
Turing Machines

1. Infinite tape, divided into cells.
2. Read/Write Head
3. Finite Number of States
4. In each step, head can read/write and move left/right.

– p. 1/56



Turing Machines

Example:
Suppose we want to check if the input contains same
number of a’s as b’s.

– p. 2/56



Turing Machines

State a b B X

q0 q1, X, R q2, X, R qA,B,R q0, X, R

q1 q1, a, R q3, X, L q1, X, R

q2 q3, X, L q2, b, R q2, X, R

q3 q3, a, L q3, b, L q0,B,R q3, X, L

qA

– p. 3/56



Turing Machines

1. Function Computation
2. Language Acceptance

– p. 4/56



Turing Machines

Turing machine M = (Q,Σ,Γ, δ, q0, B, F ).
Q: a set of states
Σ: input alphabet set
Γ: tape alphabet. Σ ⊆ Γ.
δ: transition function from Q× Γ to Q× Γ× {L,R}.
q0: starting state
B: blank symbol. We assume B ∈ Γ− Σ
F : set of final states. F ⊆ Q.
Usually, input is given without any blanks in between.

– p. 5/56



Instantaneous Description

We leave out blanks on both ends.
Exception: if head is among the blanks .....

x0x1 . . . xn−1qxnxn+1 . . . xm.

x0x1 . . . xn−1qxnxn+1 . . . xm ⊢ next ID

⊢∗ can be defined by saying ‘zero or more steps’.
ID1 ⊢ ID2 ⊢ . . . ⊢ IDn, then
ID1 ⊢

∗ IDn.
(Here n maybe 1).

– p. 6/56



Language Accepted by Turing Machine

TM accepts x , if

q0x ⊢∗ αqfβ

where qf ∈ F .

L(M) = {x | q0x ⊢∗ αqfβ, for some qf ∈ F}.

– p. 7/56



Function Computed by Turing Machine

1. Require that the machine halt on input x iff f(x) is
defined.
2. Interpret the content of the tape(s) of the Turing machine,
after it halts, as the output of f . There are various ways of
doing this, for example, by just considering the non-blank
content of the first (only) tape.

– p. 8/56



Languages/Functions

A language L is said to be recursively enumerable (RE),
(computably enumerable, CE) if some Turing Machine
accepts the language L.

A language L is said to be recursive (decidable), if
some Turing Machine accepts the language L, and
Halts on all the inputs.

A function f is said to be partial recursive (partially
computable), if some Turing Machine computes the
function (it halts on all the inputs on which f is defined,
and it does not halt on inputs on which f is not defined).

A function f is said to be recursive (computable), if
some Turing Machine computes the function, and f is
defined on all elements of Σ∗.

– p. 9/56



Turing Machine and Halting

Machine may never halt.
Cannot determine if a machine will halt on a particular input
....

– p. 10/56



Turing Machines

Many tricks for doing the computation with TM.

– p. 11/56



Turing Machines

1. Stay where you are: ‘S’ move.
2. Storage in Finite Control.
3. Multiple Tracks
4. Subroutines

– p. 12/56



Modifications of Turing Machines

Semi-Infinite Tapes
Initialization:
δ(qS, (X,B)) = ((q0, U), (X, ∗), S).
Simulation:
Below X,Z ∈ Γ and m ∈ {R,L}.
m denotes L if m = R; otherwise m = R.
1. If δ(q,X) = (q′, Y,m):
δ′((q, U), (X,Z)) = ((q′, U), (Y, Z),m)
δ′((q,D), (Z,X)) = ((q′, D), (Z, Y ),m)

2. If δ(q,X) = (q′, Y, R):
δ′((q, U), (X, ∗)) = ((q′, U), (Y, ∗), R)
δ′((q,D), (X, ∗)) = ((q′, U), (Y, ∗), R)

– p. 13/56



Modifications of Turing Machines

3. If δ(q,X) = (q′, Y, L):
δ′((q, U), (X, ∗)) = ((q′, D), (Y, ∗), R)
δ′((q,D), (X, ∗)) = ((q′, D), (Y, ∗), R)

– p. 14/56



Multi Tape Turing Machines

– p. 15/56



Nondeterministic Turing Machines

— δ(q, a) is a finite set of possibilities.
— For any current ID, there maybe finite number of possible
next ID
— Acceptance, if there exists an accepting state qf such

that
q0x ⊢∗ αqfβ.

