

# CS3231

## Tutorial 3

1. Distinguishable state pairs are:

Base case:  $(q0, q4), (q0, q5), (q1, q4), (q1, q5), (q2, q4), (q2, q5), (q3, q4), (q3, q5)$ , as in each of these pairs, one is accepting and one rejecting state.

1st Induction step:  $(q0, q3)$  (as  $\delta(q0, a) = q1$  and  $\delta(q3, a) = q4$  are distinguishable);  
 $(q1, q3)$  (as  $\delta(q1, a) = q2$  and  $\delta(q3, a) = q4$  are distinguishable);  
 $(q2, q3)$  (as  $\delta(q2, a) = q2$  and  $\delta(q3, a) = q4$  are distinguishable).

There will not be any more iteration, as all letters of alphabet cannot distinguish any more:  $(\delta(q4, a) = q0, \delta(q5, a) = q2)$  and  $\delta(q4, b) = q5, \delta(q5, b) = q4$ ,  $\delta(q0, a) = q1, \delta(q1, a) = q2$  and  $\delta(q2, a) = q2, \delta(q0, b) = q3, \delta(q1, b) = q3$  and  $\delta(q2, b) = q3$ , which doesn't allow us to distinguish  $(q4, q5)$  or  $(q0, q1), (q1, q2), (q0, q2)$ .

Thus, we will have the minimal DFA as:

$(\{q012, q3, q45\}, \{a, b\}, \delta, q012, \{q45\})$

With  $\delta(q012, a) = q012, \delta(q012, b) = q3, \delta(q3, a) = q45, \delta(q3, b) = q012, \delta(q45, a) = q012, \delta(q45, b) = q45$ .

2. (a) True.

As  $A$  and  $\overline{B}$  are regular, let  $R_A$  and  $R_{\overline{B}}$  be regular expressions for  $A$  and  $\overline{B}$ . Then,  $R_A \cdot R_{\overline{B}}$  is a regular expression for  $A \cdot \overline{B}$ . Thus,  $A \cdot \overline{B}$  is regular.

- (b) True.

Given a regular expression  $S$ , we show how to construct  $S^R$ , such that  $L(S)^R = L(S^R)$ .

Base cases:  $a^R = a, \epsilon^R = \epsilon, \emptyset^R = \emptyset$ .

Induction:  $(A + B)^R = A^R + B^R$ .

$(A \cdot B)^R = B^R \cdot A^R$ .

$(A^*)^R = (A^R)^*$ .

Proof that above works is left to the student.

Second method of proving:

Suppose  $A = (Q, \Sigma, \delta, q_0, F)$  is a DFA for  $L$ . Construct an  $\epsilon$ -NFA for  $L^R$  as follows.

$A_N = (Q \cup \{q'_0\}, \Sigma, \delta_N, q'_0, \{q_0\})$ , where

$\delta_N(q'_0, \epsilon) = F$ , and

for  $q \in Q, a \in \Sigma, \delta_N(q, a) = \{q' : \delta(q', a) = q\}$ .

Other transitions sets are  $\emptyset$ .

It can be shown by induction on length of  $w$  that, for  $q, q' \in Q$ ,  $\hat{\delta}(q, w) = q'$  if and only if  $q \in \hat{\delta}_N(q', w^R)$ .

Thus,  $\hat{\delta}(q_0, w) \in F$  if and only if  $q_0 \in \bigcup_{q \in F} \hat{\delta}_N(q, w^R) = \hat{\delta}_N(q_0, w^R)$ .

Thus,  $A_N$  accepts  $L^R$ .

- (c) False. Take  $L_1 = \Sigma^*$ , and  $L_2$  to be some non-regular subset of  $\Sigma^*$ .
- (d) False. Take  $L_1 = \Sigma^*$  and  $L_2$  to be some non-regular subset of  $\Sigma^*$ .
- (e) True. First note that if  $A$  and  $B$  are regular then  $A \cup B$  is also regular. To see this, note that if  $R_A$  is regular expression for  $A$  and  $R_B$  is regular expression for  $B$ , then  $R_A + R_B$  is regular expression for  $A \cup B$ .

As  $L_1$  and  $L_2$  are regular, so are  $\overline{L_1}$  and  $\overline{L_2}$ .

