
Approximation Algorithms

NP-complete problems likely to be hard to solve.
NP-complete problems usually have an associated optimization prob-
lem.
As these problems are NP-hard, it is unlikely that we can get a fast
algorithm to solve them.



Approximation Algorithms

Example: Travelling Salesman Problem.
Optimization Problem related to TSP:
Given a graph (V,E), where there are weights associated with each
edge.
Problem: Find a tour (cycle) going through all the vertices (and
returning to the starting vertex) with minimal weight, that is, the
sum of the weights of the edges in the tour should be minimal among
all such possible tours.

This problem is NP-hard. So we are unlikely to get a fast (polynomial
time) algorithm to solve it.



Approximation Algorithms

Suppose the optimal tour costs $5000, but it takes 1 year for your
travel agent to find the optimal tour.

On the other hand, suppose your travel agent can find a tour costing
$5100, within 5 minutes.

For many purposes, this may be good enough.
[Also note that we may have costs associated with travel agent’s
time!]



So often, an approximate answer to an optimization problem may
be good enough.
In this and next lecture we will look at some of the algorithms for
“approximately” solving some NP-hard optimization problems.



Approximation Algorithms

Minimum Vertex Cover:

Recall the Vertex Cover Problem.
Given a graph G = (V,E). V ′ is a vertex cover for G, iff (∀(u, v) ∈
E)[u ∈ V ′ or v ∈ V ′].
The NP-complete problem related to the vertex cover question was:
Question: Does there exist a vertex cover of size at most K?
The optimization question is: Find vertex cover V ′ with minimum
size.
The optimization problem is NP-hard. Thus it is not likely that one
can find a minimum vertex cover for a graph in polynomial time.
However, we can do a reasonable approximation.



Vertex Cover

Input: G = (V,E)

Output: A vertex cover V ′ ‘which is not too large’

Let V ′ = ∅.

Let M ′ = ∅. (M ′ is used only to give a proof that V ′ is not too
large).

For each (u, v) ∈ E, do

If (u 6∈ V ′ and v 6∈ V ′) Then,
let V ′ = V ′ ∪ {u, v};
let M ′ = M ′ ∪ {(u, v)};

Endif

Endfor

End Vertex Cover



Clearly, the algorithm runs in polynomial time.
Suppose the size of the minimum vertex cover is m.
Then we claim that size of V ′, as given by the above algorithm is at
most 2m.
Hence the output of the above algorithm is within a multiplicative
factor of 2 of optimal.
Proof of claim: Note that M ′ forms a matching.
Thus any vertex cover of G must have at least size(M ′) number of
vertices.
Since number of vertices in V ′ is 2∗size(M ′), the size of vertex cover
found by the algorithm is at most two times the optimal.



Approximation Algorithms in General

The vertex cover example illustrates that even though an optimal
solution may be difficult to find, a reasonable approximation to op-
timal may be easy.
There are in general two kinds of approximations one can look for:
(1) Approximations which are within a constant ‘additive’ factor of
optimal.
That is AlgoAnswer ≤ optimal + constant
(2) Approximations which are within a constant ‘multiplicative’ fac-
tor of optimal.
That is AlgoAnswer ≤ constant * optimal
For multiplicative factor approximations we also consider whether
one can get arbitrarily close to 1.



Planar Graph coloring

Graph coloring: Color each vertex of the graph so that no adjacent
vertices have the same color.
Planar Graphs: Graphs which can be drawn on a plane without any
edges crossing each other. (Here we only consider simple graphs,
which do not have parallel edges or self-loops)

It can be shown that every planar graph is 4 colorable.
Deciding whether a planar graph is 3 colorable or not is NP complete.
Thus finding an optimal (minimum) number of colors by which a
planar graph can be colored (without adjacent vertices having same
color) is NP-hard.
However we have an easy approximation algorithm for it.
Every planar graph is 4 colorable! So we are within an additive
constant factor of optimal.



