Theorem: If L is accepted by a $T(n)$ time bounded k-tape machine then L is accepted by $T(n) \log T(n)$ time bounded 2 tape machine.

Proof sketch: We will simulate a k-tape machine M accepting L using a two tape machine M^{\prime}.
The first tape of M^{\prime} will use two tracks to simulate each tape of M. The second tape of M^{\prime} is used as a scratch tape, useful for copying parts of the first tape in the simulation below.

In the proof we show how to simulate one move of M. Let us call this simulation as a basic move of M^{\prime}. We will give the proof for claimed time bound after the simulation.

Think of the first tape of M^{\prime} as being divided into blocks, $\ldots, B_{-2}, B_{-1}, B_{0}, B_{1}, B_{2}, \ldots$, (see figure below). B_{0} consists of one cell. B_{i} and B_{-i} consist of 2^{i-1} cells. In the presentation below we will assume that the boundaries of the different blocks are marked, though the markers will actually be placed only when the blocks are first used.

Figure 1: Tape Blocks

Let us concentrate on the simulation of one tape of M by the corresponding 2 tracks on the first tape of M^{\prime}. The simulation is similar for all the other tapes. M^{\prime} uses a special symbol called empty (this is different from blank).

Suppose at the start of any step the contents of cell being read by M on the tape being simulated is a_{0}, and the contents of cells on the right are a_{1}, a_{2}, \ldots, and the contents of the cells on the left are a_{-1}, a_{-2}, \ldots (where some of a_{i} 's may be blank).

At the beginning of any basic step we will have the following invariant.
(A) For any $i>0$, either
(A1) lower tracks of B_{i} and B_{-i} are full (i.e. none of the symbols are empty), and upper tracks of B_{i} and B_{-i} are empty (i.e. all the symbols are empty).
(A2) Both tracks of B_{i} are full, whereas both tracks of B_{-i} are empty.
(A3) Both tracks of B_{-i} are full, whereas both tracks of B_{i} are empty.
Note that this invariant implies that for each $i>0, B_{i}$ and B_{-i} together have exactly 2^{i} empty symbols and 2^{i} non-empty symbols.
(B) The lower track of B_{0} contains the content of the cell being scanned by M, that is a_{0}. The head of M^{\prime} is at B_{0}.
(C) Suppose we read the contents of the cells to the right of B_{0}, in the order of their distance from B_{0}, upper track first and lower track next, then we get a_{1}, a_{2}, \ldots.
(D) Similarly if we read the contents of the cells to the left of B_{0} we get a_{-1}, a_{-2}, \ldots.

Initially the upper track of first tape of M^{\prime} is all empty and the lower track contains $\ldots, a_{-2}, a_{-1}, a_{0}, a_{1}, a_{2}$, where a_{0} is in block B_{0}. Note that the invariant is satisfied in the beginning.

We now show how to do the basic step of M^{\prime} simulating a step of M and maintain the invariant.
Clearly, M^{\prime} can determine the symbol being scanned by M (for all the tapes) since they are at B_{0}, and thus determine the symbol to be written on the cell being scanned and whether the head of M on the corresponding tape moves left or right. Thus, the symbol to be written on the scanned tape can be witten at B_{0}. We now consider how to simulate the left move of M. The right move can be simulated similarly.
(1) M^{\prime} first moves to the right until it finds the first block such that at least one of its upper/lower tracks is empty. Let this block be B_{i}. Note that this implies that the cells, $B_{1}, B_{2}, \ldots, B_{i-1}$ have both tracks full. Let the case of B_{i} having both tracks empty be called Case 1 , and B_{i} having only the upper track empty be called Case 2 .
(2) Now we want to rearrange the contents of blocks $B_{-i}, \ldots, B_{0}, \ldots, B_{i}$ to maintain the invariant.

Case 1: In this case B_{-i} and B_{1}, \ldots, B_{i-1} have both tracks full, whereas, B_{i}, and $B_{-1}, \ldots, B_{-(i-1)}$ have both tracks empty. Thus the symbols in these blocks are $a_{-2 * 2^{i-1}}, \ldots, a_{0}, \ldots, a_{2 *\left(2^{i-1}-1\right)}$.

After the rearrangement, we want: $a_{-2 * 2^{i-1}}, \ldots, a_{-2}$ to the left of B_{0}, a_{-1} at B_{0} and $a_{0}, \ldots, a_{2 *\left(2^{i-1}-1\right)}$ to the right of B_{0}.

We can do this by first copying these symbols to tape 2 (in sequential order), then copying back to tape 1 by filling lower track of $B_{-i}, \ldots, B_{0}, \ldots, B_{i}$. Note that this leaves the tape contents as required above.

Case 2: In this case B_{-i} and B_{i} have their lower tracks full, upper track empty, B_{1}, \ldots, B_{i-1} have both tracks full, $B_{-1}, \ldots, B_{-(i-1)}$ have both tracks empty. Thus the symbols in these blocks are $a_{-2^{i-1}}, \ldots, a_{0}, \ldots, a_{2 *\left(2^{i-1}-1\right)+2^{i-1}}$.

After the rearrangement we want: $a_{-2^{i-1}}, \ldots, a_{-2}$ to the left of B_{0}, a_{-1} at B_{0} and $a_{0}, \ldots, a_{2 *\left(2^{i-1}-1\right)+2^{i-1}}$ to the right of B_{0}.

We can do this by first copying these symbols to tape 2 (in sequential order), then copying back to tape 1 by filling lower track of $B_{-(i-1)}, \ldots, B_{0}, \ldots, B_{i-1}$, and then filling both tracks of B_{i}. Note that this leaves the tape contents as required above.
(3) The head of M^{\prime} then returns to the block B_{0}

This completes the basic move of M^{\prime}. Note that for simulating k tapes we can do the steps 1 , 2 , and 3 above for each of the tape in a serial fashion (since after the simulation for each tape the head is back at $B_{0}!$).

We now consider the time required to simulate each tape. When B_{i} is selected as in step 1 above, we call the basic step (with respect to the corresponding tape) a B_{i}-basic step.

Time required to do a B_{i}-basic step (steps 1 to 3) is proportional to 2^{i} (where the constant of proportionality is independent of i). Note that a B_{i} basic step needs to be done at most once every 2^{i-1} steps of M. This is so since, for a B_{i}-basic step to be done, B_{1}, \ldots, B_{i-1} must have to be full on both tracks; after B_{i}-basic step, B_{1}, \ldots, B_{i-1} are empty in the upper track. It will take at least $2^{i-1}-1$ steps for them to become full again.) Also the first B_{i}-basic step cannot be done until atleast 2^{i-1} steps of M are completed since we initially started with all blocks having empty upper track.

Thus the time for simulation is bounded by:

$$
k * \sum_{i=1}^{1+\log T(n)} c * 2^{i} \frac{T(n)}{2^{i-1}}
$$

for some constant c. This is bounded by $c^{\prime} T(n) \log T(n)$, for some constant c^{\prime}. This proves the time bound for the simulation.

