3SAT is **NP**-complete

3SAT denotes the following restriction of satisfiability.

INSTANCE: A set of variables, U, and a set of clauses, C, such that each clause contains exactly 3 literals. QUESTION: Is C satisfiable? i.e. is there a truth assignment to the variables such that all the clauses are satisfied?

In **NP**: guess a satisfying assignment and verify that it indeed satisfies the clauses.

NP-hard: We show $SAT \leq_m^p 3SAT$. Suppose (U, C) is an instance of satisfiability. We construct an instance (U', C') of 3SAT such that, C is satisfiable iff C' is satisfiable (and the reduction can be done in poly time). Suppose $C = \{c_1, c_2, \dots, c_m\}$. For c_i , we will define C'_i and U'_i below.

$$U' = U \cup \bigcup_{1 \le i \le m} U'_i$$
$$C' = \bigcup_{1 \le i \le m} C'_i$$

If
$$c_i = (l_1)$$
, then
 $U'_i = \{y_i^1, y_i^2\}$, and
 $C'_i = \{(l_1 \lor y_i^1 \lor y_i^2), (l_1 \lor \neg y_i^1 \lor y_i^2), (l_1 \lor y_i^1 \lor \neg y_i^2), (l_1 \lor \neg y_i^1 \lor \neg y_i^2)\},$
where y_i^1 and y_i^2 are NEW variables (which are not in U, and
not used in any other part of the construction).

If
$$c_i = (l_1 \lor l_2)$$
, then
 $U'_i = \{y_i^1\}$, and
 $C'_i = \{(l_1 \lor l_2 \lor y_i^1), (l_1 \lor l_2 \lor \neg y_i^1)\}$,
where y_i^1 is NEW variable (which is not in U, and not used in
any other part of the construction).

If
$$c_i = (l_1 \lor l_2 \lor l_3)$$
, then
 $U'_i = \emptyset$, and
 $C'_i = \{c_i\}$.
If $c_i = (l_1 \lor l_2 \lor \cdots \lor l_r)$, where $r \ge 4$, then
 $U'_i = \{y_i^1, \cdots, y_i^{r-3}\}$, and
 $C'_i = \{(l_1 \lor l_2 \lor y_i^1), (\neg y_i^1 \lor l_3 \lor y_i^2), \cdots, (\neg y_i^{r-4} \lor l_{r-2} \lor y_i^{r-3}), (\neg y_i^{r-3} \lor l_{r-1} \lor l_r)\}$,
where y_i^1, \cdots, y_i^{r-3} , are NEW variables (which are not in U,
and not used in any other part of the construction).

Clearly the transformation can be done in polynomial time. We claim that C is satisfiable iff C' is satisfiable.

Suppose C is satisfiable. Fix a satisfying assignment of C. We give a corresponding satisfying assignment of C'.

Variables from U: same truth value as in the satisfying assignment of C.

Other variables are given truth values as follows.

(a) $|c_i| \leq 3$: variables in U'_i are assigned arbitrary truth value (clauses in C'_i are already satisfied).

(b) $|c_i| > 3$:

Suppose $c_i = (l_1, l_2, \dots, l_r)$. Let l_j be such that l_j is true in the satisfying assignment of C fixed above.

Then let y_i^k be true for $1 \le k \le j-2$, and y_i^k be false for $j-2 < k \le r-3$. It is easy to verify that all the clauses in C'_i are satisfied.

Now suppose C' is satisfiable. Fix a satisfying assignment of C'. Then we claim that the truth assignment of U' restricted to U must be a satisfying assignment for C. To see this suppose $c_i = (l_1 \vee \ldots \vee l_r)$. (a) $r \leq 3$: then c_i is clearly true due to construction. (b) r > 3: If y_i^{r-3} is true, then one of l_{r-1} , l_r must be true. If y_i^1 is false, then one of l_1, l_2 must be true. Otherwise pick a k such that y_i^k is true but y_i^{k+1} is false. (Note that there must exists such a k). Then l_{k+2} must be true.

Hence C is satisfiable iff C' is satisfiable. This completes the proof of 3SAT being **NP**-complete. 3 Dimensional Matching is \mathbf{NP} -complete

3DM is in \mathbf{NP} :

To see that 3DM is in **NP** consider the following machine M. Suppose three disjoint sets, X, Y, Z, each of size n, and $S \subseteq X \times Y \times Z$ are given as input to M.

M first "guesses" a subset S' of S of size n. Then M accepts iff S' is a matching.

Clearly M witnesses that 3DM is in **NP**.

