
Efficient Computations

P = {L : some poly time bounded deterministic Turing machine
accepts L}.

NP = {L : some poly time bounded nondeterministic Turing ma-
chine accepts L}.

coNP={L : L ∈ NP}.

P=NP?



Proposition: Suppose L ∈ NP.
Then there exists a (deterministic) polynomial time computable
predicate P (x, y), and a polynomial q(·) such that
x ∈ L iff (∃y : |y| ≤ q(|x|))[P (x, y)].

Proof: Suppose N is a q(n) time bounded NDTM accepting L.
Without loss of generality assume that N has exactly two choices in
each state.

P (x, y) is defined as follows.

Let y = y1y2 · · · ym.

If m > q(|x|) then reject.

Otherwise simulate N , where at step i, choose the next state
based on whether yi is 0 or 1.

P (x, y) is 1 iff N accepts in the above simulation.

Now, (∃y : |y| ≤ q(|x|))[P (x, y)] iff N (x) has an accepting path.



In the proposition one often calls y such that P (x, y) = 1 as a
“certificate” or “proof” that x ∈ L.
Thus one can consider NP as class of languages for which “proofs”
can be easily (in polynomial time) verified.



Reducibility

L1 ≤
p
m L2 (read: L1 is poly time, many-one, reducible to L2):

there exists poly time computable function f such that x ∈ L1 ⇔
f (x) ∈ L2.

L1 ≤
p
T L2 (read: L1 is poly time, Turing, reducible to L2):

there exists a polynomial time oracle Turing machine M , such that
the ML2 accepts L1.

L1 ≤
log space
m L2 (read: L1 is log-space many-one reducible to L2):

there exists a function f , which is computable by a log space bounded
Turing machine, such that x ∈ L1 ⇔ f (x) ∈ L2.



NP-completeness

A set L is said to be NP-complete iff
(1) L ∈ NP, and
(2) (∀L′ ∈NP)[L′ ≤p

m L].

If (2) is satisfied, then the problem is said to be NP-hard.
The interest in NP-complete problems arises from the fact that
many of the interesting combinatorial problems are NP-complete.



Some famous NP complete problems.

1. Satisfiability:
INSTANCE: A set U of variables and a collection C of clauses over
U .
QUESTION: Is there a satisfying truth assignment for C?

2. 3-Dimensional Matching:
INSTANCE: Three disjoint finite sets X,Y, Z, each of cardinality n,
and a set S ⊆ X × Y × Z.
QUESTION: Does S contain a matching? i.e. is there a subset
S′ ⊆ S such that card(S′) = n and no two elements of S′ agree in
any coordinate?



3. Vertex Cover:
INSTANCE: A graph G = (V,E) and a positive integer K ≤
card(V ).
QUESTION: Is there a vertex cover of size K or less for G? i.e. is
there a subset V ′ ⊆ V such that, card(V ′) ≤ K and for each edge
(u, v) ∈ E, at least one of u, v belongs to V ′?

4. MAX-CUT:
INSTANCE: An undirected graphG = (V,E), and a positive integer
K ≤ card(E).
QUESTION: Is there a cut of G with size > K? Here (X,Y ) is said
to be a cut of G, if (X,Y ) is a partition of V . That is, X ∩ Y = ∅
and X ∪Y = V . Size of a cut (X,Y ) of G, is card({(v, w) : v ∈ X

and w ∈ Y and (v, w) ∈ E}). That is, size of a cut (X,Y ) is the
number of edges in G which connect X and Y .



5. Clique:
INSTANCE: A graph G = (V,E) and a positive integer K ≤
card(V ).
QUESTION: Does G contain a clique of size K or more? i.e. is
there a subset V ′ ⊆ V , such that card(V ′) ≥ K, and for all distinct
u, v ∈ V ′, (u, v) ∈ E?

6. Hamiltonian Circuit:
INSTANCE: A graph G = (V,E)
QUESTION: Does G contain a Hamiltonian circuit? i.e. is there a
simple circuit which goes through all the vertices of G?



7. Partition:
INSTANCE: A finite set A and a size s(a) > 0, for each a ∈ A.
QUESTION: Is there a subset A′ of A such that ∑

a∈A′ s(a) =
∑

a∈A−A′ s(a)?