Thus,  $\overline{L_1} \cup \overline{L_2}$  is regular.

Thus,  $\overline{\overline{L_1} \cup \overline{L_2}} = L_1 \cap L_2$  is regular.

- (f) True.

Suppose  $(Q, \Sigma, \delta, q_0, F)$  is a DFA accepting  $L$ .

Define DFA  $A = (Q', \Sigma, \delta', q'_0, F')$  as follows.

$Q' = \{(q, s) : q \in Q, s \in \{0, 1\}\}$ .

$q'_0 = (q_0, 0)$

$F' = \{(q, 0) : q \in F\}$

For  $q \in Q, a \in \Sigma$ ,

$\delta'((q, 0), a) = (\delta(q, a), 1)$ .

$\delta'((q, 1), a) = (q, 0)$ .

It is easy to verify that  $\hat{\delta}'((q, 0), ab) = (p, 0)$  if and only if  $\delta(q, a) = p$ , for all  $q, p \in Q$  and  $a, b \in \Sigma$ .

It follows that  $A$  accepts  $\{x : \text{for some natural number } r, |x| = 2r \text{ and } x_1x_3x_5 \dots x_{2r-1} \in L\}$ .

3. (a)  $\{wcw^R \mid w \in \{a, b\}^*\}$ .

Ans: Not regular. Suppose by way of contradiction that  $L$  is regular. Let  $n$  be as in the pumping lemma.

Let  $w' = a^n ca^n \in L$ .

Let  $w' = xyz$  as in the pumping lemma.

Then,  $xy \in a^+$  and  $z \in a^*ca^n$ .

Now,  $xy^2z = a^{n+|y|}ca^n$ , which is not in  $L$ .

A contradiction. Thus,  $L$  is not regular.

(b)  $\{ww \mid w \in \{a, b\}^*\}$ .

Ans: Not regular. Suppose by way of contradiction that  $L$  is regular. Let  $n$  be as in the pumping lemma.

Let  $w' = a^n ba^n b \in L$ .

Let  $w' = xyz$  as in the pumping lemma.

Then,  $xy \in a^+$  and  $z \in a^*ba^n b$ .

Now,  $xy^2z = a^{n+|y|}ba^nb$ , which is not in  $L$  (as either its length is odd, or both  $b$ 's are in the second half of the string).

A contradiction. Thus,  $L$  is not regular.

(c)  $\{wxw^R \mid w, x \in \{a, b\}^+\}$ .

Ans: It is regular.

The regular expression for it is  $a(a+b)(a+b)^*a + b(a+b)(a+b)^*b$ .

(d)  $L = \{a^m : m > 0 \text{ and binary representation of } m \text{ has even number of bits}\}$ .

Ans: Suppose by way of contradiction that  $L$  is regular. Let  $n$  be as in the pumping lemma, where we can assume without loss of generality that  $n > 5$ . Pick  $m$  such that  $n < 2^{2m} - 1$  and  $2^{2m} - 1 + n < 2^{2m+1}$ .

Let  $w = a^{2^{2m}-1}$ . Now  $2^{2m} - 1$  is a  $2m$  bit binary number, thus  $w \in L$ .

Suppose  $w = xyz$ , where  $x, y, z$  are as in the pumping lemma. Let  $y = a^r$ , where  $1 \leq r \leq n$ .

Now,  $xy^2z$  should be in  $L$ . However,  $xy^2z = a^{2^{2m}-1+r}$ , is of length  $l$ , where  $2^{2m} \leq l < 2^{2m+1}$ . Thus  $l$  has odd number of bits in binary representation. A contradiction.

4. Let  $n = 5$ . Now consider any string  $w \in L$  such that  $|w| \geq 5$ .

If  $w \in b^*$ , then clearly, one can take  $x = \epsilon$ ,  $y = b$ , and  $z = b^{|w|-1}$ . Then,  $xy^kz \in b^* \subseteq L$  for all  $k$ .

If  $w = a^{r+1}b^p$ , for some prime  $p$ . Then let  $x = \epsilon$ ,  $y = a$  and  $z = a^rb^p$ . Now,  $xy^kz = a^{r+k}b^p$ , and thus in  $L$  (here, note that if  $r = k = 0$ , then  $a^{r+k}b^p$  is in  $b^* \subseteq L$ ).