
For definition of complexity notions, we assume the model of Turing
Machine with multiple, but fixed, number of tapes.

Time Complexity

T imeM (x): Time used by a machine M on input x before halting
(if M does not halt on input x, then T imeM(x) = ∞).

M is T (n) time bounded, if for any input x of length n, T imeM(x) ≤
T (n).
We usually assume T (n) ≥ n.



Space Complexity

Read only input tape.
SpaceM (x): maximum number of cells touched by the M , on input
x, on any of its worktapes (input tape is not counted; in many cases
output tape is also not counted, which is then one-way write only
tape).
End markers for input: $x$

If the machine does not halt on an input, then SpaceM (x) is taken
to be infinite.

M is S(n) space bounded, if for any input x of length n, SpaceM (x) ≤
S(n).



Tape Compression

Theorem: Fix c > 0. If a language L is accepted by a machine
M , with k tapes, that is S(n) space bounded, then L is accepted by
a machine M ′, with k tapes, that is ⌈cS(n)⌉ space bounded.
Proof:
Suppose M is S(n) space bounded and accepts L.
Construct M ′, which simulates M but uses less space.

Each cell of a worktape of M ′ codes m cells of the corresponding
tape of M . (This increases the alphabet size used by M ′, but that
is ok.)

Simulation: finite control of M ′ keeps track of which of the m cells
represented by the presently scanned cell of the tape(s) of M ′ is
actually being scanned by M . M ′ accepts an input iff M does.



Space used by M ′ on input x is:

⌈SpaceM(x)
m ⌉

Take m > 1
c.

Thus, space used is at most
⌈c ∗ SpaceM (x)⌉



Linear Speedup

Theorem: Fix c > 0. Suppose L is accepted by a machineM , with
k ≥ 2 tapes, that is T (n) time bounded, where limn→∞ T (n)/n =
∞. Then L is also accepted by a machine M ′ that is ⌈cT (n)⌉ time
bounded.
Proof:
We use a similar coding as in the tape compression theorem except
that we code the input tape also.



Initialization:

First copy the input tape into one of the working tapes, coding it
along the way (m cells to one).

Reset the head of this working tape to the beginning.

From now on use the above working tape as input tape, and the
input tape as a work tape in the simulation below.
(Do not need to reset the head of input tape! — just mark a special
symbol on the tape denoting the new beginning of the tape).



In one “basic step” M ′ will simulate several steps of M . One basic
step of M ′ consists of
1. reading the cells scanned by the heads of M ′ (let us call them
home cells);
2. reading the cells to the left and right of the home cells of each
tape;
3. determine the contents of the home cells and the cells to the left
and right (for each tape) when a head of M first leaves the cells
represented by the corresponding region
4. Updating the home cells and the cells to the left and right of
home cells;
5. Repositioning the heads of M ′ to the new home cells.

If during the process of a basic step,M accepts, thenM ′ also accepts.



In one basic step M ′ has simulated at least m steps of M since it
takes at least that much time for any head of M to leave the region
represented by the home cells and the cells to their left and right.

Step 3 can be done in the logic ofM ′ and thus can be done instantly.

Thus only need to count the steps needed to visit the respective cells
to read/write and repositioning the home cells. This is ≤ 8.

Thus in 8 time steps of M ′ we can simulate m time steps of M .

Thus the total time used by M ′ for the simulation of M on input x
of length n is

≤ n + ⌈ nm⌉ + 8⌈T (n)m ⌉ ≤ n + n
m + 8T (n)

m + 9.



We need to pick m such that

n +
n

m
+
8T (n)

m
+ 9 ≤ cT (n)

Need to worry only about large enough n (smaller values of n can
be easily taken care of).
Without loss of generality assume 0 < c < 1.
Pick m > 40/c. Then,

8T (n)

m
≤ cT (n)/4

Since limn→∞ T (n)/n = ∞, for large enough n,

9 ≤ n/m ≤ n ≤
cT (n)

4
,

Thus, for large enough n, time complexity of M ′ is bounded by
⌈cT (n)⌉.



We really do not need limn→∞
T (n)
n = ∞ to get the linear speed

up. We can get the speed up as long as we can find m such that

n + ⌈
n

m
⌉ + 8⌈

T (n)

m
⌉ ≤ cT (n)

Corollary: Fix c > 0. Suppose L is accepted by a machine M ,
with k ≥ 2 tapes, that is d ∗ n time bounded, for some constant
d. Then L is also accepted by a machine M ′ that is (1 + c)n time
bounded.
Proof: In the simulation, choose m > max(24d/c, 3/c).



Arbitrarily difficult problems

Suppose we are given a total recursive function f .
We want to construct a recursive function g such that no f (n) time
bounded machine can compute g.
Define g as follows:

g(x)

1. Simulate Mx, on input x.
2. If Mx does not halt within f (|x|) steps, then output 0.
3. Otherwise output something different from the output of
Mx(x). (say Mx(x) + 1).

End



Claim: g cannot be computed correctly by any f (n) time bounded
machine.
Proof: Suppose by way of contradiction machine My does so.
Consider My(y).
If My(y) halts within f (|y|) steps, then by construction of g, g(y) 6=
My(y).
IfMy(y) does not halt within f (|y|) steps, thenMy is not f (n) time
bounded.



Blum Complexity Measure

A complexity measure Φ is called a Blum Complexity measure iff
Φ(x, y) is a partial recursive function in x and y and
(A1) ϕx(y)↓ ⇔ Φ(x, y)↓.
(A2) The predicate ‘Φ(x, y) ≤ z?’ is recursive in x, y, z.
We usually write Φx(y) for Φ(x, y).
Note that most complexity measures such as time and (modified)
space complexity measures are Blum complexity measures.



DSPACE, DTIME, NSPACE, NTIME

DSPACE(S(n)) = {L : some S(n) space bounded deterministic
machine accepts L }.

DTIME(T (n)) = {L : some T (n) time bounded deterministic
machine accepts L}.

NSPACE(S(n)) = {L : some S(n) space bounded nondetermin-
istic machine accepts L}.

NTIME(T (n)) = {L : some T (n) time bounded nondeterministic
machine accepts L}.

We can similarly define the classes for function computation.



Space/Time constructible functions

A function S(n) is said to be space constructible if there exists a
S(n) space bounded Turing machine M such that, for every n, M
uses space exactly S(n) for some input of length n.

A function T (n) is said to be time constructible if there exists a
T (n) time bounded Turing machine M such that, for every n, M
uses time exactly T (n) for some input of length n.

A function S(n) is said to be fully space constructible if there exists
a S(n) space bounded Turing machine M such that, on all inputs
of length n, it uses space exactly S(n).

A function T (n) is said to be fully time constructible if there exists
a T (n) time bounded Turing machine M such that, on every input
of length n, it halts and uses time exactly T (n).


