Definition: Linear hash function. Let D be a b X m Boolean matrix.

Let hp : {0, 13" — {0, 1}° be a linear function defined by hp(z) =
Dz (using mod 2 arithmetic).

For C' C {0,1} let h(C) ={h(x) :x € C}

Random linear hash function is obtained by choosing the matrix D
randomly.

Lemma: Let C' C {0,1}"" and ¢ = |2(“;’ <1
Let b : {0,1}" — {0,1}" be a random linear function and z be a
random element of {0, 1}°.

Then Prob(z € h(C)) > ¢ — (¢?/2).

Proof: Note that, for z # y, Prob(h(z) = h(y)) is 27° (as each bit
of h(x) agrees with the corresponding bit of h(y) with probability
1/2).

Thus, for a random z, probability that h(z) = h(y) = z, for two
distinct x, v is at most 2—2b

[t follows that Prob(z € h(C))
> Yy Prob(z = h(z)) — X, Prob(z = h(z) = h(y))

a_ (2), o
T 2CT Y

Theorem: NON-ISO is in AM.

Prootf: Assume GG and G5 do not have any nontrivial automorphism,
and each has n vertices.

The number of graphs which are isomorphic to atleast one of them

is n! or 2n! based on whether the graphs are isomorphic or not.
n

So if one chooses at random a graph among 2< 2> possible graphs,
(where n is the number of vertices in G', G9), then the probablity
of finding a graph which is isomorphic to one of G and G (call this
set ('), gives us a separation.)

n

2

However, n! is too small compared to 2(.

S0 one uses a random hash function from a binary string of length
(5’) to a string of length ¢ = [logy(n!)| + 2.
Now, for a random hash function A and a random z, the probability

that z is in A(C') is at most n!/27 if graphs are isomorphic and at
least 2(n!/24) — (2(n!/29))?/2 > 3(n'/2q) otherwise.

Thus, the verifier can send the prover a random hash function h and
a random z, and ask prover to provide a graph G which is isomorphic
to one of GG1 and Gy (along with a proof) such that h(G) = z.

The probability that the prover passes this test 1s at least 3 2q7

if the graphs are non-isomorphic and at most 45 1f the graphs are
i1so-morphic.

This probability can be modified to satisfy the requirements of AM
protocol.

To get around automorphism problem, use (G, p), where p is sup-
posed to give an automorphism of G.

Corollary: If graph isomorphism problem is NP-complete then PH
collapses!

