Turing Machines

nfinite tape, divided into cells.
Read/Write Head
~inite Number of States

=

n each step, head can read/write and move left/right.
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Turing Machines

Example: T
Suppose we want to check if the input contains same

number of a's as b’s.
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Turing Machines

State a b B X
g0 | g1, X,R |92, X,R | gAB,R| g0, X, R
gl | ql,a,R | g3, X, L gl, X, R
g2 | 93, X,L| g2,b,R g2, X, R
g3 | 93,a,L| g3,b,L | g0,B,R| 03, X, L
gA
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Turing Machines

1. Function Computation T
2. Language Acceptance
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Turing Machines

Turing machine M = (Q, X, 1,9, qo, B, F). T
(). a set of states

.. input alphabet set

I': tape alphabet. X C T

§: transition function from Q@ x I'to Q x I' x {L, R}.

qo- starting state

B: blank symbol. We assume B eI — X

F: set of final states. I’ C Q).

Usually, input is given without any blanks in between.
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°

Instantaneous Description

We leave out blanks on both ends.
Exception: if head is among the blanks .....

CE’()CI?l o« o o xn_qunxn_i_l o« o xm.
TOX] - .. Tp_14TnTnil - - - Tm E NEXt ID

—* can be defined by saying ‘zero or more steps’.
IDi+-1Dy v ... 1D, then

1D F* 1D,

(Here n maybe 1).
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LLanguage Accepted by Turing Machine
. -

TM accepts z , If

goxr F* aqsf

where gy € F.
L(M) =A{z | goxr F* aqsB, for some ¢¢ € F'}.



['unction Computed by Turing Machine
- -

1. Require that the machine halt on input z iff f(x) is

defined.
2. Interpret the content of the tape(s) of the Turing machine,

after it halts, as the output of f. There are various ways of
doing this, for example, by just considering the non-blank

content of the first (only) tape.
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Languages/Functions

-

A language L is said to be recursively enumerable (RE),
(computably enumerable, CE) if some Turing Machine
accepts the language L.

A language L is said to be recursive (decidable), i
some Turing Machine accepts the language L, and
Halts on all the inputs.

A function f is said to be partial recursive (partially
computable), if some Turing Machine computes the
function (it halts on all the inputs on which f is defined,
and it does not halt on inputs on which f is not defined).

A function f is said to be recursive (computable), if
some Turing Machine computes the function, and f is
defined on all elements of >*.

|
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Turing Machine and Halting
. -

Machine may never halt.
Cannot determine if a machine will halt on a particular input
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Turing Machines

. N

Many tricks for doing the computation with TM.
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Turing Machines

1. Stay where you are: ‘S’ move. T
2. Storage in Finite Control.
3. Multiple Tracks

4. Subroutines

|
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Modifications of Turing Machines

e -

Semi-Infinite Tapes

Initialization:

0(gs, (X, B)) = ((q0,U), (X, %), 5).
Simulation:

Below X, Z eT"and m € {R, L}.

m denotes L it m = R; otherwise m = R.
1.1t 6(¢, X) = (¢', Y, m):

§'((q,U), (X, 2)) = (¢, U), (Y. Z),m)
0'((¢, D), (2, X)) = ((¢, D), (2,Y), m)

2. 1f 5(q, X) = (¢, Y, R):
W@UﬂXﬂF4WﬂMKﬂm
0'((q, D), (X, %)) = ((¢,U), (Y, %), R)






Multi Tape Turing Machines
-



Nondeterministic Turing Machines

— d(q, a) Is a finite set of possibilities. T
— For any current ID, there maybe finite number of possible
next ID

— Acceptance, if there exists an accepting state ¢+ such
that

qor =" aqyp.

- |
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Church-Turing Thesis
. -

Whatever can be computed by an algorithmic device (in
function computation sense, or language acceptance

sense) can be done by a Turing Machine.

- |
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Codings of Strings
. -

For a string x over {0, 1}*, let 1z (in binary) —1 be its code.
w; denotes the string with code .
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Codings of Turing Machines
-

States: q¢1, ¢o, . .. are the states, with ¢; being start state
and ¢, the only accepting state.

Tape symbols: X1, Xo, ..., X, are tape symbols. X is 0,
X5 is 1 and X3 is blank.

Directions: L is D; and R is Ds.

Coding Transition: 6(q;, X;) = (qx, Xi, D), then code it
using string

0°10710%10'10™.

(Note that each of i, j, k, 1, m Is at least 1).

Code of TM is: C111C511C5...C,,, where C; are the
codes of all the transitions in the TM.

|
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Codings of Turing Machines
. -

Now we can convert the string to numbers, as above, if

needed.
M; denotes the Turing Machine with code number ;.

