G, is
{(v,w)|ve Xandw e Y and (v,w) € E}|. Thatis, size of a
cut (X,Y) is the number of edges in G which connect X
and Y.
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5. Clique:

INSTANCE: A graph G = (V, F) and a positive integer

K <|V]|.

QUESTION: Does G contain a clique of size K or more?
i.e. is there a subset V/ C V, such that |V’/| > K, and for all
distinct u,v € V/, (u,v) € E?

6. Independent Set:

INSTANCE: A graph G = (V, E) and a positive integer

K < |VI.

QUESTION: Does G contain an independent set of size K

or more? i.e. is there a subset V/ C V, such that |V'| > K,
Land for all distinct u,v € V', (u,v) & E? J
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/. Hamiltonian Circuit:

INSTANCE: A graph G = (V, E)

QUESTION: Does G contain a Hamiltonian circuit? i.e. is
there a simple circuit which goes through all the vertices of

G?
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f8. Partition:
INSTANCE: A finite set A and a size s(a) > 0, for each
a € A.
QUESTION: Is there a subset A’ of A such that
2 aca (@) = 2 qen_a5(a)?
Note: Here s(a) is given in binary for each a € A. So the
length of the input is proportional to |[A| + ) . 4 log s(a).

9. Set Cover:

INSTANCE: A finite set A, a collection {51, 5,,...,S5,,} of
subsets of A, and a number k.

QUESTION: Is there a subset Y of {1,...,m}, of size at

Lmost k,suchthat A C | J..y Si. J
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10. Traveling Salesman Problem:

INSTANCE: A complete weighted graph G = (V, F), and a
bound B.

QUESTION: Is there a Hamiltonian circuit of weight < B?
Note: Here weights of the edges and B are given in binary.
So the length of the input is proportional to

V| + |E|+log B+ ZeeElogwt(e).
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fTheorem: (a) If one of the NP-complete problems is solvable
In polynomial time, then all the problems in NP are solvable
In polynomial time. In other words, P = NP.

(b) If P 4 NP, then none of the NP-complete problems are
solvable in polynomial time.

Part (b) follows from (a). So we prove part (a).
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roof:

Suppose L is NP-complete, and L € P.

Thus, for some polynomial &, there is a i(|x|) time
bounded TM A(-) which accepts L.

Consider any problem L' € NP.

Suppose x € L' iff f(x) € L, where f is computed by TM
M which is ¢(|x|)-time bounded, for some polynomial g.

Consider A’'(x) = A(M (z)). Note that A" accepts L.

A"is q(|z|) + h(q(]z]))-time bounded, which is polynomial
in |x|.

Thus, L' € P.

|
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Vertex Cover

fTo see that Vertex Cover is in NP, given a graph (V, F), T
guess a V' C V, and verify that
(i) |[V'| <k, and
(i) for all (v, w) € £, at least one of v, w is in V'. If the
verification is successful, then accept; otherwise reject.
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o show that Vertex Cover is NP-hard, consider the
following reduction from 3SAT.

Suppose U = {x1,x9,...,x,} IS the set of variables and
C ={c1,c9,...,cn} 18 the set of clauses, where

ci = i1 V86iaViis).

Then form the vertex cover instance G = (V, E'), where
V={u,w; : 1 <i<n}U{zj1,252,2i3:1 <7 <m}.

Let

B = {(uj,wi) : 1 <i<npU{(21,252), (2,2, 2,3), (25,1, 25,3) :
1 <9< m} U {(zj,r,ui) . lj’r — ZI?Z} U {(zj,r,wi) : lj’r — —15137;}.
letk =2m +n

-
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ntuitively, u; represents z; and w; represents —z;. z;,
represents the literal ;.. Clearly the above reduction can

be done in polynomial time.

It is easy to verify that in any vertex cover, one must have (i)
at least one of u;, w; for each i, 1 <i <n and (ii) at least two
of z; 1,252, 23, for each j, 1 < 5 <m. Thus, any vertex cover
for G of size at most 2m 4+ n must contain exactly one of

u;, w; for each ¢, 1 <14 < n and exactly two of z; 1, z; 2, 2; 3, for
eachj, 1 <j <m.
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ﬁf the 3SAT problem (U, C) has a satisfying assignment,
then by correspondingly choosing u; in V' iff z; is true, w; in
V' iff x; is false, and choosing two of z; 1, z;2, 23 to be in V'
such that if z; . is left out of V' then the literal [; .. is true, we
can easily verify that V/ is a vertex cover of G.

If the Vertex Cover problem (V, F') has a vertex cover, then
consider the truth assignment: z; is true iff u; is in the vertex
cover. It can now be shown that if z;,. is not in the vertex
cover then, /; . must be true (otherwise, both the vertices of
the edge (z;,, s;) are not in the vertex cover, where s; Is u;,
If lj’r = x;, and s; IS w;, If lj’f,a — —1337;.)
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Clique/Independent Set
- -

t is easy to verify that cligue is in NP: guess a subset
V' C V of size k, and verify that V' is a complete graph.
Similarly for Independent Set

Suppose G = (V, E) is a graph. Then, one can show that
G = (V, F) has a vertex cover of size k iff G = (V, E) has an
independent set of size |V | — k iff G’ = (V, E°) has a clique
of size |V| — k. Here E¢ = {(u,v) : u,v € V,u # v} — F.

To see this note that V' is a vertex cover of G iff V — V" is an
independent set of G iff V — V' is a clique of G'.

This proves that Clique and independent set are

NP-complete. J
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