– p. 16/56



Church-Turing Thesis

Whatever can be computed by an algorithmic device (in
function computation sense, or language acceptance
sense) can be done by a Turing Machine.

– p. 17/56



Codings of Strings

For a string x over {0, 1}∗, let 1x (in binary) −1 be its code.
wi denotes the string with code i.

– p. 18/56



Codings of Turing Machines

States: q1, q2, . . . are the states, with q1 being start state
and q2 the only accepting state.

Tape symbols: X1, X2, . . . , Xs are tape symbols. X1 is 0,
X2 is 1 and X3 is blank.

Directions: L is D1 and R is D2.

Coding Transition: δ(qi, Xj) = (qk, Xl, Dm), then code it
using string

0i10j10k10l10m.
(Note that each of i, j, k, l,m is at least 1).

Code of TM is: C111C211C3 . . . Cn, where Ci are the
codes of all the transitions in the TM.

– p. 19/56



Codings of Turing Machines

Now we can convert the string to numbers, as above, if
needed.
Mi denotes the Turing Machine with code number i.
Wi = L(Mi) denotes the language accepted by Turing
Machine with code number i.

– p. 20/56



A non-RE language

Let Ld = {wi : wi 6∈ L(Mi)}.
Then Ld is not RE.
Proof:
Suppose any Mj is given. We will show that L(Mj) 6= Ld.

Case 1: wj ∈ L(Mj). Then, wj 6∈ Ld by definition of Ld.

Thus, L(Mj) 6= Ld.

Case 2: wj 6∈ L(Mj). Then, wj ∈ Ld by definition of Ld.

Thus, L(Mj) 6= Ld.

Hence, in both cases, L(Mj) 6= Ld. Since this applies for

any Mj , we have that Ld is not accepted by any Turing
Machine.
Hence Ld is not RE.

– p. 21/56



Recursive Languages

Theorem: If L is recursive, then L is recursive.
Proof: Suppose M = (Q,Σ,Γ, δ, q0, B, F ) accepts L and
halts on all the inputs. Then, modify M as follows to form a
new machine M ′:
(i) assume without loss of generality that there is only one
accepting state (qacc) in M and that there is no transition in
M from an accepting state
(ii) create a new state qnew
(iii) for any non-accepting state q and any letter a of the
alphabet, if δ(q, a) is not defined in M , then let δ(q, a) = qnew
in M ′. Other transitions in M ′ are as in M .
(iv) Let qnew be the only accepting state of M ′ (thus qacc is a
non-accepting state of M ′).

– p. 22/56



Then, M ′ accepts L. To see this, note that if M accepts x,
then it eventually reaches the state qacc and then never
leaves it. Thus, M ′ on input x also eventually reaches qacc
and never leaves it (without ever going through state qnew).
On the other hand, if M does not accept x, then it never
goes through qacc and eventually halts by having no
transition at some point of time. Thus, M ′ on input x
eventually reaches state qnew and then never leaves it.
Thus, M ′ accepts x.

– p. 23/56



Theorem: L is recursive iff L is RE and L is RE.
Proof: If L is recursive, then L is also recursive. Thus, both

L and L are RE.
For the other direction, suppose M accepts L and M ′

accepts L. Then consider the Turing Machine M ′′ which
works as follows:
M ′′(x) first copies input x into two different tapes. Then, in
parallel, it runs M(x) on the first tape, and M ′(x) on the
second tape. Note that running in parallel can be done in a
way similar to that done for DFAs.
Then, if at any point of time M(x) accepts, then M ′′

accepts. If M ′(x) accepts, then M ′′ halts and rejects.

– p. 24/56



Now, if x ∈ L, then M(x) eventually accepts, and thus M ′′

halts and accepts. If x 6∈ L, then M ′(x) eventually accepts,
and thus M ′′ halts and rejects.
Thus, L is recursive.

– p. 25/56



Universal Turing Machine

Lu = {(M,w) : M accepts w}.
We will construct a Universal TM which will accept the
language Lu.
It has following tapes:
Input: M (coded) and w (over {0, 1}∗)

Tape for M : initially place w in coded form: 10 for zeros and
100 for ones in w.

State of M : initially contains 0 (head on 0).