W; = L(M;) denotes the language accepted by Turing
Machine with code number ;.

|
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A non-RE language

Let Ly = {w@ D W; Q L(MZ)} —‘
Then L, is not RE.
Proof:

Suppose any M, is given. We will show that L(M;) # Ly.
Case 1: w; € L(M;). Then, w; ¢ Ly by definition of L.
Thus, L(Mj) + L.

Case 2: w; ¢ L(M;). Then, w; € Ly by definition of L.
Thus, L(Mj) #+ Lg.

Hence, in both cases, L(M;) # Ly. Since this applies for

any M;, we have that L, is not accepted by any Turing
Machine.
Hence L, is not RE.

- |
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Recursive Languages

-

Theorem: If L is recursive, then L is recursive.

Proof: Suppose M = (Q, X, 1,46, qo, B, F') accepts L and
halts on all the inputs. Then, modify M as follows to form a
new machine M':

(i) assume without loss of generality that there is only one
accepting state (g...) in M and that there is no transition in
M from an accepting state

(il) create a new state g,,cw

(iif) for any non-accepting state ¢ and any letter a of the
alphabet, if 4(q, a) is not defined in M, then let §(q,a) = qnew
in M’. Other transitions in M’ are as in M.

(iv) Let ¢new D€ the only accepting state of M’ (thus ¢, is a
non-accepting state of A1’).

- |
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Then, M’ accepts L. To see this, note that if M accepts =, T
then it eventually reaches the state ¢,.. and then never

leaves it. Thus, M’ on input x also eventually reaches ¢,

and never leaves it (without ever going through state ¢,,c.,).

On the other hand, if M does not accept z, then it never

goes through ¢,... and eventually halts by having no

transition at some point of time. Thus, M’ on input «

eventually reaches state ¢,.,, and then never leaves it.

Thus, M’ accepts .

- |
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-

Theorem: L is recursive iff L is RE and L is RE.

Proof: If L is recursive, then L is also recursive. Thus, both
L and L are RE.

For the other direction, suppose M accepts L and M’
accepts L. Then consider the Turing Machine A" which
works as follows:

M"(x) first copies input z into two different tapes. Then, in
parallel, it runs M(x) on the first tape, and M'(x) on the
second tape. Note that running in parallel can be done in a
way similar to that done for DFAs.

Then, if at any point of time M (x) accepts, then M”
accepts. If M'(x) accepts, then M” halts and rejects.

- |
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Now, if x € L, then M(x) eventually accepts, and thus M” T
halts and accepts. If = ¢ L, then M’(x) eventually accepts,
and thus M"” halts and rejects.

Thus, L Is recursive.

- |
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Universal Turing Machine

L, ={(M,w) : M accepts w}.

We will construct a Universal TM which will accept the
anguage L.

t has following tapes:

nput: M (coded) and w (over {0,1}%)

-

Tape for M initially place w in coded form: 10 for zeros and
100 for ones in w.

State of M initially contains 0 (head on 0).

Scratch tape

- |

—p. 26/56



At any time during the simulation, before/after simulating a T
step of M, we will have

— the state of the M is in the tape called state of M (in form
0%),

— the tape “tape for M” contains the content of M’s tape (in
coded form, as mentioned earlier, 10 for zero, 100 for one,

etc), where the trailing blanks need not be coded.

— the head of UTM on the tape corresponding to the tape

for M is at the 1 corresponding to the code for the content

of the cell scanned by M.

- |
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Simulating each step of M: T
1. suppose the tape containing state of A has 0

2. suppose the head of UTM as on the tape “tape for M” is

at the start of 1071 (or 10’ B).

3. Search in the code of M for an entry of the form
0°10710*10¢10™, where on both sides we have either blanks

or 11, and i and ; are as in steps 1 and 2 above. Note that

this can be done using comparison of various tape

contents.

4. Then change the content of the tape containing state of

TM to 0% (this can be done using copying).

|

—p. 28/56



5.1 To write 0¢ on the tape, first mark the current “cell” being
read on the “Tape for M’ by using a special symbol x (the x

is used to replace the 1 in 107).
5.2 Copy the Tape for M into scratch tape, where instead of

copying the portion «071 write %0°1 in the scratch tape
(where the last 1 might be a B, in case the current cell used
by M is the last written cell). Additionally, convert one blank
at the end by using 10°.

