(CS3231
Tutorial 9

1. (a) Suppose L is RE and is accepted by TM M. Let w; denote the string with code i.
Now, there exists a Turing Machine M’ defined as follows:
M’
For t =0 to oo do:
For i =0 to t do:

If M(w;) accepted within ¢ steps, then write “w;,” at the end of the currently written
part of the output tape.

EndFor
EndFor

Thus, M’ enumerates the elements of L.

Now suppose M enumerates L as in the question.
Then define M’ as follows:

M'(x):

For ¢ = 0 to oo do:

Run M for ¢ steps. If within these t steps, in the output tape it writes “x,”
where to the left of z is either another comma or a beginning of the output
tape, then accept.

EndFor
It is easy to verify that M’ accepts the language enumerated by M.

(b) If the listing is finite, then clearly L is recursive (see Q5(a)). If the listing is infinite,
then suppose the enumeration x1,x2,... as in the question is given. Then, consider the
following decision procedure for L:

On input y, search for least n such that x, > y. Then, y € L if and only if y €
{z1,29,..., 21}

2. (sketch): A one tape Turing machine can accept the language by, first ensuring that
the string has exactly one ¢, and then matching the characters to the left of ¢ with the
characters to the right of ¢, one by one. This takes O(n?) time, where n is the length of
the input.

A two tape Turing Machine can first check if the string has exactly one ¢, and then copying
the string to the second tape. Then, it can check whether the string is same as its reverse
by comparing the strings on the two tapes, starting at left end on one tape, and right end
of another tape. This takes linear time.



3. (a) Suppose M accepts L1 and My accepts Lo. Then, define the following machine M
M'(x)
For ¢ = 0 to oo do
If M;(x) accepts within ¢ steps or Ma(x) accepts within ¢ steps then accept.
End For
It is easy to verify that the above machine M’ accepts Ly U L.
Now define the following machine M"
M"(z)
For ¢ = 0 to co do
If M;(z) accepts within ¢ steps and Ms(z) accepts within ¢ steps then accept.
End For
It is easy to verify that the above machine M’ accepts Ly N L.
(b) If Ly, Ly are recursive, then Ly, Lo, L1, Ly are all RE, by result done in class.
Thus, L1 N Ly and L1 N Ly = L1 U Ly are both RE by part (a). Thus, L; N Lo is recursive
by result done in class.
Similarly, L1 U Ly and L1 U Ly = L; N Ly are both RE by part (a). Thus, L U Ly is
recursive by result done in class.
4. As L is recursive, L is also recursive and RE.

Now Ly — L1 = LoNLy. As Ly and Ly are both RE. Thus, by Q3, sois LyNL; = Ly — L.

In general, L; — Ly may not even be RE. For example, L; may be ¥* and Ly may be
L,. However, the complement of L; — Lo, that is L1 — Lo, is RE (as this equals: L1 ULy,
which is union of two RE sets).

Ofcourse, in special cases, L1 — Lo may be recursive, for example when L itself is recursive.

5. (a) Every finite language is regular, and thus context free and recursive (recall the algo-
rithm for CFL we did in class).

(b) Follows from part (a) and the theorem that complement of a recursive language is
recursive.

(c) Suppose L is recursive and D is a finite language. Then, L, D, D, L are all recursive
(and hence RE).

Thus, (LN D)U(DNL), as well as (LN D)U (LN D) are also RE. This, implies that
LAD = (LND)U(DNL) is recursive.

(d) Suppose by way of contradiction that M halts on all but finitely many inputs. Suppose
D is the set of finitely many inputs on which M does not halt.



Define M'(z) as follows:
M'(z):

If x € D, then halt and reject.

If x ¢ D, then simulate M (x). Accept if and only if M (z) accepts.
End

Now, M’ halts on all the inputs and accepts exactly the language L. However, as L is not
recusive, no such M’ can exist.

Thus, M does not halt on infinitely many inputs.

. (a): Suppose M accepts L and halts on all the inputs.
Define M’ as follows.
M'(z):
Simulate M (zx). If M(xx) accepts, then accept. Otherwise reject.
End
It is easy to verify that M’ accepts {x|zz € L} and halts on all the inputs.
(b): Suppose M accepts L and halts on all the inputs.
Define M’ as follows.
M'(z):
For each prefix y of x do:
Siumalte M (y). If M(y) accepts, then accept.
End for
If none of above accepts, then reject.
End

It is easy to verify that M’ accepts {z| some prefix of z is in L} and halts on all the
inputs.

7: Informally done in class. In the UTM construction, use extra tape to keep t. While
simulating Turing Machine M; on input wj;, after every simulated step, decrease ¢ by 1.
If M; halts and accepts w; before ¢t becomes 0, then accept. Else (i.e., if either M; rejects
within ¢ steps, or does not halt in ¢ steps) reject.

8: Suppose by way of contradiction that halting problem is decidable. Let F' be a recursive
function which on input 7 and j decides if Turing Machine M; halts on input w;. Then,
the following algorithm accepts Lg4, a contradiction to result done in class.



Lg(w):

. First compute 7 such that w = w;.

. If F(i,1) returns “No”, then accept.

Otherwise, run M;(w;). If M;(w;) accepts, then reject. Else accept. (Note that M;(w;)
must halt if we reach this step).

End Lg(w):

Now, consider any input w = w; to Lg above. If M;(w;) does not halt, then F'(i,4) would
return “No” and w; ¢ L(M;) and thus in Ly. Thus by step 2, If case, the above algorithm
accepts correctly.

If M;(w;) halts, then F'(i,7) would return “Yes”, and thus the above algorithm will go into
the Otherwise clause of step 2. Here M;(w;) will halt, and thus the algorithm correctly
accepts if and only if M;(w;) does not accept. Thus the above algorithm correctly accepts
Lg. A contradiction to the result done in class.



