
Push Down Automata

P = (Q,Σ,Γ, δ, q0, Z0, F ).

Q: Finite set of states; q0 is the start state;
F is the set of final/accepting states.

Σ: Alphabet set; Γ: Stack alphabet

Z0 is the (only) initial symbol on the stack.

δ: transition function.

δ takes as input a state q, an input letter a (or ǫ), and a stack
symbol (top of stack) X. δ(q, a,X) is then a finite subset of
Q× Γ∗.

– p. 1/10



(p, γ) ∈ δ(q, a,X) denotes that when in state q, reading
symbol a (or ǫ), with top of stack being X, the machine’s
new state is p, X at the top of stack is popped and γ is
pushed to the stack. (By convention, if γ = RS, then S is
pushed first, and then R is pushed on the stack).

– p. 2/10



Instantaneous Descriptions

(q, w, α): denotes that current state is q, input left to read is
w, and α is on the stack (first symbol of α is top of stack).
(q, aw,Xα) ⊢ (p, w, βα), if (p, β) ∈ δ(q, a,X) (here a can be ǫ).
One can similarly define ⊢∗

P (or simply ⊢∗, where P is

understood).
1. I ⊢∗ I

2. I ⊢∗ J and J ⊢ K, then I ⊢∗ K

– p. 3/10



Language accepted by PDA

Acceptance by final state.
{w | (q0, w, Z0) ⊢

∗

P (qf , ǫ, α), for some qf ∈ F}.

Acceptance by empty stack.
{w | (q0, w, Z0) ⊢

∗

P (q, ǫ, ǫ), for some q ∈ Q}.

– p. 4/10



From Acceptance using empty stack to Acceptance using
Final State

Intuition: Initially put a special symbol onto the stack.
If ever see the top of stack as that symbol, then go to final
state.

P = (Q,Σ,Γ, δ, q0, Z0, F ).
PF = (Q ∪ {p0, pf},Σ,Γ ∪ {X0}, δF , p0, X0, {pf}).

1. δF (p0, ǫ,X0) = {(q0, Z0X0)}.
2. For all Z ∈ Γ, a ∈ Σ ∪ {ǫ}: δF (p, a, Z) contains all (q, γ)
which are in δ(p, a, Z).
3. δF (p, ǫ,X0) contains (pf , ǫ), for all p ∈ Q.

– p. 5/10



From Acceptance using final state to Acceptance using
empty Stack

Place a transition from final state to a special state which
empties the stack.
P = (Q,Σ,Γ, δ, q0, Z0, F ).
PE = (Q ∪ {p0, pf},Σ,Γ ∪ {X0}, δE , p0, X0, {pf}).

1. δE(p0, ǫ,X0) = {(q0, Z0X0)}.
2. δE(p, a, Z) contains all (q, γ) which are in δ(p, a, Z), for all
Z ∈ Γ and a ∈ Σ ∪ {ǫ}.
3. δE(p, ǫ, Z) contains (pf , ǫ), for all p ∈ F , and Z ∈ Γ ∪ {X0}.

4. δE(pf , ǫ, Z) contains (pf , ǫ), for all Z ∈ Γ ∪ {X0}.

– p. 6/10



Equivalence of CFGs and PDAs

First we show how to accept a CFG.
We use the accepting by empty stack model.
Intuitively, do left-most derivation. Use stack to keep track
of “what is left to derive”. Each time there is a non-terminal
on the top of stack, guess a production to be used and push
it on the stack. Terminal symbols can be matched as it is.

Details:
G = (V, T, P, S).
Then, construct PDA = ({q0},Σ,Γ, δ, q0, S, F ),
where, Σ = T ,
Γ = V ∪ T .
For all a ∈ Σ, δ(q0, a, a) = {(q0, ǫ)}
For all A ∈ V , δ(q0, ǫ, A) = {(q0, γ) : A → γ in P}.

– p. 7/10



Now we show that each language accepted by a PDA
(using empty stack) can be generated by a CFG.
Suppose PDA is (Q,Σ,Γ, δ, q0, Z0, F ).
We define grammar G = (V,Σ, R, S) as follows.
V = {S} ∪ {[qZp] : q, p ∈ Q,Z ∈ Γ}.
S → [q0Z0p], for each p ∈ Q.
If δ(q, a,X) contains (r, Y1 . . . Yk), then we have productions
of the form:
[qXrk] → a[rY1r1][r1Y2r2] . . . [rk−1Ykrk],
for all r1, r2, . . . , rk ∈ Q.
Here, if k = 0, then [qXr] → a (think of r = r0).
Intuitively, [qXr] generates w iff (q, w,X) ⊢∗ (r, ǫ, ǫ).
By induction on number of steps of PDA/derivation in the
CFG.

– p. 8/10



Deterministic PDA

1. For all a ∈ Σ ∪ {ǫ}, Z ∈ Γ and q ∈ Q, there is at most one
element in δ(q, a, Z).
2. If δ(q, ǫ,X) is non-empty, then δ(q, a,X) is empty for all
a ∈ Σ.

Theorem: There exists a language which is accepted by
PDA (NPDA) but not by any DPDA.

– p. 9/10



Deterministic PDA

Theorem: If we consider acceptance by final state, then
every regular language can be accepted by a DPDA.

Theorem: If we consider acceptance by empty stack, then
{a, aa} is not accepted by a DPDA.
Any language accepted by a DPDA accepting by empty
stack has prefix property: For every x, y in the language, x
is not a prefix of y.

– p. 10/10


	Push Down Automata
	Instantaneous Descriptions
	Language accepted by PDA
	Equivalence of CFGs and PDAs
	Deterministic PDA
	Deterministic PDA