5.3 Copy back the scratch tape into the tape “Tape for M”.
5.4. Movement of the head can be easily implemented now
by reaching the marked portion %, replacing it by 1, and then
moving the head to the next 1 on the left/right as the case
maybe depending on the value of m.

|
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L, is not RE. T
To see this suppose by way of contradiction that M accepts

L,. Then, one can construct a machine M’ for accepting L,
as follows:

M’(wi):

1. Extract the code i from w;.

2. Run M on (M;,w;) (where M; is coded appropriately).

3. Accept iff M accepts in the above execution.

Thus, as L, is not RE, we have that L, is not RE.

|
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Undecidable Problems: Reductions T

P; reduces to P, if some recursive function f behaves as
follows:

re P iff f(z) e P

- |
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-

Undecidable Problems: Reductions

Suppose P, reduces to P, (notation: P, <,, > or P, <,,, P»).
Then,

(a) It P Is recursive, then so is P;.

(b) It P is RE, then so is P;.

(a’) If P; is undecidable, then so is P.

(b’) If P, i1s non-RE, then so is P.

- |

—p. 32/56



So, if we want to show that some problem P, is “hard” (not T
recursive, not RE), then

we pick a problem P; which is hard (not recursive, not RE)

and then show that

Py <; Ps.

For this, we construct a function f,

and show that

r € P iff f(:l:‘) in .

|
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TMs accepting empty set
. -

Let L. = {M : L(M) = 0}.
Let Ly = {M : L(M) # 0}.

Theorem: L, IS RE.
Theorem: L. IS not recursive.

Corollary: L. is not RE.

Note: We have used M in sets above. Strictly speaking we

should use i, w; or 1* or something similar (where i is a
~_code for M). J
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Theorem: L, 1S RE. T
Below is an informal description of the Turing Machine A’
to accept L.
M’ on input M (in coded form) works as follows:

Fort =010 o

Fori=0tot

If M (w;) accepts within ¢ steps, then accept.
Endfor
Endfor

|
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-

Theorem: L. is not RE.

We reduce L, to L.

Given M+#w we construct M’ defined as follows (that is the
reduction function f maps M#w to M’):

M (z)
Fort =0 to oo.
If M (w) accepts within ¢ steps, then accept.
End For
End M’

Note that the mapping f: M+#w — M’ is recursive.

Now, M (w) does not accept (i.e., M#w € L,,) iff L(M') = ()

and M (w) accepts (i.e., M#w ¢ L,,) iff L(M') = X* £ (.

Thus, L, <,, L.. J
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Same proof technique can be used for several variations: T
L ={M | M does not accept a}.

L ={M | M does not accept a or does not accept b}.

L={M/| L(M)is finite }.

etc

|
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Let Ly ={M | L(M) has <5 elements } T
We reduce L. to Ls.
f:M— M

M'(x)

Fort =010 oo

Fori=0tot

If M (w;) accepts within ¢ steps, then accept
Endfor
Endfor

Now, if L(M) = 0, then L(M’) = (), and thus M’ € L;
If L(M) # 0, then L(M') = ¥* and thus M’ ¢ L5
ThUS, L. <, Ls.

- |
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Rice’s Theorem.
Suppose P is a property on RE languages. Then one may
ask
Is Lp = {M | L(M) satisfies property P} is decidable? RE?

A property about RE languages is non-trivial if there exists
at least one RE language which satisfies the property, and
there exists at least one RE language which does not
satisfy the property.

Rice’s Theorem: Suppose P is a non-trivial property about
RE languages. Then Lp is undecidable.

- |
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Proof: Suppose P is a non-trivial property about RE T
languages.

Without loss of generality assume () satisfies P (otherwise,
switch P and P).

Suppose L is an RE language that does not satisfy P. Let

M" be the machine which accepts L.
Define f as follows. f(M) = M’ such that M’ is defined as

follows.

|
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M'(x): T
For ¢t = 0 to oo do:
Fori=0to ¢ do:

If M (w;) accepts within ¢ steps and

M"(x) accepts within ¢ steps, then accept =.
EndFor
EndFor
If L(M) =0, then L(M') = 0.
If L(M) +# 0, then L(M') = L.
Thus, f reduces L. to Lp.
As L. IS not recursive, we have that Lp is not recursive.

- |
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Post’s Correspondence Problem
Input: Two lists of strings A = wy, wo, ..., w; and T
B = L1,y ey Lo
Question: Do there exist i1, i, .. ., %, (Where m > 0) such
that

Wy Wiy « . . Wy, — Lj1 L4y - .- Ty

m m

MPCP: What if we require that first string used should be
some particular combination (say w; and z;), that is:
Question: Does there exist i1, 9, ..., i, (Where m maybe 0)
such that

W1Wi, Wiy - . - Wy, = 1L Lj4gy - - - Ly

m

|
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Post’s Correspondence Problem.
We show that L, <,, MPCP <,, PCP.

- |
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Post’s Correspondence Problem.

Proof for M PCP <,, PCP

Suppose A = wy,wo, ..., w, and B = x1,x9, ..., x}.
Then form

(a) w; by inserting = after each symbol in w;.

b) = by inserting = before each symbol in z;.