Scratch tape

– p. 26/56



At any time during the simulation, before/after simulating a
step of M , we will have
— the state of the M is in the tape called state of M (in form
0s),
— the tape “tape for M ” contains the content of M ’s tape (in
coded form, as mentioned earlier, 10 for zero, 100 for one,
etc), where the trailing blanks need not be coded.
— the head of UTM on the tape corresponding to the tape
for M is at the 1 corresponding to the code for the content
of the cell scanned by M .

– p. 27/56



Simulating each step of M :

1. suppose the tape containing state of M has 0i

2. suppose the head of UTM as on the tape “tape for M ” is

at the start of 10j1 (or 10jB).
3. Search in the code of M for an entry of the form

0i10j10k10ℓ10m, where on both sides we have either blanks
or 11, and i and j are as in steps 1 and 2 above. Note that
this can be done using comparison of various tape
contents.
4. Then change the content of the tape containing state of

TM to 0k (this can be done using copying).

– p. 28/56



5.1 To write 0ℓ on the tape, first mark the current “cell” being
read on the ‘Tape for M’ by using a special symbol ∗ (the ∗

is used to replace the 1 in 10j).
5.2 Copy the Tape for M into scratch tape, where instead of

copying the portion ∗0j1 write ∗0ℓ1 in the scratch tape
(where the last 1 might be a B, in case the current cell used
by M is the last written cell). Additionally, convert one blank

at the end by using 103.
5.3 Copy back the scratch tape into the tape “Tape for M”.
5.4. Movement of the head can be easily implemented now
by reaching the marked portion ∗, replacing it by 1, and then
moving the head to the next 1 on the left/right as the case
maybe depending on the value of m.

– p. 29/56



Lu is not RE.
To see this suppose by way of contradiction that M accepts

Lu. Then, one can construct a machine M ′ for accepting Ld

as follows:
M ′(wi):
1. Extract the code i from wi.
2. Run M on (Mi, wi) (where Mi is coded appropriately).
3. Accept iff M accepts in the above execution.

Thus, as Ld is not RE, we have that Lu is not RE.

– p. 30/56



Undecidable Problems: Reductions

P1 reduces to P2, if some recursive function f behaves as
follows:

x ∈ P1 iff f(x) ∈ P2

– p. 31/56



Undecidable Problems: Reductions

Suppose P1 reduces to P2 (notation: P1 ≤m P2 or P1 �m P2).
Then,
(a) If P2 is recursive, then so is P1.
(b) If P2 is RE, then so is P1.
(a’) If P1 is undecidable, then so is P2.
(b’) If P1 is non-RE, then so is P2.

– p. 32/56



So, if we want to show that some problem P2 is “hard” (not
recursive, not RE), then
we pick a problem P1 which is hard (not recursive, not RE)
and then show that
P1 ≤m P2.
For this, we construct a function f ,
and show that
x ∈ P1 iff f(x) in P2.

– p. 33/56



TMs accepting empty set

Let Le = {M : L(M) = ∅}.
Let Lne = {M : L(M) 6= ∅}.

Theorem: Lne is RE.

Theorem: Le is not recursive.

Corollary: Le is not RE.

Note: We have used M in sets above. Strictly speaking we

should use i, wi or 1i or something similar (where i is a
code for M ).

– p. 34/56



Theorem: Lne is RE.
Below is an informal description of the Turing Machine M ′

to accept Lne.
M ′ on input M (in coded form) works as follows:

For t = 0 to ∞
For i = 0 to t

If M(wi) accepts within t steps, then accept.
Endfor
Endfor

– p. 35/56



Theorem: Le is not RE.

We reduce Lu to Le

Given M#w we construct M ′ defined as follows (that is the
reduction function f maps M#w to M ′):

M ′(x)
For t = 0 to ∞.

If M(w) accepts within t steps, then accept.
End For
End M ′

Note that the mapping f : M#w → M ′ is recursive.

Now, M(w) does not accept (i.e., M#w ∈ Lu) iff L(M ′) = ∅

and M(w) accepts (i.e., M#w 6∈ Lu) iff L(M ′) = Σ∗ 6= ∅.

Thus, Lu ≤m Le.