In a simple connected planar graph (graph which does not have
parallel edges or self loops):
Suppose e is the number of edges, f is the number of faces, and v is
the number of vertices.
(a) e− f = v − 2.
This can be proved by induction on the number of edges.
For a tree, the above holds as the number of vertices in a tree is one
more than the number of edges, and the number of faces in a tree is
1.
For a planar graph with a cycle, if we delete one edge from a cycle,
then the number of faces is reduced by one. Thus, by induction, the
formula holds.
(b) f ≤ 2e/3.
As each face is surrounded by at least three edges, and each edge is
shared between two faces, we immediately have the above result.



From (a) and (b) we immediately have:
v − 2 ≥ e/3.
Thus, e ≤ 3v − 6.
Thus, average degree of a vertex is < 6.
Hence, there is a vertex v of degree at most 5.
By induction color rest of the graph using six colors. Then color
vertex v, using the color not used by its neighbours.
Hence, any planar graph can be colored using at most 6 colors.



Slight modification of the proof: By considering the neighbours of v
more carefully, allows us to color any planar graph using at most 5
colors.
— 4 coloring proof is difficult.



Bin Packing

Bin Packing Problem is as follows:
Instance: A set A of n objects, a1, a2, . . . , an and corresponding
sizes size(a1), size(a2), . . . ,. We are also given a bin size L.
Question: What is the minimum number of bins needed to fill all
the objects.
Here, we require that the sum of sizes of objects assigned to a bin
must not exceed the bin size.
The above problem is NP-hard (Exercise. Hint: reduce partition to
bin-packing).
We consider some easy approximation algorithms for bin-packing.



First Fit: Index the bins B1, B2, . . .. Objects are considered for
placement in order a1, a2, . . ..
Suppose just before placing object ai, the bin Bj is fj full (i.e. the
sum of the sizes of objects already assigned to Bj is fj).
To place ai, find the least j such that Bj has enough empty space
to fit ai (that is L− fj ≥ size(ai)). Place ai in Bj.

Best Fit: Similar to First Fit, except that we use the bin Bj such
L−fj is minimized (along with the condition that L−fj ≥ size(ai)).

First Fit Decreasing: First sort the objects in non-increasing order
of sizes. Then use first fit.

Best Fit Decreasing: First sort the objects in non-increasing order
of sizes. Then use best fit.



Suppose I is an instance of bin packing problem.
Suppose opt(I) denotes the optimal number of bins needed to pack
objects in instance I .
Let FF (I), BF (I), FFD(I), BFD(I) denote the number of bins
used by First Fit, Best Fit, First Fit Decreasing, and Best Fit De-
creasing, respectively.



Theorem: FF (I) ≤ 2 ∗ opt(I) + 1. Similar result applies to the
other three algorithms.

Proof: Note that at the end of the first fit algorithm, there cannot
be two non-empty bins which are filled less than 50%.
Thus all, except may be one, bins are filled at least 50%.
Therefore the number of bins used by the above algorithm is

≤
2Σn

i=1size(ai)

L
+ 1

Since the optimal algorithm has to use Σn
i=1size(ai)

L bins, we have our
theorem. QED



Actually, much better bounds than the multiplicative factor of 2 can
be shown. It can be shown that,
FF (I) ≤ 1.7opt(I) + 2.
BF (I) ≤ 1.7opt(I) + 2.
FFD(I) ≤ 11

9 opt(I) + 4.

BFD(I) ≤ 11
9 opt(I) + 4.

However, the proof is quite long and complicated. We will not do it
in this course.



Knapsack

Instance: A set A = {a1, . . . , an} of objects, with corresponding
sizes, size(ai), and values, value(ai).
A knapsack of size L.
For a subset A′ of A let, size(A′) = Σa∈A′size(a) and value(A′) =
Σa∈A′value(a).
Problem: Find a subset A′ of A, with size(A′) ≤ L, which maximses
value(A′).
Note that the knapsack problem is NP-hard (Hint: reduce partition
to knapsack).



