Circuits

- A circuit has input bits $x_{1}, x_{2}, \ldots, x_{n}$ of some string $x=x_{1} \ldots x_{n}$.
- It uses AND, OR and NOT gates.
- Each AND, OR gate has at most two inputs
- Notation: $C(x)=C\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Size $(\mathrm{C})=$ number of AND and OR gates
- Some times allow inputs $\neg x_{1}, \neg x_{2}, \ldots$..
- A Language L is decided by a family of circuits C_{0}, C_{1}, \ldots (where C_{n} takes n input bits x_{1}, \ldots, x_{n}) iff for all n, for all x with $|x|=n$, $x \in L$ iff $C_{n}(x)=1$
- $L \in \operatorname{Size}(S(n))$, if it is decided by a family C_{0}, C_{1}, \ldots where C_{n} has size $\leq S(n)$.

Theorem: Every language $L \in \operatorname{Size}\left(O\left(2^{n}\right)\right)$ proof: Size $\left(C_{0}\right) \leq 1$.
For C_{n+1}, note that $f\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)=$
$\left(x_{1}\right.$ AND $\left.f\left(1, x_{2}, \ldots, x_{n+1}\right)\right)$ OR
$\left(\left(\neg x_{1}\right)\right.$ AND $\left.f\left(0, x_{2}, \ldots, x_{n+1}\right)\right)$.

Thus, $\operatorname{Size}\left(C_{n+1}\right) \leq 3+2 * \operatorname{Size}\left(C_{n}\right)$
Thus, $\operatorname{Size}\left(C_{n}\right) \leq 2 * 2^{n+1}-3$, satisfies the constraints.

P/poly

For L to be in $\mathbf{P} /$ poly, means it is accepted in Poly time by some machine M with advice/help of length at most poly-size in the length of the input. This help is same for all strings of the same length, but can be different for strings of different length. Formally:

- There is a two input TM M, which runs in poly-time
- For each length n, have advice string A_{n} (length bounded by polynomial in n).
- The polynomials are fixed for each L (independent of input x).
- $\quad x$ in L iff $M\left(x, A_{|x|}\right)$ accepts.

Theorem: L in $P /$ poly iff L can be decided by a polynomial size circuit
Proof: If L can be decided by polynomial size circuit, then using the coding of the circuit as advice to TM, one can decide L.

Now suppose L in $\mathrm{P} /$ poly (via M and A_{n}). Construct a circuit as follows:
On input x, we additionally have "fixed" bits of advice $A_{|x|}$. Then, we can consider calculating $T_{0}\left(x, A_{|x|}\right), T_{1}\left(x, A_{x}\right), \ldots$ where $T_{i}\left(x, A_{|x|}\right)$ is the configuration of the TM after i steps of computation.

Initial configuration $T_{0}\left(x, A_{|x|}\right)$ is easy to describe. Using poly-size circuit one can calculate $T_{i+1}\left(x, A_{|x|}\right)$ from $T_{i}\left(x, A_{|x|}\right)$.
From $T_{p(n)}\left(X, A_{|x|}\right)$ using poly-size circuit one can calculate the answer.
So summing up the above circuit sizes, in total a polynomial size circuit can decide L.

Note that $\mathbf{P} /$ poly is not contained in \mathbf{P} or even
DTIME($\left.2^{2^{2^{2^{n}}}}\right)$
Think of a language which depends only on the input size and ...!

Is $N P \subseteq \mathbf{P} /$ poly? Unlikely.
Theorem: If $N P \subseteq \mathbf{P} /$ poly, then $P H \subseteq \Sigma_{2}^{p}$.
We will show that if $N P \subseteq \mathbf{P} /$ poly, then $\Pi_{2}^{p} \subseteq \Sigma_{2}^{p}$.
First suppose $N P \subseteq \mathbf{P} /$ poly, then for the languages $L \in N P$, we can find the " y " in $(\exists y)[P(x, y)]$ as in the characterization of NP, using poly size circuits. For this, one can do as follows:
Suppose $x \in L$ iff $(\exists y:|y|=p(|x|))[P(x, y)]$.
Let $L^{\prime}=\left\{\left(x, z \#^{p(|x|)-|z|}\right)\right.$: there exists $\left.z^{\prime}, P\left(x, z z^{\prime}\right)\right\}$.
Then, $L^{\prime} \in N P$, and thus in $\mathbf{P} /$ poly.
Let the above be witnessed by machine M. Now, using above M one can construct M^{\prime}, in $\mathrm{P} /$ poly, which on input x can iteratively find $y_{1}, y_{1} y_{2}, y_{1} y_{2} y_{3} \ldots$, $y_{1} y_{2} \ldots y_{p|x|}$, if such a y exists.

Now let $L \in \Pi_{2}^{p}$. Then
$x \in L$ iff $(\forall y)(\exists z)[Q(x, y, z)]$, where y, z are poly-size bounded with respect to $|x|$, and Q is a poly-time computable predicate.
Let $L^{\prime}=\{(x, y):(\exists z) Q(x, y, z)\}$.
Now, L^{\prime} is in $N P$. Thus, there is a poly-size circuit which
computes z from (x, y).
Now, $x \in L$ iff $\exists C$ of size polynomial in length of x, such that for all $y, Q(x, y, C(x, y))$, where length of y and C are polynomially bounded.
Thus, $L \in \Sigma_{2}^{p}$.

BPP

Theorem: $B P P \subseteq P /$ poly
Proof: If L in $B P P$, then there is an algorithm $A(x, r)(|r|$ polynomial in $|x|$) which outputs correct value for $L(x)$ with probability at least $1-\frac{1}{2^{|x|+2}}$.
Thus, for any particular length n, for at least $3 / 4$-th of the corresponding possible r of length polynomial in n, for all x, $A(x, r)$ gives the correct answer.
Thus, we can use such r as the help bits!