8. Set Cover:
INSTANCE: A finite set A, a collection {S1, S2, . . . , Sm} of subsets
of A, and a number k.
QUESTION: Is there a subset Y of {1, . . . ,m}, of size at most k,
such that A ⊆ ⋃

i∈Y Si.

9. Traveling Salesman Problem:
INSTANCE: A complete weighted graph G = (V,E), and a bound
B.
QUESTION: Is there a Hamiltonian circuit of weight ≤ B?



Satisfiability (SAT) is NP-complete

Theorem (Cook): Satisfiability is NP-complete.
Proof sketch:
SAT is in NP: guess a satisfying truth assigment TA, and then
verify by checking that each of the clauses has at least one true
literal.

To show: for any L in NP, L ≤p
m SAT .

Suppose L ∈ NP.
Let P be a polynomial time computable predicate such that
x ∈ L iff (∃y : |y| ≤ q(|x|))[P (x, y)].
Let M be p(n) time bounded machine which decides P (i.e. M

accepts on input x, y iff P (x, y) = 1).
Below we use n for |x|.
Wlog M uses two tapes, and initially the two inputs are on the 2
tapes (called input and guess tape).



Alphabet set of M : Σ = {a0, . . . , ar}, where a0 stands for “blank”.
States of M : Q = {q0, . . . , qs}, where q0 is starting state, q1 is the
accepting state and q2 is rejecting state.
We assume that once M reaches the accepting or rejecting state it
just loops in that state.

What we plan to do is mimic the computation of the machine from
time t = 0 (start) to time t = p(n).
The function f reducing L to satisfiability is as follows.
f (x = x1x2 · · · xn) = (U,G), where the set of variables U and the
set of clauses G is described below. It can be easily verified that
this reduction can be done by a polynomial time bounded Turing
machine.



Set of Variables, U

For 0 ≤ t ≤ p(n), we have the following variables in U .
Q[t, qi], for qi ∈ Q. Intuitively, Q[t, qi] being true will denote the
fact that at time t, M is in state qi.
H1[t, l], for 1 ≤ l ≤ p(n) + 1. Intuitively, H1[t, l] being true will
denote the fact that at time t, the head on first tape of M is at
location l.
H2[t, l], for 1 ≤ l ≤ p(n) + 1. Intuitively, H2[t, l] being true will
denote the fact that at time t, the head on second tape of M is at
location l.
C1[t, l, a], for 1 ≤ l ≤ p(n) + 1, a ∈ Σ. Intuitively, C1[t, l, a] being
true will denote the fact that at time t the contents of l-th cell in
the first tape is a.
C2[t, l, a], for 1 ≤ l ≤ p(n) + 1, a ∈ Σ. Intuitively, C2[t, l, a] being
true will denote the fact that at time t the contents of l-th cell in
the second tape is a.



Clauses

G consists of the following clauses divided in 6 groups for ease of
presentation/understanding.
1. Clauses for “exactly one state at time t”
For 0 ≤ t ≤ p(n), we have a clause
(Q[t, q0]

∨Q[t, q1]
∨ · · · ∨Q[t, qs])

(i.e. M is in at least one internal state at any time).
For 0 ≤ t ≤ p(n),
(¬Q[t, qi]

∨¬Q[t, qj]), for 0 ≤ i < j ≤ s.
(i.e. M is not in two internal states at the same time).
Note that the above set of clauses ensure that M is in exactly one
internal state at any time.



2. Clauses for “head at exactly one position at time t”
For 0 ≤ t ≤ p(n)), For 1 ≤ i < j ≤ p(n) + 1, we have the clauses,

(H1[t, 1]
∨H1[t, 2]

∨ · · · ∨H1[t, p(n) + 1]),

(¬H1[t, i]
∨¬H1[t, j]),

(H2[t, 1]
∨H2[t, 2]

∨ · · · ∨H2[t, p(n) + 1]), and

(¬H2[t, i]
∨¬H2[t, j]).

3. Clauses for “exactly one symbol at time t in a cell”
For 0 ≤ t ≤ p(n), for 1 ≤ l ≤ p(n) + 1, 0 ≤ i < j ≤ r, we have the
clauses,

(C1[t, l, a0]
∨C1[t, l, a1]

∨ · · · ∨C1[t, l, ar]),

(¬C1[t, l, ai]
∨¬C1[t, l, aj]),

(C2[t, l, a0]
∨C2[t, l, a1]

∨ · · · ∨C2[t, l, ar]),

(¬C2[t, l, ai]
∨¬C2[t, l, aj]),



4. Clauses for initial state

(Q[0, q0]),

(H1[0, 1]), (H2[0, 1]),

(C1[0, 1, x1]), . . . (C1[0, n, xn]), (C1[0, n+1, a0]), . . ., (C1[0, p(n), a0]).

