

CS3231 Tutorial 12

1. Show that $DSPACE(n^2)$ is a proper subset of $DSPACE(n^3)$.
2. State whether the following are true or false, and give a short justification for your answer.
 - (a) For every context free language A there exists a regular language B such that $A \leq_m B$.
 - (b) Given a simple graph $G = (V, E)$, with n vertices, it is decidable in polynomial time whether G can be colored using $n - 1$ colors. That is, it is decidable in polynomial time, whether there is a mapping f from V to $\{1, 2, \dots, n - 1\}$ such that for all $(u, v) \in E$, $f(u) \neq f(v)$.

For the following problems you may assume that Hamiltonian Circuit and Partition are NP-complete.

3. Show that Travelling Salesman problem is NP-complete.

4. Consider the following problem:

INSTANCE: A graph $G = (V, E)$ and an integer k .

QUESTION: Is there a simple path in G of length at least k ?

Show that the above problem is NP-complete.

5. Consider the following problem:

INSTANCE: A number k of processors, and a set $J = \{J_1, J_2, \dots, J_r\}$ of jobs where job J_i has running time T_i , and a deadline D .

QUESTION: Is there a way to schedule the jobs on the k -processors (non-preemptively, i.e., a job has to run on the processor it is allocated to until completion) such that the total time taken to finish all the jobs is at most D ?

Show that the above problem is NP-complete.

6. Savitch showed that if $S(n) \geq \log n$, and $S(n)$ is fully space constructible, then

$$NSPACE(S(n)) \subseteq DSPACE((S(n))^2).$$

Let PSPACE denote the class of languages which can be accepted in polynomial space (in the length of the input) by a deterministic multi-tape Turing machine. Let NPSPACE denote the class of languages which can be accepted in polynomial space (in the length of the input) by a non-deterministic multi-tape Turing Machine.

Show that PSPACE=NPSPACE.

Note: Don't worry about "fully space constructible" requirement above. That is some technical requirement, which just says that the functions used are "nice" in some way. Polynomial functions such as n^3 , n^{56} etc are fully space constructible (nice).