
Tutorial 5

1. Construct NPDA for the following languages over alphabet Σ.

(a) L = {wcwR | w ∈ {a, b}∗}. Σ = {a, b, c}.
NPDA: ({q0, q1, q2}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q2}).
Acceptance by final state.

δ(q0, a,X) = {(q0, aX)}, for X ∈ {a, b, Z0}.
δ(q0, b,X) = {(q0, bX)}, for X ∈ {a, b, Z0}.
δ(q0, c,X) = {(q1, X)}, for X ∈ {a, b, Z0}.
δ(q1, a, a) = {(q1, ϵ)}
δ(q1, b, b) = {(q1, ϵ)}
δ(q1, ϵ, Z0) = {(q2, ϵ)}
Intuitively, on input wcwR, in state q0, the above PDA pushes w on the stack. On
input c, it changes state to q1, and then matches the input wR with the w (in reverse)
on the stack.

(b) L = {w | #a(w) > #b(w)}. Below is for Σ = {a, b}.
NPDA: ({q0, q1}, {a, b}, {a, b, Z0}, δ, q0, Z0, {q1}).
Acceptance by final state.

δ(q0, a, Z0) = {(q0, aZ0)}
δ(q0, b, Z0) = {(q0, bZ0)}
δ(q0, a, b) = {(q0, ϵ)}
δ(q0, a, a) = {(q0, aa)}
δ(q0, b, a) = {(q0, ϵ)}
δ(q0, b, b) = {(q0, bb)}
δ(q0, ϵ, a) = {(q1, ϵ)}
Intuitively, the above PDA pushes excess a’s or b’s on the stack, and whenever it
finds a in the stack and b in the input, or vice versa, it pops out the stack element.
It accepts if the stack contains a at the end.

(c) L = {aibjck | i = j or j = k}. Σ = {a, b, c}.
NPDA: ({q0, q1, . . . , q7}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q3, q7})
Acceptance by final state.

δ(q0, ϵ, Z0) = {(q1, Z0), (q4, Z0)}.
δ(q1, ϵ, Z0) = {(q3, Z0)}.
δ(q1, a, Z0) = {(q1, aZ0)}.
δ(q1, a, a) = {(q1, aa)}.
δ(q1, b, a) = {(q2, ϵ)}.

1

δ(q2, b, a) = {(q2, ϵ)}.
δ(q2, ϵ, Z0) = {(q3, Z0)}.
δ(q3, c, Z0) = {(q3, Z0)}.
δ(q4, a, Z0) = {(q4, Z0)}.
δ(q4, ϵ, Z0) = {(q7, Z0)}.
δ(q4, b, Z0) = {(q5, bZ0)}.
δ(q5, b, b) = {(q5, bb)}.
δ(q5, c, b) = {(q6, ϵ)}.
δ(q6, c, b) = {(q6, ϵ)}.
δ(q6, ϵ, Z0) = {(q7, ϵ)}.
Intuitively, states q1 to q3 check if the input is of the form aibjck, with i = j (where
this matching is done using standard way as done in class). Note that in state q3,
NPDA would just check if the remaining inputs are c. States q4 to q7 check if the
input is of the form aibjck, with j = k.

(d) L = {w1cw2 | w1, w2 ∈ {a, b}∗ and w1 ̸= wR
2 }. Σ = {a, b, c}.

NPDA: ({q0, q1, q2}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q2, q3})
Acceptance by final state.

δ(q0, a, Z) = {(q0, aZ)}, for Z ∈ {a, b, Z0}
δ(q0, b, Z) = {(q0, bZ)}, for Z ∈ {a, b, Z0}
δ(q0, c, Z) = {(q1, Z)}, for Z ∈ {a, b, Z0}
δ(q1, a, a) = {(q1, ϵ)}
δ(q1, b, b) = {(q1, ϵ)}
δ(q1, a, b) = {(q2, ϵ)}
δ(q1, b, a) = {(q2, ϵ)}
δ(q1, a, Z0) = {(q2, Z0)}
δ(q1, b, Z0) = {(q2, Z0)}
δ(q1, ϵ, a) = {(q3, ϵ)}
δ(q1, ϵ, b) = {(q3, ϵ)}
δ(q2, a,X) = {(q2, X)}, for X ∈ {a, b, Z0}
δ(q2, b,X) = {(q2, X)}, for X ∈ {a, b, Z0}
Intuitively, on input w1cw2, the PDA above initially pushes w1 on the stack, and on
input c, transfers to state q1. In state q1 it matches the input character with stack
letter, and if it matches it is popped out; if not then it goes to state q2 (intending to
accept, if there are only a’s and b’s in the remaining input). Similarly, if |w1| < |w2|,
then the PDA transfers to q2 (when there is a or b in the input, but stack has only Z0).
To check for the case that |w1| > |w2|, while in q1, the PDA may nondeterminstically
guess that the input is over, |w1| > |w2|, and transfer to state q3 (in which case it
does not read any further input).