– p. 36/56



Same proof technique can be used for several variations:
L = {M | M does not accept a}.
L = {M | M does not accept a or does not accept b}.
L = {M | L(M) is finite }.
etc

– p. 37/56



Let L5 = {M | L(M) has ≤ 5 elements }
We reduce Le to L5.
f : M → M ′

M ′(x)
For t = 0 to ∞
For i = 0 to t

If M(wi) accepts within t steps, then accept
Endfor
Endfor

Now, if L(M) = ∅, then L(M ′) = ∅, and thus M ′ ∈ L5

If L(M) 6= ∅, then L(M ′) = Σ∗ and thus M ′ 6∈ L5

Thus, Le ≤m L5.

– p. 38/56



Rice’s Theorem.

Suppose P is a property on RE languages. Then one may
ask
Is LP = {M | L(M) satisfies property P} is decidable? RE?

A property about RE languages is non-trivial if there exists
at least one RE language which satisfies the property, and
there exists at least one RE language which does not
satisfy the property.

Rice’s Theorem: Suppose P is a non-trivial property about
RE languages. Then LP is undecidable.

– p. 39/56



Proof: Suppose P is a non-trivial property about RE
languages.
Without loss of generality assume ∅ satisfies P (otherwise,

switch P and P ).
Suppose L is an RE language that does not satisfy P . Let
M ′′ be the machine which accepts L.
Define f as follows. f(M) = M ′ such that M ′ is defined as
follows.

– p. 40/56



M ′(x):
For t = 0 to ∞ do:
For i = 0 to t do:

If M(wi) accepts within t steps and
M ′′(x) accepts within t steps, then accept x.

EndFor
EndFor
If L(M) = ∅, then L(M ′) = ∅.
If L(M) 6= ∅, then L(M ′) = L.
Thus, f reduces Le to LP .
As Le is not recursive, we have that LP is not recursive.

– p. 41/56



Post’s Correspondence Problem

Input: Two lists of strings A = w1, w2, . . . , wk and
B = x1, x2, . . . , xk.
Question: Do there exist i1, i2, . . . , im (where m > 0) such
that
wi1wi2 . . . wim = xi1xi2 . . . xim

MPCP: What if we require that first string used should be
some particular combination (say w1 and x1), that is:
Question: Does there exist i1, i2, . . . , im (where m maybe 0)
such that
w1wi1wi2 . . . wim = x1xi1xi2 . . . xim

– p. 42/56



Post’s Correspondence Problem.

We show that Lu ≤m MPCP ≤m PCP .

– p. 43/56



Post’s Correspondence Problem.

Proof for MPCP ≤m PCP

Suppose A = w1, w2, . . . , wk and B = x1, x2, . . . , xk.
Then form
(a) w′

i by inserting ∗ after each symbol in wi.

(b) x′i by inserting ∗ before each symbol in xi.

(c) w′

0
= ∗w′

1
, x′

0
= x′

1

(d) w′

k+1
= $

(e) x′k+1
= ∗$

Here, ∗, $ are special symbols not in the alphabet of wi, xi.

– p. 44/56



Note that if the PCP problem has a solution, then the MPCP
problem created above has a solution (by using the same
indices, where k + 1 is dropped, and 0 is changed to 1).
Here note that the PCP problem solution must start with the
index 0.
On the other hand if the MPCP problem above has a
solution then the PCP problem has a solution by replacing
the first index 1 by 0, using the rest of the indices as it is,
and then ending with the index k + 1.

– p. 45/56



Post’s Correspondence Problem.

Lu ≤m MPCP .
Assume without loss of generality that machine for
accepting Lu never writes a blank and never moves to the
left of the leftmost symbol of input. Below X,Y, Z ∈ Γ and
p, q ∈ Q.

– p. 46/56



List A List B

# # q0w#

X X

# #

qX Y p if δ(q,X) = (p, Y,R)

ZqX pZY if δ(q,X) = (p, Y, L)

q# Yp# if δ(q, B) = (p, Y,R)

Zq# pZY# if δ(q, B) = (p, Y, L)

XqY q if q is accepting state

Xq q if q is accepting state

qX q if q is accepting state

q## # if q is accepting state

– p. 47/56



Ambiguous Grammars

Suppose PCP problem is A = w1 . . . wk and B = x1 . . . xk.
Let a1, . . . , ak be letters different from those used in A,B.
Consider the grammar
S → A

S → B

A → wiAai, for 1 ≤ i ≤ k

A → wiai, for 1 ≤ i ≤ k

B → xiBai, for 1 ≤ i ≤ k

B → xiai, for 1 ≤ i ≤ k

Grammar is ambiguous iff L(GA) and L(GB) intersect, iff
PCP has a solution.
(Here GA is the grammar for the productions involving A

above, and GB is the grammar for the productions involving
B above).

