
CS3231
Tutorial 9

1. (a) Suppose L is RE and is accepted by TM M . Let wi denote the string with code i.

Now, there exists a Turing Machine M ′ defined as follows:

M ′:

For t = 0 to ∞ do:

For i = 0 to t do:

If M(wi) accepted within t steps, then write “wi,” at the end of the currently written
part of the output tape.

EndFor

EndFor

Thus, M ′ enumerates the elements of L.

Now suppose M enumerates L as in the question.

Then define M ′ as follows:

M ′(x):

For t = 0 to ∞ do:

Run M for t steps. If within these t steps, in the output tape it writes “x,”
where to the left of x is either another comma or a beginning of the output
tape, then accept.

EndFor

It is easy to verify that M ′ accepts the language enumerated by M .

(b) If the listing is finite, then clearly L is recursive (see Q5(a)). If the listing is infinite,
then suppose the enumeration x1, x2, . . . as in the question is given. Then, consider the
following decision procedure for L:

On input y, search for least n such that xn > y. Then, y ∈ L if and only if y ∈
{x1, x2, . . . , xn}.

2. (sketch): A one tape Turing machine can accept the language by, first ensuring that
the string has exactly one c, and then matching the characters to the left of c with the
characters to the right of c, one by one. This takes O(n2) time, where n is the length of
the input.

A two tape Turing Machine can first check if the string has exactly one c, and then copying
the string to the second tape. Then, it can check whether the string is same as its reverse
by comparing the strings on the two tapes, starting at left end on one tape, and right end
of another tape. This takes linear time.

1



3. (a) Suppose M1 accepts L1 and M2 accepts L2. Then, define the following machine M ′:

M ′(x)

For t = 0 to ∞ do

If M1(x) accepts within t steps or M2(x) accepts within t steps then accept.

End For

It is easy to verify that the above machine M ′ accepts L1 ∪ L2.

Now define the following machine M ′′

M ′′(x)

For t = 0 to ∞ do

If M1(x) accepts within t steps and M2(x) accepts within t steps then accept.

End For

It is easy to verify that the above machine M ′ accepts L1 ∩ L2.

(b) If L1, L2 are recursive, then L1, L2, L1, L2 are all RE, by result done in class.

Thus, L1 ∩L2 and L1 ∩ L2 = L1 ∪L2 are both RE by part (a). Thus, L1 ∩L2 is recursive
by result done in class.

Similarly, L1 ∪ L2 and L1 ∪ L2 = L1 ∩ L2 are both RE by part (a). Thus, L1 ∪ L2 is
recursive by result done in class.

4. As L1 is recursive, L1 is also recursive and RE.

Now L2−L1 = L2∩L1. As L2 and L1 are both RE. Thus, by Q3, so is L2∩L1 = L2−L1.

In general, L1 − L2 may not even be RE. For example, L1 may be Σ∗ and L2 may be
Lu. However, the complement of L1−L2, that is L1 − L2, is RE (as this equals: L1 ∪L2,
which is union of two RE sets).

Ofcourse, in special cases, L1−L2 may be recursive, for example when L2 itself is recursive.

5. (a) Every finite language is regular, and thus context free and recursive (recall the algo-
rithm for CFL we did in class).

(b) Follows from part (a) and the theorem that complement of a recursive language is
recursive.

(c) Suppose L is recursive and D is a finite language. Then, L, D, D, L are all recursive
(and hence RE).

Thus, (L ∩ D) ∪ (D ∩ L), as well as (L ∩ D) ∪ (L ∩ D) are also RE. This, implies that
L∆D = (L ∩D) ∪ (D ∩ L) is recursive.

(d) Suppose by way of contradiction thatM halts on all but finitely many inputs. Suppose
D is the set of finitely many inputs on which M does not halt.

2



Define M ′(x) as follows:

M ′(x):

If x ∈ D, then halt and reject.

If x ̸∈ D, then simulate M(x). Accept if and only if M(x) accepts.

End

Now, M ′ halts on all the inputs and accepts exactly the language L. However, as L is not
recusive, no such M ′ can exist.

Thus, M does not halt on infinitely many inputs.

6. (a): Suppose M accepts L and halts on all the inputs.

Define M ′ as follows.

M ′(x):

Simulate M(xx). If M(xx) accepts, then accept. Otherwise reject.

End

It is easy to verify that M ′ accepts {x|xx ∈ L} and halts on all the inputs.

(b): Suppose M accepts L and halts on all the inputs.

Define M ′ as follows.

M ′(x):

For each prefix y of x do:

Siumalte M(y). If M(y) accepts, then accept.

End for

If none of above accepts, then reject.

End

It is easy to verify that M ′ accepts {x| some prefix of x is in L} and halts on all the
inputs.

7: Informally done in class. In the UTM construction, use extra tape to keep t. While
simulating Turing Machine Mi on input wj , after every simulated step, decrease t by 1.
If Mi halts and accepts wj before t becomes 0, then accept. Else (i.e., if either Mi rejects
within t steps, or does not halt in t steps) reject.

8: Suppose by way of contradiction that halting problem is decidable. Let F be a recursive
function which on input i and j decides if Turing Machine Mi halts on input wj . Then,
the following algorithm accepts Ld, a contradiction to result done in class.

3



Ld(w):

1. First compute i such that w = wi.

2. If F (i, i) returns “No”, then accept.

Otherwise, run Mi(wi). If Mi(wi) accepts, then reject. Else accept. (Note that Mi(wi)
must halt if we reach this step).

End Ld(w):

Now, consider any input w = wi to Ld above. If Mi(wi) does not halt, then F (i, i) would
return “No” and wi ̸∈ L(Mi) and thus in Ld. Thus by step 2, If case, the above algorithm
accepts correctly.

If Mi(wi) halts, then F (i, i) would return “Yes”, and thus the above algorithm will go into
the Otherwise clause of step 2. Here Mi(wi) will halt, and thus the algorithm correctly
accepts if and only if Mi(wi) does not accept. Thus the above algorithm correctly accepts
Ld. A contradiction to the result done in class.

4


