

Turing Machines

1. Infinite tape, divided into cells.
2. Read/Write Head
3. Finite Number of States
4. In each step, head can read/write and move left/right.

Turing Machines

Example:

Suppose we want to check if the input contains same number of a's as b's.

Turing Machines

State	a	b	B	X
q0	q1, X, R	q2, X, R	qA,B,R	q0, X, R
q1	q1, a, R	q3, X, L		q1, X, R
q2	q3, X, L	q2, b, R		q2, X, R
q3	q3, a, L	q3, b, L	q0,B,R	q3, X, L
qA				

Turing Machines

1. Function Computation
2. Language Acceptance

Turing Machines

Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$.

Q : a set of states

Σ : input alphabet set

Γ : tape alphabet. $\Sigma \subseteq \Gamma$.

δ : transition function from $Q \times \Gamma$ to $Q \times \Gamma \times \{L, R\}$.

q_0 : starting state

B : blank symbol. We assume $B \in \Gamma - \Sigma$

F : set of final states. $F \subseteq Q$.

Usually, input is given without any blanks in between.

Instantaneous Description

- We leave out blanks on both ends.
Exception: if head is among the blanks
- $x_0 x_1 \dots x_{n-1} q x_n x_{n+1} \dots x_m$.
- $x_0 x_1 \dots x_{n-1} q x_n x_{n+1} \dots x_m \vdash \text{next ID}$
- \vdash^* can be defined by saying ‘zero or more steps’.
 $ID_1 \vdash ID_2 \vdash \dots \vdash ID_n$, then
 $ID_1 \vdash^* ID_n$.
(Here n maybe 1).

Language Accepted by Turing Machine

TM accepts x , if

$$q_0x \vdash^* \alpha q_f \beta$$

where $q_f \in F$.

$$L(M) = \{x \mid q_0x \vdash^* \alpha q_f \beta, \text{ for some } q_f \in F\}.$$

Function Computed by Turing Machine

1. Require that the machine halt on input x iff $f(x)$ is defined.
2. Interpret the content of the tape(s) of the Turing machine, after it halts, as the output of f . There are various ways of doing this, for example, by just considering the non-blank content of the first (only) tape.

Languages/Functions

- A language L is said to be *recursively enumerable* (RE), (computably enumerable, CE) if some Turing Machine accepts the language L .
- A language L is said to be *recursive (decidable)*, if some Turing Machine accepts the language L , and Halts on all the inputs.
- A function f is said to be *partial recursive* (partially computable), if some Turing Machine computes the function (it halts on all the inputs on which f is defined, and it does not halt on inputs on which f is not defined).
- A function f is said to be *recursive* (computable), if some Turing Machine computes the function, and f is defined on all elements of Σ^* .

Turing Machine and Halting

Machine may never halt.

Cannot determine if a machine will halt on a particular input

....

Turing Machines

Many tricks for doing the computation with TM.

Turing Machines

1. Stay where you are: 'S' move.
2. Storage in Finite Control.
3. Multiple Tracks
4. Subroutines

Modifications of Turing Machines

Semi-Infinite Tapes

Initialization:

$$\delta(q_S, (X, B)) = ((q_0, U), (X, *), S).$$

Simulation:

Below $X, Z \in \Gamma$ and $m \in \{R, L\}$.

\overline{m} denotes L if $m = R$; otherwise $\overline{m} = R$.

1. If $\delta(q, X) = (q', Y, m)$:

$$\delta'((q, U), (X, Z)) = ((q', U), (Y, Z), m)$$

$$\delta'((q, D), (Z, X)) = ((q', D), (Z, Y), \overline{m})$$

2. If $\delta(q, X) = (q', Y, R)$:

$$\delta'((q, U), (X, *)) = ((q', U), (Y, *), R)$$

$$\delta'((q, D), (X, *)) = ((q', U), (Y, *), R)$$

Modifications of Turing Machines

3. If $\delta(q, X) = (q', Y, L)$:

$$\delta'((q, U), (X, *)) = ((q', D), (Y, *), R)$$

$$\delta'((q, D), (X, *)) = ((q', D), (Y, *), R)$$

Multi Tape Turing Machines

Nondeterministic Turing Machines

- $\delta(q, a)$ is a finite set of possibilities.
- For any current ID, there maybe finite number of possible next ID
- Acceptance, if there exists an accepting state q_f such that
$$q_0 x \vdash^* \alpha q_f \beta.$$

Church-Turing Thesis

Whatever can be computed by an algorithmic device (in function computation sense, or language acceptance sense) can be done by a Turing Machine.

