
3SAT is NP-complete

3SAT denotes the following restriction of satisfiability.

INSTANCE: A set of variables, U , and a set of clauses, C,
such that each clause contains exactly 3 literals.

QUESTION: Is C satisfiable? i.e. is there a truth assignment
to the variables such that all the clauses are satisfied?

In NP: guess a satisfying assignment and verify that it indeed sat-
isfies the clauses.

NP-hard:
We show SAT ≤p

m 3SAT .
Suppose (U,C) is an instance of satisfiability.
We construct an instance (U ′, C ′) of 3SAT such that, C is satisfiable
iff C ′ is satisfiable (and the reduction can be done in poly time).

Suppose C = {c1, c2, . . . cm}.
For ci, we will define C

′
i and U ′

i below.

U ′ = U ∪
⋃

1≤i≤m
U ′
i

C ′ =
⋃

1≤i≤m
C ′
i

If ci = (l1), then

U ′
i = {y1i , y

2
i }, and

C ′
i = {(l1

∨y1i
∨y2i), (l1

∨¬y1i
∨y2i), (l1

∨y1i
∨¬y2i), (l1

∨¬y1i
∨¬y2i)},

where y1i and y2i are NEW variables (which are not in U, and
not used in any other part of the construction).

If ci = (l1
∨l2), then

U ′
i = {y1i }, and

C ′
i = {(l1

∨l2
∨y1i), (l1

∨l2
∨¬y1i)},

where y1i is NEW variable (which is not in U, and not used in
any other part of the construction).

If ci = (l1
∨l2

∨l3), then

U ′
i = ∅, and

C ′
i = {ci}.

If ci = (l1
∨l2

∨ · · · ∨lr), where r ≥ 4, then

U ′
i = {y1i , · · · , y

r−3
i }, and

C ′
i = {(l1

∨l2
∨y1i), (¬y

1
i

∨l3
∨y2i), · · · , (¬y

r−4
i

∨lr−2
∨yr−3
i), (¬yr−3

i
∨lr−1

∨lr)},

where y1i , · · · , y
r−3
i , are NEW variables (which are not in U,

and not used in any other part of the construction).

Clearly the transformation can be done in polynomial time.
We claim that C is satisfiable iff C ′ is satisfiable.

Suppose C is satisfiable. Fix a satisfying assignment of C. We give
a corresponding satisfying assignment of C ′.
Variables from U : same truth value as in the satisfying assignment
of C.
Other variables are given truth values as follows.
(a) |ci| ≤ 3: variables in U ′

i are assigned arbitrary truth value
(clauses in C ′

i are already satisfied).
(b) |ci| > 3:
Suppose ci = (l1, l2, · · · , lr). Let lj be such that lj is true in the
satisfying assignment of C fixed above.
Then let yki be true for 1 ≤ k ≤ j − 2, and yki be false for j − 2 <
k ≤ r− 3. It is easy to verify that all the clauses in C ′

i are satisfied.

Now suppose C ′ is satisfiable. Fix a satisfying assignment of C ′.
Then we claim that the truth assignment of U ′ restricted to U must
be a satisfying assignment for C.
To see this suppose ci = (l1

∨ . . . ∨lr).
(a) r ≤ 3: then ci is clearly true due to construction.
(b) r > 3:
If yr−3

i is true, then one of lr−1, lr must be true.
If y1i is false, then one of l1, l2 must be true.

Otherwise pick a k such that yki is true but yk+1i is false. (Note that
there must exists such a k). Then lk+2 must be true.

Hence C is satisfiable iff C ′ is satisfiable.
This completes the proof of 3SAT being NP-complete.

3 Dimensional Matching is NP-complete

3DM is in NP:
To see that 3DM is in NP consider the following machine M . Sup-
pose three disjoint sets, X,Y, Z, each of size n, and S ⊆ X×Y ×Z
are given as input to M .
M first “guesses” a subset S′ of S of size n. Then M accepts iff S′

is a matching.
Clearly M witnesses that 3DM is in NP.

3DM is NP-hard:
We show that 3SAT ≤p

m 3DM.
Let U = {u1, . . . , un} be the set of variables and C = {c1, . . . , cm}
be the set of clauses of an instance of 3SAT.
We construct an instance X,Y, Z, S of 3DM such that C is satisfi-
able iff S contains a matching.
Construction can be done in polynomial time.

