
Borodin’s Gap Theorem

In space/time hierarchy we showed that having “little” extra space
or time allows us to compute “more” functions/decide more lan-
guages. However we needed the requirement that time/space bounds
be “fully constructible”. Can we get rid of this requirement?

Not in general!

Theorem (Borodin): Suppose h is a recursive function such that
h(n) ≥ n. Then there exists an increasing recursive function g such
that, DTIME(g(n)) =DTIME(h(g(n)).
Similar Theorem applies for space.

Proof: Suppose Tk(n) denotes the maximum time taken by machine
k on any input of length n. Note that Tk(n) is partial recursive in
k and n.
We will construct a recursive function g such that, for each k, at
least one of the following holds.
(1) Tk(n) ≤ g(n) for all but finitely many n.
(2) Tk(n) > h(g(n)) for infinitely many n.
Thus no machine has time complexity between g(n) and h(g(n)) for
all but finitely many n.

Let g(0) = 1. Define g(n), for n ≥ 1 as follows.

g(n).

Search for a j > g(n−1) such that, for all y < n, [Ty(n) > h(j),
or Ty(n) < j].

When such a j is found let g(n) = j.

First note that such a j must exist (note that j = 1+max({Ty(n) :
y ≤ n and Ty(n) <∞}) satisfies the constraints).
Claim: For every k, g satisfies at least one of (1) and (2) above.
Suppose k is given. By construction, for all n > k, Tk(n) < g(n)
or Tk(n) > h(g(n)). Thus, either there are infinitely many n such
that Tk(n) > h(g(n)), or, for all but finitely many n, Tk(n) < g(n).
Thus either (1) or (2) must hold.

Now, DTIME(g(n)) ⊆ DTIME(h(g(n))), since h(g(n)) ≥ g(n).
Suppose L is a language in DTIME(h(g(n))), as witnessed by ma-
chine Mk. Then for all but finitely many n, Tk(n) ≤ g(n) (since (2)
is not true, (1) must be true!).
Thus Lmust also be in DTIME(g(n)) (finitely many inputs on which
Mk took more time can be patched). QED

Intuitively what the gap theorem says is that for certain g(n) time
bounded computations, it does not matter if we even allowed h(g(n))
time!

For example if h(n) = 2n, then at g(n) even allowing exponentially
more time does not help. Contrast this with the time hierarchy
theorem where we showed that if T (n) is fully time constructible
then even slightly more than extra logarithmic factors increases what
one can accept.
Ofcourse h(g(.)) in the above theorem cannot be fully time con-
structible.

Space below loglog n

Theorem: Suppose space complexity of M is not bounded by a
constant for strings which M accepts.
That is, for every i, there exists an input x accepted byM , on which
M uses space at least i.
Then, there exists a constant c such that, for infinitely many n, M
uses space at least c log log n, on some input of length n.
Proof: We will show:
There exist infinitely many i such that, M uses space at least i

on some input (accepted by M) of length at most 22
c′i
, for some

constant c′.

Crossing Sequence:
sequence of (state, work tape contents/head positions, input head
move direction), each time the head crosses the boundary between
two input cells.

Proposition: Suppose y = y1y2 and x = x1x2. Suppose M accepts
by moving to the right end of the input. Consider the crossing
sequence of M at the boundaries of the cells, for inputs y and x

respectively. Suppose M accepts x and the crossing sequence is
identical at the boundary of y1 and y2 to that of x1 and x2. Then
M also accepts y1x2.

Let s be number of states of M , r the alphabet size, and k the
number of work tapes.
Consider i such that M uses space i on some input and accepts.
Let y be shortest such string.
Since M accepts y, no ID is repeated.
Thus, at any boundary, no component in the crossing sequence is
repeated.
Thus the number of possible crossing sequences is at most factorial(1+
2 ∗ s ∗ ik ∗ rik)
As crossing sequence at different boundaries are different, we have:

|y| ≤ factorial(1 + 2 ∗ s ∗ ik ∗ rik) ≤ factorial(2c
′′i) ≤ 22

c′i
,

for some constants c′, c′′.
QED

Theorem: Consider the following language L = {1k01n : k, n ≥ 2
and n is divisible by each c ≤ k}. Then L ∈ DSPACE(log log n).
Proof: Consider the following M . M rejects any input not of the
form 1k01n, for some k and n ≥ 2.
M then works as follows.

1. c← 1.

(* c is a counter and is kept in first work tape *)

Loop

2. Check whether n is divisible by c.

3. If n is divisible by c then let c← c+1 and go to next iteration
of the loop.

4. If n is not divisible by c, Then check whether c > k. If so
accept. Otherwise reject.

Forever

One can implement step 2 above as follows:
(a) Place the input head at the beginning of 1n.
(b) Copy c to work tape 2 (call the counter in tape 2, c′).
(c) Go on decrementing c′ on tape 2 and moving input head right
with each decrement until c′ becomes zero or end of 1n is reached.
If the end of 1n is reached before c′ becomes 0, then n is not divisible
by c. If head reaches end of 1n exactly when c′ becomes 0, then n

is divisble by c. If end of 1n is not reached when c′ becomes 0, then
go to (b).

Clearly, the language accepted by M above is L.

The space required by M can be bounded as follows.
Suppose r is the maximum value of c in the above computation. (i.e.
r is the least number such that n is not divisible by r).
Then the space needed by M is O(log r).
We know that n is divisble by all numbers smaller than r, and thus
all prime numbers smaller than r.
By the prime number theorem, for some constant c′, there are at
least c′ ∗ r

log r such prime numbers.

Thus n ≥ factorial(w) ≥ 2w, where w = Ω(r
log r).

Thus, n ≥ 2
Ω(r

log r), for large enough n.
Since space used is O(log r), space used is bounded by O(log log n)
and hence by O(log log(n + k + 1)).

