(CS3231
Tutorial 4

1. First method:
Suppose L is regular language accepted by the DFA D = (Q, %, 0, qo, F).
Define, e-NFA N = (@', 3,0, S, F’) as follows.
Q' ={(q,4,4") : q,¢',¢" € Q} U{S}, where S is a new starting state.
F'={(q,q",q9) : ¢" € F}
5,(57 6) = {(quQ)q) ‘g€ Q}
ForaeX, ¢.¢".q€Q,d((d,q",9),a) ={(0(¢',a),5(¢",b),q) : b € }.
Intuitively, in the above construction, the machine N being in state (¢/,¢”, q) represents
that we have guessed the middle state to be ¢ and starting from ¢qq, after reading the
input seen so far, the DFA D would have reached state ¢’ and some string of the same
length as the input seen so far would have taken the DFA D from “middle” state ¢ to

q". The start state S is used only to transfer control to (qo,q, q), where ¢ is the guessed
middle state.

To show that above works, show by induction on length of w that, for all w € ¥*,

§'(S,w) = {(6(qo,w),q".q) : ¢ € Q and (Fu € X*)[|u| = |w|, (¢, u) = ¢"]}

Thus, 5’(5, w) N F' # @, if and only if there exists a ¢ such that S(QO,w) = ¢ and
(FJu € ¥9)|[|u| = |w| and 6(q,u) € F], that is w € HALF(L).

Second method:

Suppose L is regular language accepted by the DFA D = (Q, %, 0, qo, F).
Define, e-NFA N = (@', 3,0, S, F’) as follows.

Q' ={(q,4) : q,¢ € Q} U{S}, where S is a new starting state.
F'={(q,9) : ¢ € Q}

¢'(S,€) = {(qo0,q') : ¢ € F}.

Fora €%, q.q € Q, 9((q.q)a) = {(6(¢,). ¢") : 3(q",b) = ¢',b € }.

Intuitively, in the above construction, the machine N being in state (g, ¢') represents that
starting from qq, after reading the input seen so far the DFA D would have reached state

q and some string of the same length as the input seen so far, would have taken the DFA
D from state ¢’ to a final state.

To show that above works, show by induction on length of w that, for all w € ¥*,

0'(S,w) = {(5(q0,w),q") : (Bu € T°)[Ju| = |w],é(¢", u) € F}

Thus, 0'(S,w) N F’ # 0, if and only if there exists a ¢ € Q such that 6(go,w) = ¢ and
(Fu € ¥*)[|Ju| = |w| and d(q,u) € F], that is w € HALF(L).

. A{Q,{a,b},,S,{S}), where Q = {A, B, S,T1,T», T3}, and
(S(S, a) = {Tl,TQ},

6(11,0) = {A},
0(T»,a) = {B},
(A, b) = {T3, B},
0(T3,a) = {A}
§(B,a) ={S}

. (b.1) For each production A — « in G, have a production A — o in G¥. Rest of
the parameters (the set of terminals, non-terminals and the starting symbol) remain the
same.

Then we have that G is a left-linear grammar for L®. This can be proved by induction
on length of derivation of strings generated by G and G%.

(b.2) For each production A — « in G, have a production A — af in GF. Rest of
the parameters (the set of terminals, non-terminals and the starting symbol) remain the
same.

Then we have that G is a right-linear grammar for L. This can be proved by induction
on length of strings generated by G and G*.

(c) Suppose L is regular. Then L% is also regular. Thus there is a right-linear grammar
G for L. Thus, there is a left-linear grammar G¥ for L (by part (b.1)).

Suppose G is a left-linear grammar for L. Then G is a right-linear grammar for L? (by

part (b.2)). Thus, by result done in class L is regular, and thus L is regular.

. In the answers, starting symbols is S. Upper case letters denote non-terminals, and lower
case letter denote terminals.

(a) S — cAc

A — aAa|bAblc

(b) S — aSB|e

B — blbble

(c) S — aSbS|bSaS]e.

5. Left to student as it depends on the grammar used.
For the above grammar some possible derivations include:
S = aSbsS = abS = abbSaS = abbaS = abbaaSbS = abbaabS = abbaab
S = aSbS = abSaSbS = abbSaSaSbS = abbaSaSbS = abbaaSbS = abbaabS =
abbaab

6. The language consists of all strings of even length. The right-linear grammar for it is:
S — aaS|abS|baS|bbS|e.

7. (a) Consider the string aababb
The following are two different left most derivations:
S = aB = aaBB = aabSB = aabaBB = aababB = aababb.
S = aB = aaBB = aabB = aabaBB = aababB = aababb.
The grammar generates strings with equal number of a and b (non-zero).
(b) S=TS|T
T = aBJbA
A= bAAla
B = aBB|b

Intuitively, T' generates strings w with equal number of a’s and b’s, where no proper
non-empty prefix of w has equal number of a’s and b’s.

A generates strings w with number of a’s being one more than b, where no proper non-
empty prefix of w has the same property.

B generates strings w with number of a’s being one less than b, where no proper non-empty
prefix of w has the same property.

