

CS3231

Tutorial 4

1. First method:

Suppose L is regular language accepted by the DFA $D = (Q, \Sigma, \delta, q_0, F)$.

Define, ϵ -NFA $N = (Q', \Sigma, \delta', S, F')$ as follows.

$Q' = \{(q, q', q'') : q, q', q'' \in Q\} \cup \{S\}$, where S is a new starting state.

$F' = \{(q, q'', q) : q'' \in F\}$

$\delta'(S, \epsilon) = \{(q_0, q, q) : q \in Q\}$.

For $a \in \Sigma$, $q', q'' \in Q$, $\delta'((q', q'', q), a) = \{(\delta(q', a), \delta(q'', b), q) : b \in \Sigma\}$.

Intuitively, in the above construction, the machine N being in state (q', q'', q) represents that we have guessed the middle state to be q and starting from q_0 , after reading the input seen so far, the DFA D would have reached state q' and some string of the same length as the input seen so far would have taken the DFA D from “middle” state q to q'' . The start state S is used only to transfer control to (q_0, q, q) , where q is the guessed middle state.

To show that above works, show by induction on length of w that, for all $w \in \Sigma^*$,

$$\hat{\delta}'(S, w) = \{(\hat{\delta}(q_0, w), q'', q) : q \in Q \text{ and } (\exists u \in \Sigma^*)[|u| = |w|, \hat{\delta}(q, u) = q'']\}$$

Thus, $\hat{\delta}'(S, w) \cap F' \neq \emptyset$, if and only if there exists a q such that $\hat{\delta}(q_0, w) = q$ and $(\exists u \in \Sigma^*)[|u| = |w| \text{ and } \hat{\delta}(q, u) \in F]$, that is $w \in HALF(L)$.

Second method:

Suppose L is regular language accepted by the DFA $D = (Q, \Sigma, \delta, q_0, F)$.

Define, ϵ -NFA $N = (Q', \Sigma, \delta', S, F')$ as follows.

$Q' = \{(q, q') : q, q' \in Q\} \cup \{S\}$, where S is a new starting state.

$F' = \{(q, q) : q \in Q\}$

$\delta'(S, \epsilon) = \{(q_0, q') : q' \in F\}$.

For $a \in \Sigma$, $q, q' \in Q$, $\delta'((q, q'), a) = \{(\delta(q, a), q'') : \delta(q'', b) = q', b \in \Sigma\}$.

Intuitively, in the above construction, the machine N being in state (q, q') represents that starting from q_0 , after reading the input seen so far the DFA D would have reached state

q and some string of the same length as the input seen so far, would have taken the DFA D from state q' to a final state.

To show that above works, show by induction on length of w that, for all $w \in \Sigma^*$,

$$\hat{\delta}'(S, w) = \{(\hat{\delta}(q_0, w), q'') : (\exists u \in \Sigma^*)[|u| = |w|, \hat{\delta}(q'', u) \in F]\}$$

Thus, $\hat{\delta}'(S, w) \cap F' \neq \emptyset$, if and only if there exists a $q \in Q$ such that $\hat{\delta}(q_0, w) = q$ and $(\exists u \in \Sigma^*)[|u| = |w| \text{ and } \hat{\delta}(q, u) \in F]$, that is $w \in HALF(L)$.

2. $\{Q, \{a, b\}, \delta, S, \{S\}\}$, where $Q = \{A, B, S, T_1, T_2, T_3\}$, and

$$\delta(S, a) = \{T_1, T_2\},$$

$$\delta(T_1, b) = \{A\},$$

$$\delta(T_2, a) = \{B\},$$

$$\delta(A, b) = \{T_3, B\},$$

$$\delta(T_3, a) = \{A\}$$

$$\delta(B, a) = \{S\}$$

3. (b.1) For each production $A \rightarrow \alpha$ in G , have a production $A \rightarrow \alpha^R$ in G^R . Rest of the parameters (the set of terminals, non-terminals and the starting symbol) remain the same.

Then we have that G^R is a left-linear grammar for L^R . This can be proved by induction on length of derivation of strings generated by G and G^R .

(b.2) For each production $A \rightarrow \alpha$ in G , have a production $A \rightarrow \alpha^R$ in G^R . Rest of the parameters (the set of terminals, non-terminals and the starting symbol) remain the same.

Then we have that G^R is a right-linear grammar for L^R . This can be proved by induction on length of strings generated by G and G^R .

(c) Suppose L is regular. Then L^R is also regular. Thus there is a right-linear grammar G for L^R . Thus, there is a left-linear grammar G^R for L (by part (b.1)).

Suppose G is a left-linear grammar for L . Then G^R is a right-linear grammar for L^R (by part (b.2)). Thus, by result done in class L^R is regular, and thus L is regular.

4. In the answers, starting symbols is S . Upper case letters denote non-terminals, and lower case letter denote terminals.

$$(a) S \rightarrow cAc$$

$$A \rightarrow aAa|bAb|c$$

$$(b) S \rightarrow aSB|\epsilon$$

$$B \rightarrow b|bb|\epsilon$$

$$(c) S \rightarrow aSbS|bSaS|\epsilon.$$

5. Left to student as it depends on the grammar used.

For the above grammar some possible derivations include:

$$S \Rightarrow aSbS \Rightarrow abS \Rightarrow abbSaS \Rightarrow abbaS \Rightarrow abbaaSbS \Rightarrow abbaabS \Rightarrow abbaab$$

$$S \Rightarrow aSbS \Rightarrow abSaSbS \Rightarrow abbSaSaSbS \Rightarrow abbaSaSbS \Rightarrow abbaaSbS \Rightarrow abbaabS \Rightarrow abbaab$$

6. The language consists of all strings of even length. The right-linear grammar for it is:

$$S \rightarrow aaS|abS|baS|bbS|\epsilon.$$

7. (a) Consider the string *aababb*

The following are two different left most derivations:

$$S \Rightarrow aB \Rightarrow aaBB \Rightarrow aabSB \Rightarrow aabaBB \Rightarrow aababB \Rightarrow aababb.$$

$$S \Rightarrow aB \Rightarrow aaBB \Rightarrow aabB \Rightarrow aabaBB \Rightarrow aababB \Rightarrow aababb.$$

The grammar generates strings with equal number of *a* and *b* (non-zero).

(b) $S \Rightarrow TS|T$

$$T \Rightarrow aB|bA$$

$$A \Rightarrow bAA|a$$

$$B \Rightarrow aBB|b$$

Intuitively, *T* generates strings *w* with equal number of *a*'s and *b*'s, where no proper non-empty prefix of *w* has equal number of *a*'s and *b*'s.

A generates strings *w* with number of *a*'s being one more than *b*, where no proper non-empty prefix of *w* has the same property.

B generates strings *w* with number of *a*'s being one less than *b*, where no proper non-empty prefix of *w* has the same property.