

CS3231 Tutorial 12

1. n^3 is fully space constructible (nice) as it can be computed within space n^3 as witnessed by the following (students are not required to show this, as I didn't spend much time on constructibility).

```

Copy input to three different worktapes.

For  $i = 1$  to  $n$ 
  For  $j = 1$  to  $n$ 
    For  $k = 1$  to  $n$ 
      Write  $\#$  on fourth worktape and move right on this worktape.
    EndFor
  EndFor
EndFor

```

The i, j, k can be tracked by moving through the three worktapes with copied input.

As $\lim_{n \rightarrow \infty} \frac{n^2}{n^3} = 0$, using space hierarchy theorem, we have that $DSPACE(n^3) - DSPACE(n^2) \neq \emptyset$.

As trivially, $DSPACE(n^2) \subseteq DSPACE(n^3)$, we have the result.

2. Done in T11.

3. It is easy to check that Travelling Salesman problem is in NP: Given a weighted graph $G = (V, E)$ and a bound B , guess a permutation v_1, v_2, \dots, v_n of V , and verify that $v_1 v_2 \dots v_n v_1$ is a simple circuit which goes through all the vertices exactly once and the weight of the circuit is at most B . If the verification is successful, then accept.

To show that Travelling Salesman problem is NP-hard, we reduce from Hamiltonian circuit problem to TSP.

Suppose $G = (V, E)$ is a Hamiltonian circuit problem, where $|V| = n$. Then construct a TSP problem $G' = (V', E')$, with $B = n$ as follows:

- $V' = V$
- $E' = \{(u, v) : u, v \in V, u \neq v\}$, where the weights of the edges are given by
 - If $(u, v) \in E$, then $wt(u, v) = 1$.
 - If $(u, v) \notin E$, then $wt(u, v) = n + 2$.

It is easy to verify that the reduction can be done in polynomial time.

Now, G has a Hamiltonian Circuit iff G' has a Hamiltonian circuit of weight $\leq B = n$. To see this, note that

- Any Hamiltonian circuit in G has weight n in G' (with the same, but weighted, edges).

- There is no Hamiltonian circuit in G' of weight less than n , as each edge has weight at least 1.
- If there is a Hamiltonian circuit C in G' of weight n , then C can only contain the edges which were in G , as otherwise weight of C would have been at least $n + 2$. Thus, C (without weights) is also a Hamiltonian circuit in G .

4. It is easy to see that the problem is in NP: Guess a path $v_0v_1v_2 \dots v_k$ and verify that it is indeed a simple path (no repetition of vertices, and (v_i, v_{i+1}) is an edge). If verification is successful, then accept.

To show that the problem is NP-hard, we show a reduction from Hamiltonian Circuit problem. Suppose $G = (V, E)$ is a given HC problem. Construct $G' = (V', E')$ as follows:

Suppose $V = \{v_1, \dots, v_n\}$. Suppose X is the set of vertices adjacent to v_1 .

Then, $V' = V \cup \{v_0, v_{n+1}, v_{n+2}\}$.

$$E' = E \cup \{(v_0, v_1), (v_{n+1}, v_{n+2})\} \cup \{(v, v_{n+1}) : v \in X\}.$$

k (the number of edges needed in the simple path) is $n + 2$.

Now, if G has a Hamiltonian circuit in which there is an edge (v_1, v) , then G' has a simple path of size $n + 2$, by dropping the edge (v_1, v) from HC and adding the edges (v_0, v_1) , (v, v_{n+1}) , (v_{n+1}, v_{n+2}) .

If the graph G' has a simple path containing $n + 2$ edges, then it must start from (v_0, v_1) , and end in (v_{n+1}, v_{n+2}) . Suppose the last edge before (v_{n+1}, v_{n+2}) in this path is (v, v_{n+1}) . Then, by dropping the edges (v_0, v_1) , (v_{n+1}, v_{n+2}) and (v, v_{n+1}) from the path and adding (v_1, v) we get a HC in G .

5. It is easy to see that the processor scheduling problem is in NP: Just guess a schedule (i.e., assignment of jobs to processors), and verify that each job is assigned to some processor and each processor's load is at most D (i.e., sum of the time taken by the jobs assigned to each of the processor is at most D).

To show NP-hardness, we reduce the partition problem to processor scheduling problem.

Suppose we are given a partition problem $A = \{a_1, a_2, \dots, a_n\}$ where $s(a)$ denotes the size of $a \in A$.

Then, construct the processor scheduling problem as follows. There are $k = 2$ processors. $J = A = \{a_1, a_2, \dots, a_n\}$, and the time T_i taken for job $a_i \in J$ is $s(a_i)$. The deadline is $\lfloor \sum_{a \in A} s(a)/2 \rfloor$.

Now, it is easy to verify that there is a partition of A into equal weighted partitions iff these two parts can be scheduled into the two processors using total time at most/exactly $\lfloor \sum_{a \in A} s(a)/2 \rfloor$.

6. Note that for any polynomial $p(n)$, there exists a natural number k such that $p(n) \leq kn^k$, for all n . Using the technique of space compression, we get that $NSPACE(p(n)) \subseteq NSPACE(n^k)$. Thus, using Savitch's theorem, we get:

$$NPSPACE = \bigcup_{k \in N} NSPACE(n^k) \subseteq \bigcup_{k \in N} DSPACE(n^{2k}) \subseteq PSPACE \subseteq NPSPACE.$$

Thus, $NPSPACE = PSPACE$.