Codings of Strings

For a string x over $\{0, 1\}^*$, let $1x$ (in binary) – 1 be its code. w_i denotes the string with code i .

Codings of Turing Machines

- **States:** q_1, q_2, \dots are the states, with q_1 being start state and q_2 the only accepting state.
- **Tape symbols:** X_1, X_2, \dots, X_s are tape symbols. X_1 is 0, X_2 is 1 and X_3 is blank.
- **Directions:** L is D_1 and R is D_2 .
- **Coding Transition:** $\delta(q_i, X_j) = (q_k, X_l, D_m)$, then code it using string $0^i 1 0^j 1 0^k 1 0^l 1 0^m$.
(Note that each of i, j, k, l, m is at least 1).
- **Code of TM is:** $C_1 1 1 C_2 1 1 C_3 \dots C_n$, where C_i are the codes of all the transitions in the TM.

Codings of Turing Machines

Now we can convert the string to numbers, as above, if needed.

M_i denotes the Turing Machine with code number i .

$W_i = L(M_i)$ denotes the language accepted by Turing Machine with code number i .

A non-RE language

Let $L_d = \{w_i : w_i \notin L(M_i)\}$.

Then L_d is not RE.

Proof:

Suppose any M_j is given. We will show that $L(M_j) \neq L_d$.

Case 1: $w_j \in L(M_j)$. Then, $w_j \notin L_d$ by definition of L_d .

Thus, $L(M_j) \neq L_d$.

Case 2: $w_j \notin L(M_j)$. Then, $w_j \in L_d$ by definition of L_d .

Thus, $L(M_j) \neq L_d$.

Hence, in both cases, $L(M_j) \neq L_d$. Since this applies for any M_j , we have that L_d is not accepted by any Turing Machine.

Hence L_d is not RE.

Recursive Languages

Theorem: If L is recursive, then \overline{L} is recursive.

Proof: Suppose $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ accepts L and halts on all the inputs. Then, modify M as follows to form a new machine M' :

- (i) assume without loss of generality that there is only one accepting state (q_{acc}) in M and that there is no transition in M from an accepting state
- (ii) create a new state q_{new}
- (iii) for any non-accepting state q and any letter a of the alphabet, if $\delta(q, a)$ is not defined in M , then let $\delta(q, a) = q_{new}$ in M' . Other transitions in M' are as in M .
- (iv) Let q_{new} be the only accepting state of M' (thus q_{acc} is a non-accepting state of M').

Then, M' accepts \overline{L} . To see this, note that if M accepts x , then it eventually reaches the state q_{acc} and then never leaves it. Thus, M' on input x also eventually reaches q_{acc} and never leaves it (without ever going through state q_{new}). On the other hand, if M does not accept x , then it never goes through q_{acc} and eventually halts by having no transition at some point of time. Thus, M' on input x eventually reaches state q_{new} and then never leaves it. Thus, M' accepts x .

Theorem: L is recursive iff L is RE and \overline{L} is RE.

Proof: If L is recursive, then \overline{L} is also recursive. Thus, both L and \overline{L} are RE.

For the other direction, suppose M accepts L and M' accepts \overline{L} . Then consider the Turing Machine M'' which works as follows:

$M''(x)$ first copies input x into two different tapes. Then, in parallel, it runs $M(x)$ on the first tape, and $M'(x)$ on the second tape. Note that running in parallel can be done in a way similar to that done for DFAs.

Then, if at any point of time $M(x)$ accepts, then M'' accepts. If $M'(x)$ accepts, then M'' halts and rejects.

Now, if $x \in L$, then $M(x)$ eventually accepts, and thus M'' halts and accepts. If $x \notin L$, then $M'(x)$ eventually accepts, and thus M'' halts and rejects.
Thus, L is recursive.

Universal Turing Machine

$L_u = \{(M, w) : M \text{ accepts } w\}.$

We will construct a Universal TM which will accept the language L_u .

It has following tapes:

Input: M (coded) and w (over $\{0, 1\}^*$)

Tape for M : initially place w in coded form: 10 for zeros and 100 for ones in w .

State of M : initially contains 0 (head on 0).

Scratch tape

At any time during the simulation, before/after simulating a step of M , we will have

- the state of the M is in the tape called state of M (in form 0^s),
- the tape “tape for M ” contains the content of M ’s tape (in coded form, as mentioned earlier, 10 for zero, 100 for one, etc), where the trailing blanks need not be coded.
- the head of UTM on the tape corresponding to the tape for M is at the 1 corresponding to the code for the content of the cell scanned by M .

