
Arthur Merlin Games

If the tosses are public, this is called Arthur Merlin (AM)
games.
Arthur is the verifier and Merlin is the prover.
MAM . . . denotes the sequence of communication where
M starts first, then A tosses coins, then M responds, and
so on. At the end verifier accepts or rejects.
So, for example in MAM , on input x, prover generates a
string y, then Arthur generates a random string z and then
prover generates a string w and then at the end Arthur runs
a polynomial time computable function P (x, y, z, w) to
accept or reject.
AM [k] denotes AMAMAM . . . AM (AM appears k times).

– p. 1/8

Theorem: MA ⊆ AM

Proof: First Boost probability. Then note that most of the
“guesses” work for every “bad” merlin move.
Suppose the check made by the verifier is R(x, y, z), where
y is the string provided by Merlin and z is a random guess.
Without loss of generality assume that |y| = p(|x|) and

probability of error is < 2−p(|x|)−2.
Note that if x ∈ L, then Merlin can always give the correct y
even if Arthur goes first. So the interesting case is when
x 6∈ L. Thus, the fraction of strings z which fail to catch the
prover for any particular y provided by Merlin on input x is at

most 2−p(|x|)−2. Thus, the total fraction of strings z which fail

for some y is at most 2−2. So, even if Arthur goes first,

1− 2−2 fraction of z will catch a cheating Merlin.

– p. 2/8

Theorem: MAM ⊆ AM

Proof: Similar idea as used for MA ⊆ AM .
Suppose the check made by the verifier is R(x, y, z, w),
where y is the string provided by Merlin followed by z as the
random guess and then w as the string provided by Merlin.
Without loss of generality assume that |y| = p(|x|) and

probability of error is 2−p(|x|)−2. Note that w is anyway
provided by Merlin after knowing z.
Again, if x ∈ L, then Merlin can provide the two strings y

and w honestly. If x 6∈ L, then the fraction of strings z which
fail to catch Merlin for any particular y, for some w, is at

most 2−p(|x|)−2. Thus, the total fraction of strings z which fail

for some y for some w is at most 2−2.

– p. 3/8

Theorem: AM [k] ⊆ AM

Proof: Repeatedly using above method (to replace MAM at
the end to AM). Also note that two consecutive AA can be
converted to A, as one can just do both the coin tosses
together.

– p. 4/8

Theorem: AM ⊆ Πp
2.

Proof: Suppose L ∈ AM . Assume the error probability is
reduced.
Now note that in the proof of BPP ⊆ Σp

2, we only consider

the “successful” and “unsuccessful” strings with respect to
acceptance. Furthermore, BPP is closed under
complementation. Thus, the same proof also shows
BPP ⊆ Πp

2.

Thus, using the same trick we can replace the verifier check
by universal followed by existential quantifier.

Theorem: MA ⊆ Σp
2 ∩ Πp

2.

MA ⊆ Πp
2 follows from MA ⊆ AM .

MA ⊆ Σp
2 follows using the BPP ⊆ Σp

2 trick.

– p. 5/8

Theorem: If coNP ⊆ AM , then coAM ⊆ AM .
Proof: Languages in coAM are of form:
x ∈ L implies (for most z)(for all y)[R(x, y, z)]
x 6∈ L implies (for most z)¬(for all y)[R(x, y, z)]
Now using coNP ⊆ AM , we can replace above by
x ∈ L implies (for most z)(for most w)(exists u)[R′(x, z, w, u)]
x 6∈ L implies (for most z)(for most w)¬(exists
u)[R′(x, z, w, u)]
which is in AM .

– p. 6/8

Theorem: If coNP ⊆ AM , then PH ⊆ AM ⊆ Πp
2.

Proof:
By induction we show that Σp

k
⊆ AM .

For k = 1, this is already done.
For k > 1, suppose we have shown that Σp

k−1 ⊆ AM .

Then consider L ∈ Σp
k
. This can be expressed as x ∈ L iff

(∃y)[(x, y) ∈ L′] for some L′ ∈ Πp
k−1.

Here L′ ∈ coAM (as Σp
k−1 ⊆ AM).

Thus, L′ ∈ AM . Which gives L ∈ MAM ⊆ AM .

– p. 7/8

Public vs Private Tosses:
Theorem: IP (q(n)) ⊆ AM(q(n) + 2)

– p. 8/8

	Arthur Merlin Games

