3SAT is NP-complete
3SAT denotes the following restriction of satisfiability.

INSTANCE: A set of variables, U, and a set of clauses, C,
such that each clause contains exactly 3 literals.

QUESTION: Is C satisfiable? i.e. is there a truth assignment
to the variables such that all the clauses are satisfied?

In NP: guess a satistying assignment and verify that it indeed sat-
isfies the clauses.

NP-hard:

We show SAT <b 3SAT.

Suppose (U, C') is an instance of satisfiability.

We construct an instance (U, C”) of 3SAT such that, C' is satisfiable
iff O is satisfiable (and the reduction can be done in poly time).



Suppose C' = {c1,¢9,...cm}
For ¢;, we will define C and U; below.

U=UuU u U
1<i<m

C'= u C]
m

If ¢; = (11), then
Ul = {yi, 7}, and

Ci = {(hvyivyy), v vyp), (eydvow?), (i)},
where y! and y7 are NEW variables (which are not in U, and
not used in any other part of the construction).



If ¢; = (Iyvly), then
Ul = {y}}, and
Ct = {(lyvlavy}), (ivlov—y; )},

where yzl is NEW variable (which is not in U, and not used in
any other part of the construction).

If ¢; = (Iyvlovl3), then
U/ = (), and
Ci = {c}.
If ¢; = (Iyvlgv- - - Vi), where r > 4, then
UZ, — {yzla o 7y§_3}7 and
! _ 1 1 2 r—4 r—3 r—3
Ci = {vlovy; ), (myvi3vyp), - (tyy— vie—ovy; ), (1y; “Vlp—1vlr) }

where yil, e yr _3, are NEW variables (which are not in U,

and not used in any other part of the construction).



Clearly the transformation can be done in polynomial time.
We claim that C is satisfiable iff C is satisfiable.

Suppose (' is satisfiable. Fix a satistying assignment of C'. We give
a corresponding satisfying assignment of C”.

Variables from U: same truth value as in the satistying assignment
of C.

Other variables are given truth values as follows.

(a) |¢;| < 3: variables in U/ are assigned arbitrary truth value
(clauses in C7 are already satisfied).

(b) |ei| > 3:

Suppose ¢; = (l1,l,+-+,1r). Let [; be such that [; is true in the
satisfying assignment of C' fixed above.

Then let yzk be true for 1 < k£ < 5 — 2, and yzk be false for 7 — 2 <
k <r—3. It is easy to verify that all the clauses in O} are satisfied.



Now suppose C is satisfiable. Fix a satisfying assignment of C”.
Then we claim that the truth assignment of U’ restricted to U must
be a satistying assignment for C'.

To see this suppose ¢; = (I1v...vl}).

(a) r < 3: then ¢; is clearly true due to construction.

(b) r > 3:

If y; ~3 is true, then one of [,_1, [, must be true.

It yzl is talse, then one of [{, [ must be true.

Otherwise pick a k£ such that yf 1s true but yf“ is false. (Note that

there must exists such a k). Then I, o must be true.

Hence C is satisfiable iff C’ is satisfiable.
This completes the proof of 3SAT being NP-complete.



3 Dimensional Matching is NP-complete

3DM 1s in NP:

To see that 3DM is in NP consider the following machine M. Sup-
pose three disjoint sets, X,Y, Z, each of sizen,and S C X xY x 7
are given as input to M.

M first “guesses” a subset S’ of S of size n. Then M accepts iff S’
1S a matching.

Clearly M witnesses that 3DM is in NP.

3DM is NP-hard:

We show that 3SAT <P 3DM.

Let U = {uy,...,up} be the set of variables and C' = {cy, ..., cm}
be the set of clauses of an instance of 3SAT.

We construct an instance X, Y, Z, S of 3DM such that C' is satisfi-
able iff .S contains a matching.

Construction can be done in polynomial time.



Let X ={t;lj]: 1 <i<nand1<j<m}uU
{filjl ;1 <i<nand 1 <j<m}.

Let Y = AU S UG, where
A={a;lj] 1 <i<nand 1< j < m},
S1=1{s1lj]: 1 <j<m}, and
Gr=Agl]:1<j<mn-1)}

Let Z = B U S9 U G9, where
B={blj]:1<i<nand1<j<m},
So={s9l7] : 1 <7 <m}, and
Go=A{g2lj]: 1 <j<m(n—1)}



Let S =G U (U< j<m Ej) U (V<i<n Vi) U (U1<j<p, V), where

= {(fil], ailj], bils]) : 1 < j < m}.
Vi2 = {(til], ailj+1], bilg]) - 1 < § <m}pU{(t;i[m], a;[1], b;lm]) }.
E; = {(til], s1l4], s2l4]) : uj appears in ¢; JU{(f;[5], s1[4], s2[]) -
—u; appears in ¢;}.

G = {(tilg], g1k, g2lk]), (fils), grlk], golk]) - 1 <4 < n and

1§j§mand1§k§m*(n—1)}.

We will show later that S has a matching iff C' is satisfiable.
Intuition: The set S contains three portions,

(1) (N<icn Vi) U (1<j<cpn Vi#): truth assignment portion,
(2) (vi<j<m E;): satisfaction testing portion, and

(3) G: garbage collection portion.



Truth assignment Portion

Fix 4. Note that if S” € S “covers” all of a;[j],b;[5], 1 < j < m,
exactly once then either

(a) S’ contains all of V;! and none of V> OR

(a) S’ contains all of V2 and none of VI

This can be considered as assigning a “truth” value to the variable
Uu;.