Simulating each step of M :

1. suppose the tape containing state of M has 0^i
2. suppose the head of UTM as on the tape “tape for M ” is at the start of $10^j 1$ (or $10^j B$).
3. Search in the code of M for an entry of the form $0^i 10^j 10^k 10^\ell 10^m$, where on both sides we have either blanks or 11 , and i and j are as in steps 1 and 2 above. Note that this can be done using comparison of various tape contents.
4. Then change the content of the tape containing state of TM to 0^k (this can be done using copying).

5.1 To write 0^ℓ on the tape, first mark the current “cell” being read on the ‘Tape for M’ by using a special symbol * (the * is used to replace the 1 in 10^j).

5.2 Copy the Tape for M into scratch tape, where instead of copying the portion $*0^j1$ write $*0^\ell1$ in the scratch tape (where the last 1 might be a B , in case the current cell used by M is the last written cell). Additionally, convert one blank at the end by using 10^3 .

5.3 Copy back the scratch tape into the tape “Tape for M”.

5.4. Movement of the head can be easily implemented now by reaching the marked portion *, replacing it by 1, and then moving the head to the next 1 on the left/right as the case maybe depending on the value of m .

$\overline{L_u}$ is not RE.

To see this suppose by way of contradiction that M accepts $\overline{L_u}$. Then, one can construct a machine M' for accepting L_d as follows:

$M'(w_i)$:

1. Extract the code i from w_i .
2. Run M on (M_i, w_i) (where M_i is coded appropriately).
3. Accept iff M accepts in the above execution.

Thus, as L_d is not RE, we have that $\overline{L_u}$ is not RE.

Undecidable Problems: Reductions

P_1 reduces to P_2 , if some recursive function f behaves as follows:

$$x \in P_1 \text{ iff } f(x) \in P_2$$

Undecidable Problems: Reductions

Suppose P_1 reduces to P_2 (notation: $P_1 \leq_m P_2$ or $P_1 \preceq_m P_2$). Then,

- (a) If P_2 is recursive, then so is P_1 .
- (b) If P_2 is RE, then so is P_1 .
- (a') If P_1 is undecidable, then so is P_2 .
- (b') If P_1 is non-RE, then so is P_2 .

So, if we want to show that some problem P_2 is “hard” (not recursive, not RE), then

we pick a problem P_1 which is hard (not recursive, not RE)
and then show that

$$P_1 \leq_m P_2.$$

For this, we construct a function f ,
and show that

$$x \in P_1 \text{ iff } f(x) \text{ in } P_2.$$

TMs accepting empty set

Let $L_e = \{M : L(M) = \emptyset\}$.

Let $L_{ne} = \{M : L(M) \neq \emptyset\}$.

Theorem: L_{ne} is RE.

Theorem: L_e is not recursive.

Corollary: L_e is not RE.

Note: We have used M in sets above. Strictly speaking we should use i , w_i or 1^i or something similar (where i is a code for M).

Theorem: L_{ne} is RE.

Below is an informal description of the Turing Machine M' to accept L_{ne} .

M' on input M (in coded form) works as follows:

For $t = 0$ to ∞

For $i = 0$ to t

If $M(w_i)$ accepts within t steps, then accept.

Endfor

Endfor

Theorem: L_e is not RE.

We reduce $\overline{L_u}$ to L_e

Given $M \# w$ we construct M' defined as follows (that is the reduction function f maps $M \# w$ to M'):

$M'(x)$

For $t = 0$ to ∞ .

If $M(w)$ accepts within t steps, then accept.

End For

End M'

Note that the mapping $f: M \# w \rightarrow M'$ is recursive.

Now, $M(w)$ does not accept (i.e., $M \# w \in \overline{L_u}$) iff $L(M') = \emptyset$ and $M(w)$ accepts (i.e., $M \# w \notin \overline{L_u}$) iff $L(M') = \Sigma^* \neq \emptyset$.

Thus, $\overline{L_u} \leq_m L_e$.

Same proof technique can be used for several variations:

$L = \{M \mid M \text{ does not accept } a\}$.

$L = \{M \mid M \text{ does not accept } a \text{ or does not accept } b\}$.

$L = \{M \mid L(M) \text{ is finite }\}$.

etc

Let $L_5 = \{M \mid L(M) \text{ has } \leq 5 \text{ elements}\}$

We reduce L_e to L_5 .

$f : M \rightarrow M'$

$M'(x)$

For $t = 0$ to ∞

For $i = 0$ to t

If $M(w_i)$ accepts within t steps, then accept

Endfor

Endfor

Now, if $L(M) = \emptyset$, then $L(M') = \emptyset$, and thus $M' \in L_5$

If $L(M) \neq \emptyset$, then $L(M') = \Sigma^*$ and thus $M' \notin L_5$

Thus, $L_e \leq_m L_5$.