Let X = {ti[j] : 1 ≤ i ≤ n and 1 ≤ j ≤ m}∪
{fi[j] : 1 ≤ i ≤ n and 1 ≤ j ≤ m}.

Let Y = A ∪ S1 ∪G1, where

A = {ai[j] : 1 ≤ i ≤ n and 1 ≤ j ≤ m},

S1 = {s1[j] : 1 ≤ j ≤ m}, and

G1 = {g1[j] : 1 ≤ j ≤ m(n− 1)}.

Let Z = B ∪ S2 ∪G2, where

B = {bi[j] : 1 ≤ i ≤ n and 1 ≤ j ≤ m},

S2 = {s2[j] : 1 ≤ j ≤ m}, and

G2 = {g2[j] : 1 ≤ j ≤ m(n− 1)}.

Let S = G ∪ (⋃1≤j≤mEj) ∪ (⋃1≤i≤n V
1
i) ∪ (⋃1≤i≤n V

2
i), where

V 1
i = {(fi[j], ai[j], bi[j]) : 1 ≤ j ≤ m}.

V 2
i = {(ti[j], ai[j+1], bi[j]) : 1 ≤ j < m}∪{(ti[m], ai[1], bi[m])}.

Ej = {(ti[j], s1[j], s2[j]) : ui appears in cj}∪{(fi[j], s1[j], s2[j]) :
¬ui appears in cj}.

G = {(ti[j], g1[k], g2[k]), (fi[j], g1[k], g2[k]) : 1 ≤ i ≤ n and
1 ≤ j ≤ m and 1 ≤ k ≤ m ∗ (n− 1)}.

We will show later that S has a matching iff C is satisfiable.
Intuition: The set S contains three portions,
(1) (⋃1≤i≤n V

1
i) ∪ (⋃1≤i≤n V

2
i): truth assignment portion,

(2) (⋃1≤j≤mEj): satisfaction testing portion, and
(3) G: garbage collection portion.

Truth assignment Portion

Fix i. Note that if S′ ⊂ S “covers” all of ai[j], bi[j], 1 ≤ j ≤ m,
exactly once then either
(a) S′ contains all of V 1

i and none of V 2
i OR

(a) S′ contains all of V 2
i and none of V 1

i .
This can be considered as assigning a “truth” value to the variable
ui.
We used ti[1], . . . , ti[m] (and correspondingly fi[1], . . . , fi[m]) in-
stead of just using ti, fi to give “fan out” of m for the variable ui,
so that one can use different copies in different clauses (see below).

Satisfaction Testing Portion

Note that if S′ ⊆ S “covers” s1[j], s2[j] exactly once then S′ con-
tains exactly one element from Ej. Intuitively, this gives us the
literal in cj which must be “TRUE”.

Garbage Collection Portion

The elements of G are essentially for garbage collection.
Note that we had a fan out of m for each variable (giving us a total
of m ∗ n “truth items”).
However onlym instances of these are used in the Satisfaction testing
component.
Thus we need to do a garbage collection for remaining m ∗ (n − 1)
elements.
This is what G is used for.

We now show that C is satisfiable iff S contains a matching.
Suppose S has a matching S′. Then we claim that an assignment of
ui being true iff V 1

i ⊆ S′ shows that C is satisfiable.

Suppose C is satisfiable. Fix a satisfying assignment t : U →
{T, F}.
For each j, suppose Cj is true due to ui being true (false).
Let wj[j] denote ti[j] (fi[j] respectively).
The matching is formed by taking the following three subsets of S.
(1) ⋃

t(i)=T V 1
i ∪ ⋃

t(i)=F V 2
i .

(2) {(wj[j], s1[j], s2[j]) : 1 ≤ j ≤ m}.
(3) G′,
where G′ is an appropriate subset of G, such that all the elements
of {ti[j], fi[j] : 1 ≤ i ≤ n and 1 ≤ j ≤ m} − {wj[j] : 1 ≤ j ≤ m}
are covered (using each of g1[k], g2[k], 1 ≤ k ≤ m(n − 1) exactly
once).

Partition is NP-complete

In NP: Suppose a set A, and corresponding sizes s(a) is given. To
see that Partition is in NP, one just needs to guess a subset A′ of
A and verify that Σa∈A′s(a) = Σa∈A−A′s(a).

