For definition of complexity notions, we assume the model of Turing Machine with multiple, but fixed, number of tapes.

Time Complexity
$\operatorname{Time}_{M}(x)$: Time used by a machine M on input x before halting (if M does not halt on input x, then $\operatorname{Time}_{M}(x)=\infty$).
M is $T(n)$ time bounded, if for any input x of length $n, \operatorname{Time}_{M}(x) \leq$ $T(n)$.
We usually assume $T(n) \geq n$.

Space Complexity

Read only input tape.
Space $_{M}(x)$: maximum number of cells touched by the M, on input x, on any of its worktapes (input tape is not counted; in many cases output tape is also not counted, which is then one-way write only tape).
End markers for input: $\$ \mathrm{x} \$$
If the machine does not halt on an input, then $\operatorname{Space}_{M}(x)$ is taken to be infinite.
M is $S(n)$ space bounded, if for any input x of length $n, \operatorname{Space}_{M}(x) \leq$ $S(n)$.

Tape Compression
Theorem: Fix $c>0$. If a language L is accepted by a machine M, with k tapes, that is $S(n)$ space bounded, then L is accepted by a machine M^{\prime}, with k tapes, that is $\lceil c S(n)\rceil$ space bounded. Proof:
Suppose M is $S(n)$ space bounded and accepts L.
Construct M^{\prime}, which simulates M but uses less space.
Each cell of a worktape of M^{\prime} codes m cells of the corresponding tape of M. (This increases the alphabet size used by M^{\prime}, but that is ok.)

Simulation: finite control of M^{\prime} keeps track of which of the m cells represented by the presently scanned cell of the tape(s) of M^{\prime} is actually being scanned by $M . M^{\prime}$ accepts an input iff M does.

Space used by M^{\prime} on input x is:

$$
\left\lceil\frac{\operatorname{Space}_{M}(x)}{m}\right\rceil
$$

Take $m>\frac{1}{c}$.
Thus, space used is at most
$\left\lceil c * \operatorname{Space}_{M}(x)\right\rceil$

Linear Speedup

Theorem: Fix $c>0$. Suppose L is accepted by a machine M, with $k \geq 2$ tapes, that is $T(n)$ time bounded, where $\lim _{n \rightarrow \infty} T(n) / n=$ ∞. Then L is also accepted by a machine M^{\prime} that is $\lceil c T(n)\rceil$ time bounded.
Proof:
We use a similar coding as in the tape compression theorem except that we code the input tape also.

Initialization:
First copy the input tape into one of the working tapes, coding it along the way (m cells to one).

Reset the head of this working tape to the beginning.
From now on use the above working tape as input tape, and the input tape as a work tape in the simulation below.
(Do not need to reset the head of input tape! - just mark a special symbol on the tape denoting the new beginning of the tape).

In one "basic step" M^{\prime} will simulate several steps of M. One basic step of M^{\prime} consists of

1. reading the cells scanned by the heads of M^{\prime} (let us call them home cells);
2. reading the cells to the left and right of the home cells of each tape;
3. determine the contents of the home cells and the cells to the left and right (for each tape) when a head of M first leaves the cells represented by the corresponding region
4. Updating the home cells and the cells to the left and right of home cells;
5. Repositioning the heads of M^{\prime} to the new home cells.

If during the process of a basic step, M accepts, then M^{\prime} also accepts.

In one basic step M^{\prime} has simulated at least m steps of M since it takes at least that much time for any head of M to leave the region represented by the home cells and the cells to their left and right.

Step 3 can be done in the logic of M^{\prime} and thus can be done instantly.
Thus only need to count the steps needed to visit the respective cells to read/write and repositioning the home cells. This is ≤ 8.

Thus in 8 time steps of M^{\prime} we can simulate m time steps of M.
Thus the total time used by M^{\prime} for the simulation of M on input x of length n is
$\leq n+\left\lceil\frac{n}{m}\right\rceil+8\left\lceil\frac{T(n)}{m}\right\rceil \leq n+\frac{n}{m}+\frac{8 T(n)}{m}+9$.