Rice's Theorem.

Suppose P is a property on RE languages. Then one may ask

Is $L_P = \{M \mid L(M) \text{ satisfies property } P\}$ is decidable? RE?

A property about RE languages is *non-trivial* if there exists at least one RE language which satisfies the property, and there exists at least one RE language which does not satisfy the property.

Rice's Theorem: Suppose P is a non-trivial property about RE languages. Then L_P is undecidable.

Proof: Suppose P is a non-trivial property about RE languages.

Without loss of generality assume \emptyset satisfies P (otherwise, switch P and \overline{P}).

Suppose L is an RE language that does not satisfy P . Let M'' be the machine which accepts L .

Define f as follows. $f(M) = M'$ such that M' is defined as follows.

$M'(x)$:

For $t = 0$ to ∞ do:

For $i = 0$ to t do:

If $M(w_i)$ accepts within t steps and
 $M''(x)$ accepts within t steps, then accept x .

EndFor

EndFor

If $L(M) = \emptyset$, then $L(M') = \emptyset$.

If $L(M) \neq \emptyset$, then $L(M') = L$.

Thus, f reduces L_e to L_P .

As L_e is not recursive, we have that L_P is not recursive.

Post's Correspondence Problem

Input: Two lists of strings $A = w_1, w_2, \dots, w_k$ and $B = x_1, x_2, \dots, x_k$.

Question: Do there exist i_1, i_2, \dots, i_m (where $m > 0$) such that

$$w_{i_1} w_{i_2} \dots w_{i_m} = x_{i_1} x_{i_2} \dots x_{i_m}$$

MPCP: What if we require that first string used should be some particular combination (say w_1 and x_1), that is:

Question: Does there exist i_1, i_2, \dots, i_m (where m maybe 0) such that

$$w_1 w_{i_1} w_{i_2} \dots w_{i_m} = x_1 x_{i_1} x_{i_2} \dots x_{i_m}$$

Post's Correspondence Problem.

We show that $L_u \leq_m MPCP \leq_m PCP$.

Post's Correspondence Problem.

Proof for $MPCP \leq_m PCP$

Suppose $A = w_1, w_2, \dots, w_k$ and $B = x_1, x_2, \dots, x_k$.

Then form

- (a) w'_i by inserting * after each symbol in w_i .
- (b) x'_i by inserting * before each symbol in x_i .
- (c) $w'_0 = *w'_1, x'_0 = x'_1$
- (d) $w'_{k+1} = \$$
- (e) $x'_{k+1} = *\$$

Here, *, \$ are special symbols not in the alphabet of w_i, x_i .

Note that if the PCP problem has a solution, then the MPCP problem created above has a solution (by using the same indices, where $k + 1$ is dropped, and 0 is changed to 1).

Here note that the PCP problem solution must start with the index 0.

On the other hand if the MPCP problem above has a solution then the PCP problem has a solution by replacing the first index 1 by 0, using the rest of the indices as it is, and then ending with the index $k + 1$.

Post's Correspondence Problem.

$L_u \leq_m MPCP$.

Assume without loss of generality that machine for accepting L_u never writes a blank and never moves to the left of the leftmost symbol of input. Below $X, Y, Z \in \Gamma$ and $p, q \in Q$.

List A	List B	
#	# $q_0 w \#$	
X	X	
#	#	
qX	Y p	if $\delta(q, X) = (p, Y, R)$
ZqX	pZY	if $\delta(q, X) = (p, Y, L)$
q#	Yp#	if $\delta(q, B) = (p, Y, R)$
Zq#	pZY#	if $\delta(q, B) = (p, Y, L)$
XqY	q	if q is accepting state
Xq	q	if q is accepting state
qX	q	if q is accepting state
q##	#	if q is accepting state

Ambiguous Grammars

Suppose PCP problem is $A = w_1 \dots w_k$ and $B = x_1 \dots x_k$. Let a_1, \dots, a_k be letters different from those used in A, B . Consider the grammar

$$S \rightarrow A$$

$$S \rightarrow B$$

$$A \rightarrow w_i A a_i, \text{ for } 1 \leq i \leq k$$

$$A \rightarrow w_i a_i, \text{ for } 1 \leq i \leq k$$

$$B \rightarrow x_i B a_i, \text{ for } 1 \leq i \leq k$$

$$B \rightarrow x_i a_i, \text{ for } 1 \leq i \leq k$$

Grammar is ambiguous iff $L(G_A)$ and $L(G_B)$ intersect, iff PCP has a solution.