NP-hard: We show 3DM ≤p
m Partition.

Suppose three disjoint sets X,Y, Z of size n each, and S ⊆ X ×
Y × Z is an instance of 3DM.
We construct (in polynomial time) an instance of Partition by giving
set A, and s(a), a ∈ A, such that S has a matching iff there exists
a subset A′ of A such that Σa∈A′s(a) = Σa∈A−A′s(a).

Suppose X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, and Z =
{z1, z2, . . . , zn}.
Suppose S has k elements m1,m2, . . . ,mk.
Then A will have k + 2 elements, a1, . . . , ak+2.
The elements a1, . . . , ak will correspond tom1, . . . ,mk and ak+1, ak+2
will be special elements.
If mi = (xf(i), yg(i), zh(i)), then

s(ai) = 23pn−pf(i) + 22pn−pg(i) + 2pn−ph(i), where p is such that
2p > k. Intuitively one can consider the number s(ai) as being
divided into 3n zones, each of p bits as follows.

The number s(ai) is formed by placing 1 at the rightmost bit corre-
sponding to zones xf(i), yg(i), zh(i), and other bits being 0.

Important characteristic: on adding the sizes corresponding to any
subset of {a1, . . . , ak}, there is no “carry over” from one zone to
another as long as 2p > k.

Thus if we let B = Σ0≤j≤3n−12
pj, (which is the number formed by

placing 1 in the rightmost bit of each zone),
Then any subset A′ ⊆ {a1, . . . , ak} will satisfy
Σa∈A′s(a) = B, iff {mi : ai ∈ A′} is a matching of S.

Let s(ak+1) = [2 ∗ Σ1≤i≤ks(ai)]− B.
Let s(ak+2) = Σ1≤i≤ks(ai) + B.
Note that the number of bits needed to specify s(ak+1) and s(ak+2)
is a polynomial in k, n.

Claim: there exists a subsetA′ ⊆ A such that Σa∈A′s(a) = Σa∈A−A′s(a)
iff S has a matching.
Note that Σa∈As(a) = 4Σ1≤i≤ks(ai).
Suppose S has a matching S′.
Then clearly, A′ = {ai : mi ∈ S′} ∪ {ak+1}, gives
Σa∈A′s(a) = ([2Σ1≤i≤ks(ai)]−B)+B = 2Σ1≤i≤ks(ai) = Σa∈A−A′s(a)

If there exists A′ ⊆ A such that
Σa∈A′s(a) = 2Σ1≤i≤ks(ai),
then exactly one of ak+1 and ak+2 must be in A′ (otherwise the sum
will be ≥ 3Σ1≤i≤ks(ai)).
Without loss of generality suppose that ak+1 ∈ A′.
Then [Σi∈A′s(ai)]− s(ak+1) = B.
Hence {mi : ai ∈ A′ − {ak+1}} is a matching of S.
This shows that partition is NP-complete.

Multi Processor Scheduling is NP-complete

The multiprocessor scheduling problem is as follows:

INSTANCE: A finite set A of tasks, a length l(a) for each
a ∈ A, a number m of processors, and a deadline D.

A schedule S = (A1, A2, . . . , Am) is a partition of A into pair-
wise disjoint sets A1, A2, . . . , Am. Time taken by a schedule
S, denoted T ime(S), is max {Σa∈Ai

l(a) : 1 ≤ i ≤ m}.

QUESTION: Is there a schedule S such that T ime(S) ≤ D?

Clearly, Multiprocessor scheduling problem is in NP(one just needs
to guess a schedule, S, and verify that T ime(S) ≤ D).

We reduce Partition to Multiprocessor schedule.
Suppose a set A and size s(a), for a ∈ A is an instance of Partition
problem.
Generate the instance of Multiprocessor scheduling as follows.

Let B = Σa∈As(a).

If B is odd then let m = 1, A = {a1}, l(a1) = 5, and D = 2.

If B is even, then generate an instance of Multiprocessor scheduling
as follows:
m = 2.
A (of multiprocessor scheduling problem) = A (of Partition prob-
lem).
l(a) = s(a).
D = B/2.
It is easy to verify that there exists a subset A′ ⊆ A such that
Σa∈As(a) = Σa∈A−A′s(a) = B/2 iff there exists a schedule such
that T ime(S) ≤ D = B/2.

