

Tutorial 6

For the following, the lower case letters are members of the alphabet Σ , and the upper case letters are non-terminals.

1. Remove useless symbols from the following grammar using the algorithm done in class.

$$\begin{aligned}
 S &\rightarrow A|AA|AAA \\
 A &\rightarrow ABa|ACa|a \\
 B &\rightarrow ABa|Ab|\epsilon \\
 C &\rightarrow Cab|CE \\
 D &\rightarrow CD|Cd|CEa \\
 E &\rightarrow b
 \end{aligned}$$

2. Eliminate ϵ productions from the grammar

$$\begin{aligned}
 S &\rightarrow ABaC \\
 A &\rightarrow DB \\
 B &\rightarrow b|\epsilon \\
 C &\rightarrow D|\epsilon \\
 D &\rightarrow d
 \end{aligned}$$

3. Remove all unit productions from the grammar

$$\begin{aligned}
 S &\rightarrow CBa|D \\
 A &\rightarrow bbC \\
 B &\rightarrow Sc|ddd \\
 C &\rightarrow eA|f|C \\
 D &\rightarrow E|SABC \\
 E &\rightarrow gh
 \end{aligned}$$

4. Convert the following to Chomsky normal form grammar without useless symbols:

$$\begin{aligned}
 S &\rightarrow AB|CA \\
 A &\rightarrow a \\
 B &\rightarrow BC|AB \\
 C &\rightarrow aB|b|ACC|\epsilon
 \end{aligned}$$

5. Give an algorithm to test whether the language generated by a CFG is (a) empty, (b) finite, (c) infinite?
6. Assume G is a grammar without any ϵ productions. Let $Unit(A) = \{B : A \Rightarrow_G^* B\}$. Give an algorithm that constructs $Unit(A)$ for all nonterminals A in G .
7. (Hard) Greibach Normal Form: A grammar is said to be in Greibach Normal Form, if all the productions in the grammar are of the form: $A \rightarrow a\alpha$, where a is a terminal and α is a string of zero or more terminals/non-terminals. Prove that, for every non-empty context free language L not containing ϵ , there is a Greibach Normal Form grammar.

Hint: Assume the original grammar given for the language L is in Chomsky Normal form. Assume that the non-terminals in the grammar are A_1, \dots, A_m . Let G_0 be the original grammar.

(a) First, inductively define G_i (generating the same language L) to have the following properties:

(P1) G_i has non-terminals A_1, \dots, A_m and B_1, \dots, B_i ,

(P2) all the productions of G_i are of form (i) $A_j \rightarrow \alpha$ (where α starts with either a terminal, or a variable A_r , with $r \geq \min(i+1, j+1)$), OR (ii) $B_j \rightarrow \alpha$, where α starts with a terminal or A_k for some k .

The above can be achieved as follows. Suppose in G_{i-1} we have productions of the form $A_i \rightarrow \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_r$ and $A_i \rightarrow A_i\beta_1 \mid A_i\beta_2 \mid \dots \mid A_i\beta_w$, where α_s either start with a terminal or A_k for some $k > i$ (note that by inductive property P2, above holds). Now replace the above productions by:

$$A_i \rightarrow \alpha_1 B_i \mid \alpha_2 B_i \mid \dots \mid \alpha_r B_i$$

$$A_i \rightarrow \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_r$$

and

$$B_i \rightarrow \beta_1 \mid \beta_2 \mid \dots \mid \beta_w,$$

$$B_i \rightarrow \beta_1 B_i \mid \beta_2 B_i \mid \dots \mid \beta_w B_i$$

Here if β_r starts with a $B_{r'}$, $r' < i$, then replace $B_{r'}$ in these productions by the RHS of all productions of $B_{r'}$.

(note that above is “correct” replacement as the language generated does not change).

Now for $j > i$, replace each production in G_{i-1} of form $A_j \rightarrow A_i\gamma$ by the set of productions $A_j \rightarrow \alpha_1 B_i \gamma \mid \alpha_2 B_i \gamma \dots \mid \alpha_r B_i \gamma$ and

$$A_j \rightarrow \alpha_1 \gamma \mid \alpha_2 \gamma \dots \mid \alpha_r \gamma.$$

Now verify that the grammar so generated, G_i , satisfies the properties (P1) and (P2).

(b) Let us rename the non-terminals in G_m as

B_i renamed to C_i

A_j renamed to C_{m+j} .

Then, we have the property that any production of form $C_r \rightarrow \alpha$, has α starting with either a terminal or a variable C_w , where $w > r$. Use this property to convert the grammar into Greibach normal form.