(Here G_A is the grammar for the productions involving A above, and G_B is the grammar for the productions involving B above).

Further Undecidable Problems

Note that $\overline{L(G_A)}$, $\overline{L(G_B)}$ are context free.

To see this, let

I be set of indices.

A_i generate the set of proper prefixes of w_i .

A'_i generate the set of strings which are not prefixes of w_i , and are of length at most $|w_i|$.

The following grammar generates complement of $L(G_A)$:

$$S \rightarrow \epsilon \mid C \mid D \mid E \mid F$$

(Comment: C is for generating strings where elements of Σ follow elements of I .)

$$C \rightarrow (\Sigma \cup I)C \mid C(\Sigma \cup I) \mid I\Sigma$$

(Comment: D is for generating strings when there is a mismatch between indices and corresponding strings)

$$D \rightarrow w_i D a_i \mid A'_i D_1 a_i$$

$$D_1 \rightarrow \Sigma D_1 \mid D_1 I \mid \epsilon$$

(Comment: E is for generating strings when there is excess elements from Σ).

$$E \rightarrow w_i E a_i \mid E_1$$

$$E_1 \rightarrow \Sigma E_1 \mid \Sigma$$

(Comment: F is for generating strings when there are excess indices).

$$F \rightarrow w_i F a_i \mid A_i F_1 a_i$$

$$F_1 \rightarrow I F_1 \mid \epsilon$$

Further Undecidable Problems

1. $L(G_1) \cap L(G_2) = \emptyset$, for CFGs.

Proof: by taking $G_1 = G_A$ and $G_2 = G_B$.

2. $L(G_1) = L(G_2)$, for CFGs

Proof: By taking $L(G_1) = \overline{L(G_A)} \cup \overline{L(G_B)} = \overline{L(G_A) \cap L(G_B)}$, and G_2 to be a grammar for $(\Sigma \cup I)^*$.

Where, $I = \{a_1, a_2, \dots\}$.

3. Similarly: $L(G) = L(R)$ is undecidable, for CFG G and regular expression R .

$L(G) = T^*$ is undecidable, for CFG G and alphabet T .

$L(G_2) \subseteq L(G_1)$ is undecidable, for CFG G_1, G_2 .

$L(R) \subseteq L(G)$ is undecidable, for CFG G and regular expression R .

Unrestricted Grammars

An *unrestricted grammar* is a 4-tuple $G = (N, \Sigma, S, P)$.

N is the alphabet of non-terminals.

Σ is the alphabet of terminals with $N \cap \Sigma = \emptyset$.

S is start symbol.

P is a finite set of productions of form $\alpha \rightarrow \beta$, where

$\alpha \in (N \cup \Sigma)^* N (N \cup \Sigma)^*$ and $\beta \in (N \cup \Sigma)^*$.

In some cases, people also let $\alpha \in (N \cup \Sigma)^+$ (i.e., do not require presence of a non-terminal on the left hand side).

If additionally $|\alpha| \leq |\beta|$ always for a production $\alpha \rightarrow \beta$ in P , then the grammar is said to be context sensitive grammar.

$\gamma\alpha\gamma' \Rightarrow \gamma\beta\gamma'$, if $\alpha \rightarrow \beta$ is a production.

$$L(G) = \{w \in \Sigma^* : S \Rightarrow^* w\}$$

Example:

$$\{a^n b^n c^n : n \geq 1\}$$

$$S \rightarrow aSBC \mid aBC$$

$$CB \rightarrow BC$$

$$aB \rightarrow ab$$

$$bB \rightarrow bb$$

$$bC \rightarrow bc$$

$$cC \rightarrow cc$$

Theorem: If G is an unrestricted grammar, then $L(G)$ is RE.

Theorem: If L is RE, then there exists a grammar G such that $L = L(G)$.

Assume M doesn't write a B on the tape.

Suppose L is accepted by TM $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$

Start:

$$S \rightarrow BS \mid SB \mid A_1 A_2$$

$$A_2 \rightarrow aA_2 \mid A_2a \mid q, \text{ for all } a \in \Gamma, q \in F.$$

Transitions: for all $a, b, c \in \Gamma$, $q_i, q_j \in Q$,

$$bq_j \rightarrow q_i a, \text{ if } \delta(q_i, a) = (q_j, b, R)$$

$$q_j cb \rightarrow cq_i a, \text{ if } \delta(q_i, a) = (q_j, b, L)$$

Cleanup:

$$A_1 q_0 \rightarrow \epsilon$$

$$B \rightarrow \epsilon$$