2. Find an NPDA which accepts aa∗ba. The presence of stack (or any memory device) can
sometimes reduce the number of states required to accept a regular language. The above
language is regular, but any NFA accepting the above language needs to have at least

2

four states. How many states does your NPDA accepting the above language has? Could
you give a NPDA accepting the above language which has only two states?

Ans: For acceptance by empty stack, one can accept any regular language using one state
as discussed in class.

For acceptance by final state, consider the following NPDA:

({q0, q1}, {a, b}, {A,B,Z0}, δ, q0, Z0, {q1})
δ(q0, a, Z0) = {(q0, A)}
δ(q0, a, A) = {(q0, A)}
δ(q0, b, A) = {(q0, B)}
δ(q0, a, B) = {(q1, ϵ)}
Informally, an NFA needs at least four states to accept the above language, as it has
at least one accepting state, and the non-accepting states need to be able to distinguish
between whether none or at least one a has been received and whether b has been received.

More formally, consider any NFA accepting the language. Consider the accepting run of
NFA on input aba. Let q0 be the starting state, q1 be the state after reading a, q2 be the
state after reading ab and q3 be the state after reading aba. Then, if q0, q1, q2, q3 are all
distinct, then we are done. Otherwise, if at least two of q0, q1, q2, q3 are same, say qi = qj ,
with i < j, then deleteing the part of the string aba, which took the NFA from qi to qj ,
we have that the shorter string is still accepted by the NFA. However, the shorter string
is not in L.

3. Suppose one has two stacks instead of one stack in NPDA. Intuitively, the NPDA can
now push (possibly different) strings on the two stacks, and base its actions on the top
symbol of each of the stacks as well as on the input symbol.

Formally define a two stack NPDA. Is it more powerful than one stack NPDA (that is
can it accept something which cannot be accepted by one stack NPDA)?

Ans: A two stack NPDA is denoted by (Q,Σ,Γ1,Γ2, δ, q0, Z0, Y0, F), where Z0 ∈ Γ1, Y0 ∈
Γ2 are the initial symbols on the two stacks. Rest of the parameters have usual meaning.

Transition function is a mapping from Q×Σ ∪ {ϵ} × Γ1 × Γ2 to a subset of Q× Γ∗
1 × Γ∗

2.

Intuitively, δ(q, a,X, Y) containing (p, α, β) means that when the two stack NPDA reads
(consumes) a from the input, has X and Y on the top of the first and second stack, then
it goes to state p while pushing α and β on the two stacks respectively (after popping X
and Y from the stacks).

Instantaneous description of the NPDA looks like: (q, w, α, β), where q is the current
state, w is the input left to be read and α, β are the contents of the two stacks.

(q, aw,Xα, Y β) ⊢ (p, w, α′α, β′β), if δ(q, a,X, Y) contains (p, α′, β′).

ID ⊢∗ ID′ can then be defined by considering 0 or more steps of ⊢.
For acceptance by final state,

L(NPDA) = {w : (q0, w, Z0, Y0) ⊢∗ (qf , ϵ, α, β), for some qf ∈ F and α ∈ Γ∗
1, β ∈ Γ∗

2}.

3

Two stack NPDA can accept {anbncn : n ≥ 0}, by first pushing the a’s in both the stacks,
and then comparing b’s with a’s in the first stack and then comparing c’s with the a’s in
the second stack. However, {anbncn : n ≥ 0} is not context free (to be done in class), and
thus not accepted by any NPDA with 1 stack.

In fact, we will later show that two stacks are enough to simulate a Turing Machine, and
thus that is as powerful as any computing device.

4. A DPDA (or deterministic push down automata) is just like an NPDA, but all its moves
are deterministic, that is, in each state, for each top of stack symbol and input symbol,
there is at most one possible next move. Additionally, if there is an ϵ move for some state
q and top of stack symbol A, then there is no move involving state= q, top of stack = A,
and any input symbol in Σ.

(a) Formally define DPDA.

Ans: Definition is similar to NPDA, except that for any δ(q, a,X), we have at most one
possibility, and if δ(q, ϵ,X) is non-empty, then δ(q, a,X) is empty for all a ∈ Σ.

(b) Can all regular languages be accepted by a DPDA?

Ans: For acceptance by final state, answer is yes, as the DPDA can ignore the stack and
just simulate the DFA as it is.

For acceptance by empty stack, DPDA cannot accept {a, aa}, as if it accepts a, then it
cannot accept any extension of it. Thus, it cannot accept all regular languages.

4