Here, %, $ are special symbols not in the alphabet of w;, z;.

|
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Note that if the PCP problem has a solution, then the MPCPT
problem created above has a solution (by using the same
iIndices, where k + 1 is dropped, and 0 is changed to 1).

Here note that the PCP problem solution must start with the
index 0.

On the other hand if the MPCP problem above has a

solution then the PCP problem has a solution by replacing

the first index 1 by 0, using the rest of the indices as it is,

and then ending with the index £ + 1.

|
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Post’s Correspondence Problem. T

Ly, <;, MPCP.

Assume without loss of generality that machine for
accepting L, never writes a blank and never moves to the
left of the leftmost symbol of input. Below X.Y, Z € I" and

p,q € Q.

|
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List A| ListB

# | # qu#

X X

# #
gX Yp if 0(q, X) = (p,Y, R)
ZgX pZY if 0(¢q, X)=(p,Y, L)
q# Yp# if 0(q, B) = (p,Y, R)
ZO# | pLY# if 6(q, B) = (p,Y, L)
XqgY g | If ¢ Is accepting state
XQg g | If ¢ iIs accepting state
gXx g | If ¢ iIs accepting state
qQ## # | If ¢ Is accepting state

|
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Ambiguous Grammars T
Suppose PCP problemis A =wy...w, and B = z1 ... 2.
Let aq, ..., a be letters different from those used in A, B.
Consider the grammar
S— A
S— B
A — w;Aa;, for1 <i <k
A — wa;, forl <i <k
B—)IiBai,fOrlgiSk
B — xa;, forl1 <i <k
Grammar is ambiguous iff L(G4) and L(Gp) intersect, iff
PCP has a solution.
(Here G 4 is the grammar for the productions involving A
above, and GG Is the grammar for the productions involving

B above). J
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Further Undecidable Problems

Note that L(G 4), L(Gp) are context free.

To see this, let

I be set of indices.

A; generate the set of proper prefixes of w;.

Al generate the set of strings which are not prefixes of w;,

and are of length at most |w;|.

|
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The following grammar generates complement of L(G4): T
S—e|C|D|E|F

(Comment: C is for generating strings where elements of X
follow elements of 1.)

C—-XulC|Ccxul)|Ix

(Comment: D is for generating strings when there is a
mismatch between indices and corresponding strings)

D — wiDai | A;Dlai

D1%2D1|D1]|6

(Comment: E is for generating strings when there is excess
elements from ).

E — w;Ea; | Eq

Ei — ZEl | >

|
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(Comment: F is for generating strings when there are T

excess indices).
F— w; Fa; ‘ AiFlai
F1 — [Fl | €

|
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Further Undecidable Problems
1. L(G1) N L(G2) = 0, for CFGs.
Proof: by taking G1 = G4 and Gy = G .
2. L(Gl) = L(GQ), for CFGs
Proof: By taking L(G1) = L(G4) U L(Gg) = L(G4) N L(Gp),
and G2 to be a grammar for (X U I)*.
Where, I = {a1,a9,...}.
3. Similarly: L(G) = L(R) is undecidable, for CFG G and
regular expression R.
L(G) = T* is undecidable, for CFG G and alphabet T'.
L(G9) C L(G7) is undecidable, for CFG G, Gbs.
L(R) C L(G) is undecidable, for CFG G and regular
expression R.

|
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Unrestricted Grammars
An unrestricted grammaris a 4-tuple G = (N, %, S, P).
N Is the alphabet of non-terminals.

Y is the alphabet of terminals with N N'Y = 0.
S Is start symbol.

P is a finite set of productions of form o — 3, where

a€e (NUX*N(NUX)*and § € (N UX)*.

In some cases, people also let a € (N U X)™ (i.e., do not
require presence of a non-terminal on the left hand side).

If additionally |«| < |3]| always for a production o« — 5 in P,
then the grammar is said to be context sensitive grammar.

- |
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- N

vay = ~v6+, if a — B is a production.

LG)={weX":S="w}

- |
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Example: T
{fa"b"c" :n > 1}

S — aSBC | aBC

CB — BC

aB — ab

bB — bb

bC — be

cC — cc

|
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Theorem: If GG is an unrestricted grammar, then L(G) is RE. T
Theorem: If L is RE, then there exists a grammar G such
that L = L(G).

Assume M doesn’t write a B on the tape.

Suppose L is accepted by TM M = (Q,>,1°,0,qo, B, F)
Start:

S%BS|SB|A1A2

As — aAs | Asa | g, foralla e, q € F.

Transitions: for all a,b,c € T, ¢;,q; € @,

bqg; — qia, If 0(qi,a) = (g4,0, R)

qjcb — cqia, if (qi,a) = (g4,b, L)

Cleanup:

A1qo — €

—B%G J
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