We will give an approximation algorithm for knapsack problem,
which gives a solution with value at least (1 − ǫ) of optimal, for
any fixed ǫ > 0.
To this end, we first give a procedure, which given a set B of objects
(with corresponding sizes and values) and a knapsack sizeK, outputs
a subset B′ of B.
This set B′ will fit in the knapsack and has “large enough” value.
(The goodness of B′ is not with respect to multiplicative factor but
something else. More on this later).
Inputs to the procedure are:
(1) A set B of m objects, (with corresponding sizes and values)
(2) A knapsack size K.
Output of the procedure: A subset B′ of B, such that size(B′) ≤ K.



Procedure Select

1. Sort the objects in B by non-increasing order of value(b)/size(b)
(i.e. by non-increasing order of value per unit size).

Let this order be b1, b2, . . . , bm.

2. Let spaceleft = K.

B′ = ∅.

3. For i = 1 to m do

If size(bi) ≤spaceleft, then
Let B′ = B′ ∪ {bi}.
Let spaceleft=spaceleft−size(bi).

Endif

End for

4. Output B′.

End



Lemma: Let a set of objectsB (with corresponding sizes and values),
and knapsack size K be as given in the algorithm for Select. Then
Select outputs a subset B′ of B such that
(∀B′′ : size(B′′) ≤ K)[value(B′′)−value(B′) ≤ max {value(b) : b ∈ B′′}]
i.e. B′ is worse off by value of at most “one element” of B′′.
Proof: Let B′′ be an arbitrary subset of B such that size(B′′) ≤ K.
Order the elements of B′′ in order of non-increasing value(b)/size(b):
b1, b2, . . . , bl.
If B′′ ⊆ B′ then we are done.
Otherwise let j be the minimum number such bj 6∈ B′.
This implies that at the time bj was considered in the algorithm
Select, we had spaceleft < size(bj). Thus,
value(B′) ≥

Σ
j−1
i=1 value(b

i) + [K − Σ
j−1
i=1 size(b

i)− size(bj)] ∗ [value(bj)/size(bj)]
(since at the time, when bj couldn’t have been fit, all the elements
in B′ have value per unit size more than value(bj)/size(bj)).



Moreover,

value(B′′) ≤ Σ
j−1
i=1 value(b

i)+[K−Σ
j−1
i=1 size(b

i)]∗[value(bj)/size(bj)],
(since we had arranged the elements of B′′ in non-increasing order
of value per unit size).
Thus,
value(B′′)−value(B′) ≤ size(bj)∗[value(bj)/size(bj)] = value(bj) ≤
max {value(b) : b ∈ B′′}. QED

Though, the algorithm Select is quite good, it may not still be a
constant factor approximation algorithm (the single element value
may be quite large).
So we consider the following modification, which gives us a subset
A′ of A such that value(A′) is nearly optimal.



Knapsack

Inputs:

(1) A set A of n objects (with corresponding sizes and values).

(2) A knapsack size L.

(3) An optimality factor r.

Output: A subset A′ of A, such that size(A′) ≤ K, and value(A′)
is at least (1− 1

r)∗ optimal.

1. Let S1, S2, S3 . . . , be all subsets of A which have at most r mem-
bers.

2. For each Sj, such that size(Sj) ≤ L, let Bj be B′ given by
algorithm Select, when the inputs to Select are B = A − Sj
and K = L− size(Sj).

(Think of Bj as choosing the remaining elements, when we have
already decided to chose Sj).

Output A′ = Sj ∪ Bj, which maximizes value(Sj ∪Bj).

