Efficient Computations

P = {L : some poly time bounded deterministic Turing machine
accepts L}.

NP = {L : some poly time bounded nondeterministic Turing ma-
chine accepts L}.

coNP={L : L € NP}.

P=NP”



Proposition: Suppose L € NP.
Then there exists a (deterministic) polynomial time computable
predicate P(x,y), and a polynomial ¢(-) such that

z e Liff 3y |y| < q(|z]))[P(z,y)].

Proof: Suppose N is a ¢(n) time bounded NDTM accepting L.
Without loss of generality assume that N has exactly two choices in
cach state.

P(x,y) is defined as follows.

Let y = 192+ Ym.
If m > q(|x|) then reject.

Otherwise simulate IV, where at step ¢, choose the next state
based on whether y; is 0 or 1.
P(x,y) is 1 iff N accepts in the above simulation.

Now, (Fy : |y| < q(|z]))[P(x,y)] iff N(z) has an accepting path.



In the proposition one often calls y such that P(x,y) = 1 as a
“certificate” or “proot” that x € L.

Thus one can consider NP as class of languages for which “proots”
can be easily (in polynomial time) verified.



Reducibility

Ly <P Ly (read: Ly is poly time, many-one, reducible to L9):
there exists poly time computable function f such that x € L1 &
f(:l?) e Lo.

Lq §Z% Lo (read: Lj is poly time, Turing, reducible to Lo):
there exists a polynomial time oracle Turing machine M, such that
the ML2 accepts L.

L g,}%g SPACC To (read: Ly is log-space many-one reducible to L9):
there exists a tunction f, which is computable by a log space bounded
Turing machine, such that x € L{ < f(x) € Lo.



NP-completeness

A set L is said to be NP-complete iff
(1) L € NP, and
(2) (VL' eNP)[L' <P L]

[f (2) is satisfied, then the problem is said to be NP-hard.
The interest in NP-complete problems arises from the fact that
many of the interesting combinatorial problems are NP-complete.



Some famous NP complete problems.

1. Satisfiability:
INSTANCE: A set U of variables and a collection C' of clauses over

U.
QUESTION: Is there a satistying truth assignment for C'7

2. 3-Dimensional Matching:

INSTANCE: Three disjoint finite sets X, Y, Z, each of cardinality n,
and aset S C X xY x Z.

QUESTION: Does S contain a matching? i.e. is there a subset
S" C S such that card(S") = n and no two elements of S’ agree in
any coordinate?



3. Vertex Cover:

INSTANCE: A graph G = (V, E) and a positive integer K <
card(V).

QUESTION: Is there a vertex cover of size K or less for G?7 i.e. is
there a subset V/ C V such that, card(V’) < K and for each edge

(u,v) € E, at least one of u, v belongs to V'?

4. MAX-CUT:

INSTANCE: An undirected graph G = (V, E/), and a positive integer
K < card(F).

QUESTION: Is there a cut of GG with size > K7 Here (X,Y) is said
to be a cut of G, if (X,Y) is a partition of V. That is, X NY =10
and X UY =V. Sizeofacut (X,Y) of G, is card({(v,w) :v e X
and w € Y and (v,w) € E}). That is, size of a cut (X,Y) is the
number of edges in G which connect X and Y.



5. Clique:

INSTANCE: A graph G = (V. FE) and a positive integer K <
card(V).

QUESTION: Does GG contain a clique of size K or more? ie. is
there a subset V/ C V', such that card(V') > K, and for all distinct
u,v € V', (u,v) € E?

6. Hamiltonian Circuit:

INSTANCE: A graph G = (V, F)

QUESTION: Does G contain a Hamiltonian circuit? i.e. is there a
simple circuit which goes through all the vertices of G7



7. Partition:
INSTANCE: A finite set A and a size s(a) > 0, for each a € A.

QUESTION: Is there a subset A’ of A such that ZaEA’S(a) =
?

ac A— A/ S(Q)-
8. Set Cover:
INSTANCE: A finite set A, a collection {57, 59, ..., Sy} of subsets
of A, and a number k.