(C2[0, q(n) + 1, a0]), . . ., (C2[0, p(n), a0]).

(C2[0, l + 1, a0]
∨¬C2[0, l, a0]), for 1 ≤ l < q(n) (to disallow

blanks in “y”).

Note that we have not specified the value of y in the guess tape!
This allows any arbitrary initial content of guess tape, with length
at most q(n).

5. Clause for final state
(Q[p(n), q1]).



6. Clauses for orderly transition
First we need to make sure that symbols do not change at locations
where the head is not there.
For 0 ≤ t < p(n) and 1 ≤ l ≤ p(n) + 1, we have the clauses,

(H1[t, l]
∨C1[t, l, a]

∨¬C1[t + 1, l, a]), for a ∈ Σ.

(H2[t, l]
∨C2[t, l, a]

∨¬C2[t + 1, l, a]), for a ∈ Σ.



Now we give the clauses which ensure the transition based on the
transition table of M .
Suppose (q, a, b, q′, a′, b′,m1,m2) is an entry in the transition table
of M .
Then we have the following clauses.
For 0 ≤ t < p(n), 1 ≤ j, j′ ≤ p(n).

(¬H1[t, j]
∨¬H2[t, j

′]∨¬Q[t, q]∨¬C1[t, j, a]
∨¬C2[t, j

′, b]∨Q[t+1, q′])

(¬H1[t, j]
∨¬H2[t, j

′]∨¬Q[t, q]∨¬C1[t, j, a]
∨¬C2[t, j

′, b]∨H1[t +
1, j +m1])

(¬H1[t, j]
∨¬H2[t, j

′]∨¬Q[t, q]∨¬C1[t, j, a]
∨¬C2[t, j

′, b]∨H2[t +
1, j′ +m2])

(¬H1[t, j]
∨¬H2[t, j

′]∨¬Q[t, q]∨¬C1[t, j, a]
∨¬C2[t, j

′, b]∨C1[t+1, j, a
′])

(¬H1[t, j]
∨¬H2[t, j

′]∨¬Q[t, q]∨¬C1[t, j, a]
∨¬C2[t, j

′, b]∨C2[t+1, j
′, b′])



We now show that the reduction works.

Note that the reduction can be computed in polynomial time.

Now suppose f (x) = (U,G). We claim that x ∈ L iffG is satisfiable.
Suppose x ∈ L. Then there exists a y such that P (x, y) is true.
Thus M accepts on input (x, y).
Assign the truth values to variables based on the computation ofM .
It is easy to verify that all the clauses must be satisfied.

Now suppose that (U,G) is satisfiable. Pick a satisfying assignment
in above.
Let C ′

2[0, l] = ai iff C2[0, l, ai] is true in the above assignment.
Let y = C ′

2[0, 1]C
′
2[0, 2] · · ·C

′
2[0, q(n)], where we ignore the trailing

blanks.
It is easy to verify that M (x, y) must accept.
Thus P (x, y) is true, and hence x ∈ L.



Proposition: ≤p
m is reflexive and transitive.

Proof:
Reflexive: Any L can be reduced to itself by identity function f (x) =
x.

Transitive: Suppose L1 ≤
p
m L2 and L2 ≤

p
m L3.

Suppose f, g are polynomial time computable functions such that
x ∈ L1 ⇔ f (x) ∈ L2 and x ∈ L2 ⇔ g(x) ∈ L3.
Let h(x) = g(f (x)). Clearly h is polynomial time computable.
Now x ∈ L1 ⇔ f (x) ∈ L2 ⇔ g(f (x)) ∈ L3.
Thus x ∈ L1 ⇔ h(x) ∈ L3.
Thus L1 ≤

p
m L3. This shows that ≤

p
m is transitive.



Corollary: If L is NP-complete, L′ ∈ NP and L ≤p
m L′ then L′ is

NP-complete.
The above corollary allows us to prove that a problem L′ ∈ NP is
NP-complete by just showing that L′ ∈ NP and some KNOWN
NP-complete problem is polynomial time, many one reducible to
L′.