We used t;|1],...,t;m] (and correspondingly f;[1],..., film]) in-
stead of just using t;, f; to give “fan out” of m for the variable u;,
so that one can use different copies in different clauses (see below).

Satistaction Testing Portion

Note that if S C S “covers” s1[j], s2[j] exactly once then S’ con-
tains exactly one element from F,;. Intuitively, this gives us the

literal in C; which must be “TRUE".



Garbage Collection Portion

The elements of G are essentially for garbage collection.

Note that we had a fan out of m for each variable (giving us a total
of m *xn “truth items”).

However only m instances of these are used in the Satisfaction testing
component.

Thus we need to do a garbage collection for remaining m * (n — 1)

elements.
This is what G is used for.



We now show that C' is satisfiable iff S contains a matching.
Suppose S has a matching S’. Then we claim that an assignment of
u; being true iff Vi1 C S’ shows that C' is satisfiable.

Suppose (' is satisfiable. Fix a satisfying assignment ¢t : U —
{T, '}

For each j, suppose C is true due to u; being true (false).

Let w;|j] denote ¢;|7] ( fil7] respectively).

The matching is formed by taking the following three subsets of .S.
(1) Ye(iy=T Vit u Vt(i)=F Ve

(3) G,
where G’ is an appropriate subset of G, such that all the elements
of {t;l5], fil7] - 1<z<nand1<]<m} {w;lj] 11 <7 <mj

are covered (using each of gi|k], gpolk], 1 < k < m(n — 1) exactly
once).



Partition is NP-complete

In NP: Suppose a set A, and corresponding sizes s(a) is given. To
see that Partition is in NP, one just needs to guess a subset A’ of
A and verify that X ,c 4/s(a ) YgeA_as(a).

NP-hard: We show 3DM <b. Partition.

Suppose three disjoint sets X, Y, Z of size n each, and S C X X
Y x Z is an instance of 3DM.

We construct (in polynomial time) an instance of Partition by giving
set A, and s(a),a € A, such that S has a matching iff there exists
a subset A" of A such that X, yrs(a) = X c 4 gr8(a).



Suppose X = {x1,x9,....xn}, Y = {y1,99,...,yn}, and Z =

{21,20,...,2n}.

Suppose S has k elements mi,mo, ..., my.

Then A will have k + 2 elements, aq, ..., apo.

The elements ay, . . ., ag will correspond tomy, ..., my and ag, 1, ag.9

will be special elements.

If m;, = (xf@, Yq(i) Zh(i))7 then

s(a;) = 23Pn—pfi) 4 920m=pg(i) 4 opn—ph(i) where p is such that
2P > k. Intuitively one can consider the number s(a;) as being
divided into 3n zones, each of p bits as follows.

The number s(a;) is formed by placing 1 at the rightmost bit corre-
sponding to zones 1 (i) Yg(i)> Zh(i): and other bits being 0.



Important characteristic: on adding the sizes corresponding to any
subset of {aqy,...,a}, there is no “carry over” from one zone to
another as long as 2P > k.

Thus if we let B = X< jggn_12pj , (which is the number formed by
placing 1 in the rightmost bit of each zone),

Then any subset A’ C {aq,...,a;} will satisfy

Yaeas(a) = B, iff {m; : a; € A’} is a matching of S.

Let s(ag41) = [2 % X1 <i<ps(a;)] — B.

Let s(agi2) = X1<i<ks(ai) + B.

Note that the number of bits needed to specify s(aj1) and s(ag_ o)
is a polynomial in k£, n.



Claim: there exists asubset A’ C A such that X, yrs(a) = X,c 4 a8(a)
iff S has a matching.

Note that ¥, 45(a) = 4¥1<;<p.s(a;).

Suppose S has a matching S’

Then clearly, A" = {a; : m; € S’} U {aj,1}, gives

Yaears(a) = (281<i<ps(ay)|—B)+B = 2X1<i<ks(ai) = Xyea—ars(a)

If there exists A" C A such that

Yaears(a) = 281 <j<ps(aq),

then exactly one of ay,., 1 and a9 must be in A’ (otherwise the sum
will be > 3% <;<ps(a;)).

Without loss of generality suppose that aj,; € A

Then [Z;c grs(a;)] — s(ag11) = B.

Hence {m; : a; € A" — {a;.1}} is a matching of S.

This shows that partition is NP-complete.



Multi Processor Scheduling is NP-complete

The multiprocessor scheduling problem is as follows:

INSTANCE: A finite set A of tasks, a length l(a) for each
a € A, a number m of processors, and a deadline D.

A schedule S = (Aj, Ay, ..., Ayy) is a partition of A into pair-
wise disjoint sets Ay, Ao, ..., Ay,. Time taken by a schedule
S, denoted T'ime(S), is max{¥,ca.l(a) : 1 <i < m}.
QUESTION: Is there a schedule S such that Time(S) < D?

Clearly, Multiprocessor scheduling problem is in NP (one just needs
to guess a schedule, S, and verify that Tewme(S) < D).

We reduce Partition to Multiprocessor schedule.

Suppose a set A and size s(a), for a € A is an instance of Partition
problem.

Generate the instance of Multiprocessor scheduling as follows.



Let B =% ,c45(a).
If Bisoddthenlet m=1 A={a1}, l(a1) =5, and D = 2.

If B is even, then generate an instance of Multiprocessor scheduling
as follows:

m = 2.

A (of multiprocessor scheduling problem) = A (of Partition prob-
lem).

[(a) = s(a).

D = B/2.

[t is easy to verify that there exists a subset A’ C A such that
Yageasla) = X, cq_ars(a) = B/2 iff there exists a schedule such
that Time(S) < D = B/2.