QUESTION: Is there a subset Y of {1,...,m}, of size at most k,
such that A C u;cy 5;.

9. Traveling Salesman Problem:

INSTANCE: A complete weighted graph G = (V, ), and a bound
B.

QUESTION: Is there a Hamiltonian circuit of weight < B?



Satisfiability (SAT) is NP-complete

Theorem (Cook): Satisfiability is NP-complete.

Proof sketch:

SAT is in NP: guess a satisfying truth assigment T'A, and then
verify by checking that each of the clauses has at least one true
literal.

To show: for any L in NP, L <B SAT.

Suppose L € NP.

Let P be a polynomial time computable predicate such that

v Liff 3y |yl < allz)[Plz,v)]

Let M be p(n) time bounded machine which decides P (i.e. M
accepts on input x, y iff P(x,y) =1).

Below we use n for |z|.

Wlog M uses two tapes, and initially the two inputs are on the 2
tapes (called input and guess tape).



Alphabet set of M: ¥ = {ay, ..., a,}, where ag stands for “blank”.
States of M: @ = {qo,...,qs}, where qq is starting state, g; is the
accepting state and g9 is rejecting state.

We assume that once M reaches the accepting or rejecting state it
just loops in that state.

What we plan to do is mimic the computation of the machine from
time ¢ = 0 (start) to time t = p(n).

The function f reducing L to satisfiability is as follows.

flx = x129- - 2p) = (U, G), where the set of variables U and the
set of clauses G is described below. It can be easily verified that
this reduction can be done by a polynomial time bounded Turing
machine.



Set of Variables, U

For 0 <t < p(n), we have the following variables in U.

Qlt, q;], for g¢; € Q. Intuitively, Q|t, ¢;| being true will denote the
fact that at time ¢, M 1is in state q;.

Hilt,l], for 1 <1 < p(n)+ 1. Intuitively, Hilt,[] being true will
denote the fact that at time ¢, the head on first tape of M is at
location .

Holt,l], for 1 < I < p(n) + 1. Intuitively, Hslt,[] being true will
denote the fact that at time ¢, the head on second tape of M is at
location .

Cilt,l,a], for 1 <1 < p(n)+1, a € X. Intuitively, Ci[t, [, a] being
true will denote the fact that at time ¢ the contents of [-th cell in
the first tape is a.

Chlt, 1, al, for 1 <1 < p(n)+1, a € X. Intuitively, Cs[t, [, a] being
true will denote the fact that at time ¢ the contents of [-th cell in
the second tape is a.



Clauses

GG consists of the following clauses divided in 6 groups for ease of
presentation /understanding.

1. Clauses for “exactly one state at time t”

For 0 <t < p(n), we have a clause

(Q[ta QO]\/Q[tv Q1]v T VQ[tv QS])

(i.e. M is in at least one internal state at any time).

For 0 <t < p(n),

~Qlt. g ~Qlt ). for 0 < i < j < s

(i.e. M is not in two internal states at the same time).

Note that the above set of clauses ensure that M is in exactly one
internal state at any time.



2. Clauses for “head at exactly one position at time t”

For 0 <t <p(n)), For 1 <i < j <p(n)+ 1, we have the clauses,
(Hh[t, vH [t 2)v- - - vH [t p(n) + 1)),
(—H\[t, iv—Hit, j]),

(Holt, 1vHolt, 2]v- - - vH5[t, p(n) + 1]), and
(—Halt, i—=Halt, j1).

