
Definition: Linear hash function. Let D be a b×m Boolean matrix.

Let hD : {0, 1}m → {0, 1}b be a linear function defined by hD(x) =
Dx (using mod 2 arithmetic).
For C ⊆ {0, 1}m, let h(C) = {h(x) : x ∈ C}

Random linear hash function is obtained by choosing the matrix D
randomly.



Lemma: Let C ⊆ {0, 1}m and c = |C|
2b

≤ 1.

Let h : {0, 1}m → {0, 1}b be a random linear function and z be a
random element of {0, 1}b.
Then Prob(z ∈ h(C)) ≥ c− (c2/2).

Proof: Note that, for x 6= y, Prob(h(x) = h(y)) is 2−b (as each bit
of h(x) agrees with the corresponding bit of h(y) with probability
1/2).
Thus, for a random z, probability that h(x) = h(y) = z, for two
distinct x, y is at most 2−2b.
It follows that Prob(z ∈ h(C))
≥ ΣxProb(z = h(x))− Σx 6=yProb(z = h(x) = h(y))

≥ |C|
2b

−







|C|
2







22b
≥ c− c2

2 .



Theorem: NON-ISO is in AM.
Proof: AssumeG1 andG2 do not have any nontrivial automorphism,
and each has n vertices.
The number of graphs which are isomorphic to atleast one of them
is n! or 2n! based on whether the graphs are isomorphic or not.

So if one chooses at random a graph among 2





n
2





possible graphs,
(where n is the number of vertices in G1, G2), then the probablity
of finding a graph which is isomorphic to one of G1 and G2 (call this
set C), gives us a separation.

However, n! is too small compared to 2





n
2





.



So one uses a random hash function from a binary string of length




n
2



 to a string of length q = ⌈log2(n!)⌉ + 2.
Now, for a random hash function h and a random z, the probability
that z is in h(C) is at most n!/2q if graphs are isomorphic and at
least 2(n!/2q)− (2(n!/2q))2/2 ≥ 3

2(n!/2
q), otherwise.

Thus, the verifier can send the prover a random hash function h and
a random z, and ask prover to provide a graphG which is isomorphic
to one of G1 and G2 (along with a proof) such that h(G) = z.

The probability that the prover passes this test is at least 3
2 ∗

n!
2q ,

if the graphs are non-isomorphic and at most n!
2q if the graphs are

iso-morphic.
This probability can be modified to satisfy the requirements of AM
protocol.
To get around automorphism problem, use 〈G, p〉, where p is sup-
posed to give an automorphism of G.



Corollary: If graph isomorphism problem is NP-complete then PH
collapses!


