

CS3231

Tutorial 1

1. For $n = 0$, the result clearly holds.

Suppose it holds for $n = k$.

$$\text{Then, } 1^2 + 2^2 + \dots + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 = \frac{(k+1)(2k^2+k+6k+6)}{6} = \frac{(k+1)(k+2)(2k+3)}{6}.$$

Thus, the statement holds for $n = k + 1$. Hence, by induction, the statement holds for all values of n .

2. For first part $|\Sigma|^n$.

For second part, If $|\Sigma| = 1$, then $n + 1$;

$$\text{If } |\Sigma| \neq 1, \text{ then } \frac{|\Sigma|^{n+1}-1}{|\Sigma|-1}.$$

3. (a) We first show that: $A \cdot (\bigcup_{i=1}^{\infty} B_i) \subseteq \bigcup_{i=1}^{\infty} A \cdot B_i$.

Suppose $w \in A \cdot (\bigcup_{i=1}^{\infty} B_i)$. Then, there exist w_1, w_2 such that $w = w_1 w_2$, $w_1 \in A$ and $w_2 \in \bigcup_{i=1}^{\infty} B_i$. Let j be such that $w_2 \in B_j$. Then, $w_1 w_2 \in A \cdot B_j$, and thus, $w \in \bigcup_{i=1}^{\infty} A \cdot B_i$.

We now show that $\bigcup_{i=1}^{\infty} A \cdot B_i \subseteq A \cdot (\bigcup_{i=1}^{\infty} B_i)$.

Suppose $w \in (\bigcup_{i=1}^{\infty} A \cdot B_i)$. Let j be such that $w \in A \cdot B_j$. Then, there exist w_1, w_2 such that $w = w_1 w_2$ and $w_1 \in A$ and $w_2 \in B_j$. Thus, $w_2 \in \bigcup_{i=1}^{\infty} B_i$. Thus, $w \in A \cdot (\bigcup_{i=1}^{\infty} B_i)$.

It follows that $A \cdot (\bigcup_{i=1}^{\infty} B_i) = \bigcup_{i=1}^{\infty} A \cdot B_i$.

(b) Note that $\epsilon \in A^*$. Thus, $(A^*)^+ = (A^*)^*$.

Also, if $B \subseteq C$, then $B^* \subseteq C^*$. Thus, we immediately have $A^* \subseteq (A^+)^* \subseteq (A^*)^*$.

Hence, it suffices to show that $(A^*)^* \subseteq A^*$.

Suppose $w \in (A^*)^*$

Let w_1, w_2, \dots, w_k be such that $w = w_1 w_2 \dots w_k$ and each $w_i \in A^*$.

For each i , let $w_{i,1}, w_{i,2} \dots w_{i,r_i}$ be such that $w_i = w_{i,1} w_{i,2} \dots w_{i,r_i}$ and each $w_{i,j} \in A$.

Thus, we have that $w = w_{1,1} w_{1,2} \dots w_{1,r_1} w_{2,1} \dots w_{2,r_2} \dots w_{k,1} \dots w_{k,r_k}$, where each $w_{i,j} \in A$. Thus, $w \in A^*$.

4. (a) Consider DFA $(Q, \{a, b\}, \delta, q_0, \{q_1\})$, where

$Q = \{q_0, q_1, q_2\}$, and

$\delta(q_0, b) = q_0$, $\delta(q_1, b) = q_1$, $\delta(q_2, b) = q_2$, and $\delta(q_0, a) = q_1$, $\delta(q_1, a) = q_2$, $\delta(q_2, a) = q_0$,

(b) Consider DFA $(Q, \{a, b\}, \delta, q_0, \{q_5\})$, where

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

$$\delta(q_0, a) = q_1$$

$$\delta(q_1, b) = q_2$$

$$\delta(q_2, a) = q_3$$

$$\delta(q_3, a) = q_4$$

$$\delta(q_4, b) = q_5$$

$$\delta(q_5, a) = \delta(q_5, b) = q_5$$

$$\delta(q_0, b) = q_0$$

$$\delta(q_1, a) = q_1$$

$$\delta(q_2, b) = q_0$$

$$\delta(q_3, b) = q_2$$

$$\delta(q_4, a) = q_1$$

(c) $A = (\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}, \{a, b\}, \delta, q_0, \{q_0, q_1, q_2, q_3, q_4, q_5\})$.

$$\delta(q_0, a) = q_1$$

$$\delta(q_1, b) = q_2$$

$$\delta(q_2, a) = q_3$$

$$\delta(q_3, b) = q_4$$

$$\delta(q_4, b) = q_5$$

$$\delta(q_5, a) = q_6$$

$$\delta(q_6, a) = \delta(q_6, b) = q_6.$$

$$\delta(q_0, b) = q_0$$

$$\delta(q_1, a) = q_1$$

$$\delta(q_2, b) = q_0$$

$$\delta(q_3, a) = q_1$$

$$\delta(q_4, a) = q_3$$

$$\delta(q_5, b) = q_0$$

5. (Odd number of a 's and no b 's) or (any number of a 's followed by a b followed by even number of a 's).

6. The DFA accepts any string which satisfies the following requirements:

– it ends in a b , and

– it has at least one a , and

– after the first a , there are odd number of b 's and all these b 's after the first a (except the last b), appear in pairs.

(That is the string is of the form $b \dots baa^{i_1} bba^{i_2} bba^{i_3} bb \dots a^{i_k} b$, where $k \geq 1$, and $i_1, i_2, \dots, i_k \geq 0$.)

In terms of regular expression (to be taught later), this is same as: $b^* a (a^* bba^*)^* b$.