3. Clauses for “exactly one symbol at time ¢ in a cell”
For 0 <t <p(n), for 1 <l <pn)+1,0<17<j<r, wehave the
clauses,

<Cl[t, [, CL()]VCl[t, [, al]v e vCl[t, [, CLT]),

<_'Cl [ta Zn CLZ’]\/_'Cl [ta Zn CL]’]),

(02[?5, l, ao]vC’Q[t, l, al]v R VOQ[t, l, ar]),

(—102[?5, [, ai]V_ICQ[t, [, aj]),



4. Clauses for initial state

(Q[0, qo)),

(Hl[ov 1])7 <H2[07 1])7

(C110,1, 21]), ... (C1]0,n, 2p)), (C1|0,n+1, ag)), . .., (C1|0, p(n), ag)).
(C2[0,g(n) + 1, ap)), ..., (C2[0, p(n), ag)).

(Co]0,1 + 1, aglv—C50, 1, agl), for 1 < I < g(n) (to disallow
blanks in “y”).

Note that we have not specified the value of y in the guess tape!
This allows any arbitrary initial content of guess tape, with length
at most q(n).

5. Clause for final state

(QIp(n), q1)).



6. Clauses for orderly transition

First we need to make sure that symbols do not change at locations
where the head is not there.

For 0 <t < p(n) and 1 <1 < p(n)+ 1, we have the clauses,

(Hylt, IvCy|t, 1, alv=CYlt + 1,1, a)), for a € 3.
(Holt, IvCo|t, 1, alv—=Chlt + 1,1, al), for a € 3.



Now we give the clauses which ensure the transition based on the
transition table of M.
Suppose (¢, a,b,q’,a’, b, m1, my) is an entry in the transition table

of M.

Then we have the tfollowing clauses.

For 0 <t <p(n),1<7,35 <pn).
(~H\[t, jlv—Holt, ' v=Q[t, qv—=Cht, J, av—Calt, §', bvQ[t+1, ¢])
(=H\[t, jlv=Holt, §1v=Qt, gv—=Cht, j, alv—Calt, 5, blvH1 [t +
1,7 +ml)
(~Hq[t, jv=Holt, §'v=Qlt, gv=Chlt, j, alv=Colt, j', blvHo[t +
1,7+ mg))
(~Hi[t, jlv—Halt, j'1v=Q[t, qv=Cht, §, a—Calt, 5", bNC[t+1, 5, a'])
(~Hi[t, jlv—Holt, ' v=Q[t, qv—=Cht, J, ay—Cslt, §', bvCalt+1, 5/, V])




We now show that the reduction works.

Note that the reduction can be computed in polynomial time.

Now suppose f(x) = (U, G). We claim that x € L iff G is satisfiable.
Suppose x € L. Then there exists a y such that P(x,y) is true.
Thus M accepts on input (z,y).

Assign the truth values to variables based on the computation of M.
It is easy to verify that all the clauses must be satisfied.

Now suppose that (U, G) is satisfiable. Pick a satisfying assignment
in above.

Let C5[0,1] = a; iff C5[0,1, a;] is true in the above assignment.

Let y = C5[0,1]C5[0,2] - - - C5[0, g(n)], where we ignore the trailing
blanks.

[t is easy to verify that M (z,y) must accept.

Thus P(x,y) is true, and hence x € L.



Proposition: <P is reflexive and transitive.

Proof:

Reflexive: Any L can be reduced to itself by identity function f(x) =
.

Transitive: Suppose L1 <D Lo and Lo <P L.

Suppose f, g are polynomial time computable functions such that
re€ L] f(x) € Lyand x € Ly < g(x) € L3,

Let h(z) = g(f(x)). Clearly h is polynomial time computable.
Now x € L1 < f(x) € Ly < g(f(x)) € Ls.

Thus x € L1 < h(x) € Ls.

Thus L1 <, Ls. This shows that <b. is transitive.



Corollary: If L is NP-complete, L' € NP and L <P, L' then L' is
NP-complete.

The above corollary allows us to prove that a problem L' € NP is
NP-complete by just showing that L' € NP and some KNOWN

NP-complete problem is polynomial time, many one reducible to
L