We need to pick m such that

$$
n+\frac{n}{m}+\frac{8 T(n)}{m}+9 \leq c T(n)
$$

Need to worry only about large enough n (smaller values of n can be easily taken care of).
Without loss of generality assume $0<c<1$.
Pick $m>40 / c$. Then,

$$
\frac{8 T(n)}{m} \leq c T(n) / 4
$$

Since $\lim _{n \rightarrow \infty} T(n) / n=\infty$, for large enough n,

$$
9 \leq n / m \leq n \leq \frac{c T(n)}{4}
$$

Thus, for large enough n, time complexity of M^{\prime} is bounded by $\lceil c T(n)\rceil$.

We really do not need $\lim _{n \rightarrow \infty} \frac{T(n)}{n}=\infty$ to get the linear speed up. We can get the speed up as long as we can find m such that

$$
n+\left\lceil\frac{n}{m}\right\rceil+8\left\lceil\frac{T(n)}{m}\right\rceil \leq c T(n)
$$

Corollary: Fix $c>0$. Suppose L is accepted by a machine M, with $k \geq 2$ tapes, that is $d * n$ time bounded, for some constant d. Then L is also accepted by a machine M^{\prime} that is $(1+c) n$ time bounded.
Proof: In the simulation, choose $m>\max (24 d / c, 3 / c)$.

Arbitrarily difficult problems
Suppose we are given a total recursive function f.
We want to construct a recursive function g such that no $f(n)$ time bounded machine can compute g.
Define g as follows:
$g(x)$

1. Simulate M_{x}, on input x.
2. If M_{x} does not halt within $f(|x|)$ steps, then output 0 .
3. Otherwise output something different from the output of $M_{x}(x) .\left(\right.$ say $\left.M_{x}(x)+1\right)$.
End

Claim: g cannot be computed correctly by any $f(n)$ time bounded machine.
Proof: Suppose by way of contradiction machine M_{y} does so.
Consider $M_{y}(y)$.
If $M_{y}(y)$ halts within $f(|y|)$ steps, then by construction of $g, g(y) \neq$ $M_{y}(y)$.
If $M_{y}(y)$ does not halt within $f(|y|)$ steps, then M_{y} is not $f(n)$ time bounded.

Blum Complexity Measure

A complexity measure Φ is called a Blum Complexity measure iff $\Phi(x, y)$ is a partial recursive function in x and y and (A1) $\varphi_{x}(y) \downarrow \Leftrightarrow \Phi(x, y) \downarrow$.
(A2) The predicate ' $\Phi(x, y) \leq z$?' is recursive in x, y, z.
We usually write $\Phi_{x}(y)$ for $\Phi(x, y)$.
Note that most complexity measures such as time and (modified) space complexity measures are Blum complexity measures.

DSPACE, DTIME, NSPACE, NTIME

$D S P A C E(S(n))=\{L$: some $S(n)$ space bounded deterministic machine accepts $L\}$.
$\operatorname{DTIME}(T(n))=\{L$: some $T(n)$ time bounded deterministic machine accepts $L\}$.
$N S P A C E(S(n))=\{L$: some $S(n)$ space bounded nondeterministic machine accepts $L\}$.
$\operatorname{NTIME}(T(n))=\{L$: some $T(n)$ time bounded nondeterministic machine accepts $L\}$.

We can similarly define the classes for function computation.

Space/Time constructible functions
A function $S(n)$ is said to be space constructible if there exists a $S(n)$ space bounded Turing machine M such that, for every n, M uses space exactly $S(n)$ for some input of length n.

A function $T(n)$ is said to be time constructible if there exists a $T(n)$ time bounded Turing machine M such that, for every n, M uses time exactly $T(n)$ for some input of length n.

A function $S(n)$ is said to be fully space constructible if there exists a $S(n)$ space bounded Turing machine M such that, on all inputs of length n, it uses space exactly $S(n)$.

A function $T(n)$ is said to be fully time constructible if there exists a $T(n)$ time bounded Turing machine M such that, on every input of length n, it halts and uses time exactly $T(n)$.

