Push Down Automata

L

#® (): Finite set of states; ¢ is the start state;
F' is the set of final/accepting states.

X Alphabet set; I': Stack alphabet
® 7y is the (only) initial symbol on the stack.

(Qa 27 Fa 57 q0, ZO? F)

® : transition function.

0 takes as input a state ¢, an input letter a (or ¢), and a stack
symbol (top of stack) X. d(q,a, X) is then a finite subset of
Q) x I'.

o |

—p. 1110

. N

(p,~) € d(q,a, X) denotes that when in state ¢, reading
symbol a (or ¢), with top of stack being X, the machine’s
new state is p, X at the top of stack is popped and ~ is
pushed to the stack. (By convention, if v = RS, then S is
pushed first, and then R is pushed on the stack).

—p.2/10

Instantaneous Descriptions

(¢, w,). denotes that current state is ¢, input left to read is T
w, and « 1S on the stack (first symbol of « is top of stack).

(q, 0w, Xa) F (p,w, Ba), If (p,B) € 6(q,a, X) (here a can be e).
One can similarly define -3, (or simply ¥, where P is
understood).

1. T 1T
2. I Jand JF K,then I K

—p. 3/10

Language accepted by PDA
-

Acceptance by final state.
{w] (90, w, Z0) Fp (g5, ¢,), for some ¢ € I'}.

-

Acceptance by empty stack.
{w | (90, w, Zo) Fp (q,¢€,¢), for some g € Q}.

- N

From Acceptance using empty stack to Acceptance using
Final State

Intuition: Initially put a special symbol onto the stack.
If ever see the top of stack as that symbol, then go to final

state.

P = <Q727F757 QOaz()aF)'
PF = (Q U {po,pf},z,r U {XO}75F7p07X07 {pf})

1. dr(po, €, Xo) = {(q0, Z0X0)}-
2. Forall Z eT',aeXU{e}: dp(p,a, Z) contains all (¢,)

which are in §(p, a, 7).
3. 0r(p, €, Xo) contains (p¢, e), for all p € Q.

o |

—p.5/10

- N

From Acceptance using final state to Acceptance using
empty Stack
Place a transition from final state to a special state which
empties the stack.
P=(Q,%,T,6,q, %2, F).
Pg = (QU{po,prt, X, T'U{Xo}, 08, p0, Xo, {ps})-

1. 9r(po, €, Xo) = {(q0, ZoXo) }-

2. 0p(p,a, Z) contains all (¢,v) which are in é(p, a, Z), for all
Zelanda € ¥ U {e}.

3. 0g(p, €, Z) contains (p¢,e), forallp e F,and Z € I' U { Xy }.
4. 0g(ps, €, Z) contains (py,e), forall Z e I' U { Xo}.

o |

—p. 6/10

Equivalence of CFGs and PDAs
-

fFirst we show how to accept a CFG.
We use the accepting by empty stack model.
Intuitively, do left-most derivation. Use stack to keep track
of “what Is left to derive”. Each time there is a non-terminal
on the top of stack, guess a production to be used and push
it on the stack. Terminal symbols can be matched as it is.

Details:

G=(V,T,P,S).

Then, construct PDA = ({qo},%,1,6, qo0, S, F),
where, > =T,

I'=VUT.

Forall a € 2, §(qo,a,a) = {(qo,€)}

Forall A eV, d(qo,¢6,A) ={(q0,7) : A— ~vIn P}.

. |

—p. 7110

-

fNow we show that each language accepted by a PDA
(using empty stack) can be generated by a CFG.
Suppose PDA is (Q,>,T, 0, qo, Zo, F).
We define grammar G = (V, %, R, S) as follows.
V={Syu{lgZpl:q,p € Q,Z €T}.
S — |qoZop)|, for each p € Q.
If 6(¢q,a, X) contains (r, Y7 ...Y%), then we have productions
of the form:
q X7k — alrYiri|[riYors] .. 1 Yerg],
forall ri,r,...,r. € Q.
Here, if £ = 0, then [¢X 7] — a (think of » = r).
Intuitively, [¢Xr| generates w iff (¢, w, X) F* (r, ¢, €).
By induction on number of steps of PD A/derivation in the
CFG.

o |

—p.8/10

Deterministic PDA
- -

.Forallae X U{e}, Z € I"and ¢ € Q, there is at most one
elementin §(q,a, 2).
2. 1f 6(q, €, X) I1s non-empty, then i(q, a, X) is empty for all

a € .

Theorem: There exists a language which is accepted by
PDA (NPDA) but not by any DPDA.

o |

—p.9/10

Deterministic PDA

fTheorem: If we consider acceptance by final state, then T
every regular language can be accepted by a DPDA.

Theorem: If we consider acceptance by empty stack, then
{a,aa} i1s Not accepted by a DPDA.

Any language accepted by a DPDA accepting by empty
stack has prefix property: For every =,y in the language, =
IS not a prefix of y.

o |

—p. 10/10

	Push Down Automata
	Instantaneous Descriptions
	Language accepted by PDA
	Equivalence of CFGs and PDAs
	Deterministic PDA
	Deterministic PDA

