
Q1a. False. By linear speedup theorem as 600n5 + 600 is bounded by 600 ∗ (5n5 + 5).

Q1b. False. As H(n) is bounded by log log log n, for large enough n. We have shown in class
that DSPACE(1) = DSPACE(log log log n).

Q1c. True.

Consider any language L. Size(C0) ≤ 1.

For Cn+1, note that L(x1, x2, . . . , xn+1) =

(x1 AND L(1, x2, . . . , xn+1)) OR

((¬x1) AND L(0, x2, . . . , xn+1)).

Thus, Size(Cn+1) ≤ 3 + Size(Cn)

Thus, Size(Cn) ≤ 3n+ 1.

Q1d. True. Algorithm for this would just consider all possible sets U of at most five variables,
and check if all the clauses are satisfied if only the variables in U are set to be true, and all other
variables are set to be false. If any of these gives that all clauses are satisfied, then answer
YES. Otherwise answer NO. It is polynomial time algorithm as the number of possibile sets U
considered above is at most O(n5), where n is the number of variables.

Q2. Let

T1(0) = T2(0) = 1.

T1(2i+ 1) = 2T1(2i), T1(2i+ 2) = 2T2(2i+2),

T2(2i+ 1) = 2T1(2i+1) and T2(2i+ 2) = 2T2(2i+1).

Now, similar to time-hierarchy theorem, as limi→∞
T1(2i+1)∗log T1(2i+1)

T2(2i+1)
= 0, we have a language

which is in DTIME(T2(·)) − DTIME(T1(·)). Similarly, as limi→∞
T2(2i+2)∗log T2(2i+2)

T1(2i+2)
= 0, we

have a language which is in DTIME(T1(·))−DTIME(T2(·)).

Q3. It is easy to see that the problem is in NP by just guessing the mapping h, and then
verifying that it satisfies the property mentioned in QUESTION, for all u ∈ V , h(u) = min(N−
{h(w) : (u,w) ∈ E}).

To see NP-hardness, we reduce 3-SAT to the problem.

Suppose (U,C) is the 3-SAT instance where U is the set of variables and C is the set of
clauses. Below is the construction of the instance of the given problem.

For each u ∈ U , form four vertices au, bu, cu, du, with edges (au, bu), (bu, cu), (cu, du), (du, au).
Let au represent u and bu represent u. There will not be any other edges with tail in the above
vertices. Thus, the only possible way for h to do the mapping would be, h(au) = h(cu) = 1 and
h(bu) = h(du) = 0 or h(au) = h(cu) = 0 and h(bu) = h(du) = 1. Intuitively, h(au) = 1 will
represent that u is true.

For each clause c ∈ C, form three vertices ec, fc, gc. Then, we have the edges (ec, fc), (fc, gc), (gc, ec).
Additionally, we have the edges, (ec, au), if u is a literal in the clause c, and (ec, bu), if u is a



literal in the clause c.

To see that the above works, suppose the 3-SAT problem is satisfiable. Then let h(au) =
h(cu) = 1, h(bu) = h(du) = 0 if u is true (and correspondingly h(au) = h(cu) = 0, h(bu) =
h(du) = 1 if u is false). Let h(ec) = 2, h(gc) = 0 and h(fc) = 1 for all c. Note that this is
consistent as at least one of the tail ends of edges starting in ec ends in a vertex with h value 0.

On the other hand, suppose we have a h as claimed for the instance. Then, we claim that
having u to be true iff h(au) = 1 gives us a satisfying assignment. For this, note that gc and fc
get h value 0 and 1 (or vice versa) as they have only one edge going out of them. Thus, ec should
get h value at least 2 (it will be exactly 2). But this implies that h(gc) = 0 and h(fc) = 1. But
then at least one of the edges starting from ec should end up in a vertex with h value 0, giving
us the literal which is true.

Q4. (a) To show that the algorithm runs in polynomial time, it is sufficient to show that the
number of elements in any Xj is bounded by a polynomial in n and logK. To see this, note that
each subsequent element added in Xj in REDUCE(X ′j) has value ratio with the previous item
added by at least 1/(1 − δ/n). As the maxium value of the sets in Xj is at most K, the total
number of items in Xj is bounded by − lnK

ln(1−δ/n) , which is bounded by n lnK
δ

.

(b) Let Pj denote the set of all subsets Y of {1, 2, . . . , j} such that V al(Y ) ≤ K.

By induction on j, we claim that, for each Y ∈ Pj, there exists a Y ′ ∈ Xj such that
V al(Y ) ≥ V al(Y ′) ≥ (1− δ/n)jV al(Y ).

Above is clearly true for j = 0.

Suppose this holds for j = i. Then, we show it for j = i+ 1.

Let Y ∈ Pi+1 be given. Let Z = Y ∩ {1, 2, . . . , i}.

Let Z ′ ∈ Xi be such that V al(Z) ≥ V al(Z ′) ≥ (1− δ/n)iV al(Z).

If Y = Z, then let Z ′′ = Z ′. Otherwise, Y = Z ∪ {i + 1}, and let Z ′′ = Z ′ ∪ {i + 1}. Note
that Z ′′ ∈ X ′i+1 as constructed in the algorithm, and V al(Y ) ≥ V al(Z ′′) ≥ (1− δ/n)iV al(Y ).

Now, if Z ′′ ∈ Xi+1, then we are done. Else, by construction there exists a Y ′ ∈ Xi+1 such
that V al(Z ′′) ≥ V al(Y ′) ≥ (1− δ/n)V al(Z ′′) (otherwise Z ′′ would have been placed in Xi+1). It
follows that V al(Y ) ≥ V al(Z ′′) ≥ V al(Y ′) ≥ (1− δ/n)V al(Z ′′) ≥ V al(Y )(1− δ/n)(1− δ/n)i.

Thus, we have that the answer given by the algorithm has value at least (1−δ/n)n of optimal
value. As (1− δ/n)n ≥ (1− δ), we are done.

Q5.

First boost the probabilities so that the error probability is below 2−|x|, where x is the input.

Without loss of generality assume that V tosses all its coins in the beginning (as the coins
are private). Let us call these coin tosses z, which is of length say p(|x|).

Now, similar to the proof ofBPP ⊆ Σp
2, one can show that there exists sequence (y1, y2, . . . , yq(|x|)),

where yi is of length p(|x|) such that:

(a) If x ∈ L, then for all z, there exists a k such that the coin tosses z ⊕ yk leads V to
acceptance.

2



(b) If x 6∈ L, then for any sequence (y′1, y
′
2, . . . , y

′
q(|x|)): at most 0.4 fraction of the z satisfy

that for some k, coin tosses z ⊕ y′k leads to acceptance.

Thus, one can use the protocol that initially the prover provides (y1, y2, . . . , yq(|x|)) to the
verifier. Then the verifier proceeds to toss the coins z, and does the original protocol for the coin
tosses corresponding to yi ⊕ z, for 1 ≤ i ≤ q(|x|), and accepts iff at least one of these leads to
acceptance.

3