End



Note that the algorithm runs in polynomial time (though it runs in
time exponential in r, r is a CONSTANT).
Theorem: Suppose a set A of objects (with corresponding sizes and
values), a knapsack size L and constant r are given.
Then the knapsack algorithm outputs a subset A′, with size(A′) ≤
L, such that value(A′) ≥ (1− 1

r)∗ optimal.
Proof: Consider any optimal subset A′′ of A.
Let Sj be a subset of r elements of A′′ with highest value (if A′′ has
size < r, then Sj = A′′).
Thus we have (using the Lemma above),
value(A′) ≥ value(Sj ∪ Bj) ≥ value(Sj) + [value(A′′ − Sj) −
max {value(a) : a ∈ A′′ − Sj}].
Since, for all a ∈ A′′ − Sj, for all a

′ ∈ Sj, value(a) ≤ value(a′):

max {value(a) : a ∈ A′′ − Sj} ≤
value(Sj)

r ≤ value(A′′)
r .

Thus,

value(A′) ≥ value(A′′)− value(A′′)
r ≥ (1− 1

r) ∗ value(A
′′). QED



Traveling Salesman

Can every NP-hard optimization problem be approximated within
a constant multiplicative factor?
The answer is no (assuming P 6= NP ). For this we consider the
Traveling Salesman problem.
Suppose by way of contradiction that P 6= NP , and we have an
algorithm to approximate the traveling salesman problem within a
factor of k (where k is a constant).
That is, given a weighted graph G = (V,E), (with weight of an
edge e given by wt(e)), the algorithm can, in polynomial time, give
a tour (simple circuit going through all the vertices of G) C of all
the vertices in G, such that wt(C) ≤ k∗opt, where opt is the weight
of the optimal tour.
We then show how to solve Hamiltonian circuit problem in polyno-
mial time. (This will lead to a contradiction).



Suppose an unweighted graph G = (V,E) is given.
Form a weighted graph G′ as follows.
G′ has all the edges, with wt(e) = 1, if e ∈ E, and wt(e) = (k+1)n,
if e 6∈ E.
Note that,
G has a Hamiltonian circuit iff
G′ has a tour of weight ≤ n iff
G′ has a tour of weight ≤ k ∗ n.
Thus, G has Hamiltonian circuit iff the approximation algorithm for
Traveling Salesman problem gives (on input G′) a tour of weight at
most k ∗ n.
Since the above reduction can be done in polynomial time, along with
the polynomial time approximation algorithm for Traveling Sales-
man problem, we have a polynomial time algorithm for Hamiltonian
Circuit. A contradiction. QED



Traveling Salesman Problem with Triangular inequality

Suppose the weights of the edges of a graph G satisfy:
wt(u, v) + wt(v, w) ≥ wt(u,w) (triangular inequality).
Then one can, in polynomial time, find a tour C of G such that
wt(C) ≤ 2 ∗ wt(optimal tour).

The idea is as follows. Given a graph G, form the minimum weight
spanning tree of G. Note that this can be done in polynomial time.
Note that no tour of G has weight less than the weight of minimum
weight spanning tree.
Duplicate each edge in this spanning tree, forming a (non-simple)
graph G′, with each vertex having even degree.
Thus, graph G′ has an Euler circuit (which can be found in polyno-
mial time).
This circuit goes through all the vertices of G and has weight at
most twice the weight of the minimum spanning tree.



Now we can get a tour of weight at most the weight of the above
circuit, using the following lemma.

Lemma : Suppose a (not necessarily simple circuit) C is given which
goes through all vertices of G. Then one can construct a tour going
through all the vertices of G, which has weight no more than the
weight of C.
Proof: Use the following trick:
Suppose C = C1ue1ve2wC2, where v is a repeated vertex.
Form another circuit C ′ as follows:
C ′ = C1ue3wC2, where e3 is the edge between u and w. Note
that weight of C ′ is no more than the weight of C (due to triangle
inequality) and C ′ goes through all the vertices of G.
Repeating the process for all repeated vertices, gives us the lemma.
QED