– p. 48/56



Further Undecidable Problems

Note that L(GA), L(GB) are context free.
To see this, let
I be set of indices.
Ai generate the set of proper prefixes of wi.
A′

i generate the set of strings which are not prefixes of wi,

and are of length at most |wi|.

– p. 49/56



The following grammar generates complement of L(GA):
S → ǫ | C | D | E | F
(Comment: C is for generating strings where elements of Σ
follow elements of I.)
C → (Σ ∪ I)C | C(Σ ∪ I) | IΣ
(Comment: D is for generating strings when there is a
mismatch between indices and corresponding strings)
D → wiDai | A

′

iD1ai
D1 → ΣD1 | D1I | ǫ
(Comment: E is for generating strings when there is excess
elements from Σ).
E → wiEai | E1

E1 → ΣE1 | Σ

– p. 50/56



(Comment: F is for generating strings when there are
excess indices).
F → wiFai | AiF1ai
F1 → IF1 | ǫ

– p. 51/56



Further Undecidable Problems

1. L(G1) ∩ L(G2) = ∅, for CFGs.
Proof: by taking G1 = GA and G2 = GB.
2. L(G1) = L(G2), for CFGs

Proof: By taking L(G1) = L(GA) ∪ L(GB) = L(GA) ∩ L(GB),
and G2 to be a grammar for (Σ ∪ I)∗.
Where, I = {a1, a2, . . .}.
3. Similarly: L(G) = L(R) is undecidable, for CFG G and
regular expression R.
L(G) = T ∗ is undecidable, for CFG G and alphabet T .
L(G2) ⊆ L(G1) is undecidable, for CFG G1, G2.
L(R) ⊆ L(G) is undecidable, for CFG G and regular
expression R.

– p. 52/56



Unrestricted Grammars

An unrestricted grammar is a 4-tuple G = (N,Σ, S, P ).
N is the alphabet of non-terminals.
Σ is the alphabet of terminals with N ∩ Σ = ∅.
S is start symbol.
P is a finite set of productions of form α → β, where
α ∈ (N ∪ Σ)∗N(N ∪ Σ)∗ and β ∈ (N ∪ Σ)∗.

In some cases, people also let α ∈ (N ∪ Σ)+ (i.e., do not
require presence of a non-terminal on the left hand side).

If additionally |α| ≤ |β| always for a production α → β in P ,
then the grammar is said to be context sensitive grammar.

– p. 53/56



γαγ′ ⇒ γβγ′, if α → β is a production.

L(G) = {w ∈ Σ∗ : S ⇒∗ w}

– p. 54/56



Example:
{anbncn : n ≥ 1}
S → aSBC | aBC

CB → BC

aB → ab

bB → bb

bC → bc

cC → cc

– p. 55/56



Theorem: If G is an unrestricted grammar, then L(G) is RE.
Theorem: If L is RE, then there exists a grammar G such
that L = L(G).
Assume M doesn’t write a B on the tape.
Suppose L is accepted by TM M = (Q,Σ,Γ, δ, q0, B, F )
Start:
S → BS | SB | A1A2

A2 → aA2 | A2a | q, for all a ∈ Γ, q ∈ F .
Transitions: for all a, b, c ∈ Γ, qi, qj ∈ Q,

bqj → qia, if δ(qi, a) = (qj , b, R)

qjcb → cqia, if δ(qi, a) = (qj , b, L)

Cleanup:
A1q0 → ǫ

B → ǫ

– p. 56/56


	Turing Machines
	Turing Machines
	Turing Machines
	Turing Machines
	Turing Machines
	Instantaneous Description
	Language Accepted by Turing Machine
	Function Computed by Turing Machine
	Languages/Functions
	Turing Machine and Halting
	Turing Machines
	Turing Machines
	Modifications of Turing Machines
	Modifications of Turing Machines
	Multi Tape Turing Machines
	Nondeterministic Turing Machines
	Church-Turing Thesis
	Codings of Strings
	Codings of Turing Machines
	Codings of Turing Machines
	A non-RE language
	Recursive Languages
	Universal Turing Machine
	TMs accepting empty set
	Post's Correspondence Problem

