
CS3231

Tutorial 4

1. First method:

Suppose L is regular language accepted by the DFA D = (Q,Σ, δ, q0, F).

Define, ϵ-NFA N = (Q′,Σ, δ′, S, F ′) as follows.

Q′ = {(q, q′, q′′) : q, q′, q′′ ∈ Q} ∪ {S}, where S is a new starting state.

F ′ = {(q, q′′, q) : q′′ ∈ F}
δ′(S, ϵ) = {(q0, q, q) : q ∈ Q}.
For a ∈ Σ, q′, q′′, q ∈ Q, δ′((q′, q′′, q), a) = {(δ(q′, a), δ(q′′, b), q) : b ∈ Σ}.
Intuitively, in the above construction, the machine N being in state (q′, q′′, q) represents
that we have guessed the middle state to be q and starting from q0, after reading the
input seen so far, the DFA D would have reached state q′ and some string of the same
length as the input seen so far would have taken the DFA D from “middle” state q to
q′′. The start state S is used only to transfer control to (q0, q, q), where q is the guessed
middle state.

To show that above works, show by induction on length of w that, for all w ∈ Σ∗,

δ̂′(S,w) = {(δ̂(q0, w), q′′, q) : q ∈ Q and (∃u ∈ Σ∗)[|u| = |w|, δ̂(q, u) = q′′]}

Thus, δ̂′(S,w) ∩ F ′ ̸= ∅, if and only if there exists a q such that δ̂(q0, w) = q and
(∃u ∈ Σ∗)[|u| = |w| and δ̂(q, u) ∈ F], that is w ∈ HALF (L).

Second method:

Suppose L is regular language accepted by the DFA D = (Q,Σ, δ, q0, F).

Define, ϵ-NFA N = (Q′,Σ, δ′, S, F ′) as follows.

Q′ = {(q, q′) : q, q′ ∈ Q} ∪ {S}, where S is a new starting state.

F ′ = {(q, q) : q ∈ Q}
δ′(S, ϵ) = {(q0, q′) : q′ ∈ F}.
For a ∈ Σ, q, q′ ∈ Q, δ′((q, q′), a) = {(δ(q, a), q′′) : δ(q′′, b) = q′, b ∈ Σ}.
Intuitively, in the above construction, the machine N being in state (q, q′) represents that
starting from q0, after reading the input seen so far the DFA D would have reached state

1

q and some string of the same length as the input seen so far, would have taken the DFA
D from state q′ to a final state.

To show that above works, show by induction on length of w that, for all w ∈ Σ∗,

δ̂′(S,w) = {(δ̂(q0, w), q′′) : (∃u ∈ Σ∗)[|u| = |w|, δ̂(q′′, u) ∈ F]}

Thus, δ̂′(S,w) ∩ F ′ ̸= ∅, if and only if there exists a q ∈ Q such that δ̂(q0, w) = q and
(∃u ∈ Σ∗)[|u| = |w| and δ̂(q, u) ∈ F], that is w ∈ HALF (L).

2. {Q, {a, b}, δ, S, {S}), where Q = {A,B, S, T1, T2, T3}, and
δ(S, a) = {T1, T2},
δ(T1, b) = {A},
δ(T2, a) = {B},
δ(A, b) = {T3, B},
δ(T3, a) = {A}
δ(B, a) = {S}

3. (b.1) For each production A → α in G, have a production A → αR in GR. Rest of
the parameters (the set of terminals, non-terminals and the starting symbol) remain the
same.

Then we have that GR is a left-linear grammar for LR. This can be proved by induction
on length of derivation of strings generated by G and GR.

(b.2) For each production A → α in G, have a production A → αR in GR. Rest of
the parameters (the set of terminals, non-terminals and the starting symbol) remain the
same.

Then we have that GR is a right-linear grammar for LR. This can be proved by induction
on length of strings generated by G and GR.

(c) Suppose L is regular. Then LR is also regular. Thus there is a right-linear grammar
G for LR. Thus, there is a left-linear grammar GR for L (by part (b.1)).

Suppose G is a left-linear grammar for L. Then GR is a right-linear grammar for LR (by
part (b.2)). Thus, by result done in class LR is regular, and thus L is regular.

4. In the answers, starting symbols is S. Upper case letters denote non-terminals, and lower
case letter denote terminals.

(a) S → cAc

A → aAa|bAb|c
(b) S → aSB|ϵ
B → b|bb|ϵ
(c) S → aSbS|bSaS|ϵ.

2

5. Left to student as it depends on the grammar used.

For the above grammar some possible derivations include:

S ⇒ aSbS ⇒ abS ⇒ abbSaS ⇒ abbaS ⇒ abbaaSbS ⇒ abbaabS ⇒ abbaab

S ⇒ aSbS ⇒ abSaSbS ⇒ abbSaSaSbS ⇒ abbaSaSbS ⇒ abbaaSbS ⇒ abbaabS ⇒
abbaab

6. The language consists of all strings of even length. The right-linear grammar for it is:

S → aaS|abS|baS|bbS|ϵ.

7. (a) Consider the string aababb

The following are two different left most derivations:

S ⇒ aB ⇒ aaBB ⇒ aabSB ⇒ aabaBB ⇒ aababB ⇒ aababb.

S ⇒ aB ⇒ aaBB ⇒ aabB ⇒ aabaBB ⇒ aababB ⇒ aababb.

The grammar generates strings with equal number of a and b (non-zero).

(b) S ⇒ TS|T
T ⇒ aB|bA
A ⇒ bAA|a
B ⇒ aBB|b
Intuitively, T generates strings w with equal number of a’s and b’s, where no proper
non-empty prefix of w has equal number of a’s and b’s.

A generates strings w with number of a’s being one more than b, where no proper non-
empty prefix of w has the same property.

B generates strings w with number of a’s being one less than b, where no proper non-empty
prefix of w has the same property.

3