3DM is **NP**-hard: We show that 3SAT \leq_m^p 3DM. Let $U = \{u_1, \ldots, u_n\}$ be the set of variables and $C = \{c_1, \ldots, c_m\}$ be the set of clauses of an instance of 3SAT. We construct an instance X, Y, Z, S of 3DM such that C is satisfiable iff S contains a matching. Construction can be done in polynomial time.

Let
$$X = \{t_i[j] : 1 \le i \le n \text{ and } 1 \le j \le m\} \cup \{f_i[j] : 1 \le i \le n \text{ and } 1 \le j \le m\}.$$

Let $Y = A \cup S_1 \cup G_1$, where

$$A = \{a_i[j] : 1 \le i \le n \text{ and } 1 \le j \le m\},\$$

$$S_1 = \{s_1[j] : 1 \le j \le m\}, \text{ and}$$

$$G_1 = \{g_1[j] : 1 \le j \le m(n-1)\}.$$

Let $Z = B \cup S_2 \cup G_2$, where

$$B = \{b_i[j] : 1 \le i \le n \text{ and } 1 \le j \le m\},\$$

$$S_2 = \{s_2[j] : 1 \le j \le m\}, \text{ and}$$

$$G_2 = \{g_2[j] : 1 \le j \le m(n-1)\}.$$

Let
$$S = G \cup (\cup_{1 \le j \le m} E_j) \cup (\cup_{1 \le i \le n} V_i^1) \cup (\cup_{1 \le i \le n} V_i^2)$$
, where
 $V_i^1 = \{(f_i[j], a_i[j], b_i[j]) : 1 \le j \le m\}$.
 $V_i^2 = \{(t_i[j], a_i[j+1], b_i[j]) : 1 \le j < m\} \cup \{(t_i[m], a_i[1], b_i[m])\}$.
 $E_j = \{(t_i[j], s_1[j], s_2[j]) : u_i \text{ appears in } c_j\} \cup \{(f_i[j], s_1[j], s_2[j]) : \neg u_i \text{ appears in } c_j\}$.
 $G = \{(t_i[i], a_1[k], a_2[k]), (f_i[i], a_1[k], a_2[k]) : 1 \le i \le n \text{ and}$

$$G = \{(t_i[j], g_1[k], g_2[k]), (f_i[j], g_1[k], g_2[k]) : 1 \le i \le n \text{ and} \\ 1 \le j \le m \text{ and } 1 \le k \le m * (n-1)\}.$$

We will show later that S has a matching iff C is satisfiable. Intuition: The set S contains three portions, (1) $(\cup_{1 \leq i \leq n} V_i^1) \cup (\cup_{1 \leq i \leq n} V_i^2)$: truth assignment portion, (2) $(\cup_{1 \leq j \leq m} E_j)$: satisfaction testing portion, and (3) G: garbage collection portion.

Truth assignment Portion

Fix *i*. Note that if $S' \subset S$ "covers" all of $a_i[j], b_i[j], 1 \leq j \leq m$, exactly once then either

(a) S' contains all of $V_{i_{\perp}}^{1}$ and none of $V_{i_{\perp}}^{2}$ OR

(a) S' contains all of V_i^2 and none of V_i^1 .

This can be considered as assigning a "truth" value to the variable u_i .

We used $t_i[1], \ldots, t_i[m]$ (and correspondingly $f_i[1], \ldots, f_i[m]$) instead of just using t_i, f_i to give "fan out" of m for the variable u_i , so that one can use different copies in different clauses (see below).

Satisfaction Testing Portion

Note that if $S' \subseteq S$ "covers" $s_1[j], s_2[j]$ exactly once then S' contains exactly one element from E_j . Intuitively, this gives us the literal in c_j which must be "TRUE".

Garbage Collection Portion

The elements of G are essentially for garbage collection.

Note that we had a fan out of m for each variable (giving us a total of m * n "truth items").

However only m instances of these are used in the Satisfaction testing component.

Thus we need to do a garbage collection for remaining m * (n - 1) elements.

This is what G is used for.

We now show that C is satisfiable iff S contains a matching. Suppose S has a matching S'. Then we claim that an assignment of u_i being true iff $V_i^1 \subseteq S'$ shows that C is satisfiable.

Suppose C is satisfiable. Fix a satisfying assignment $t : U \rightarrow \{T, F\}$.

For each j, suppose C_j is true due to u_i being true (false).

Let $w_j[j]$ denote $t_i[j]$ ($f_i[j]$ respectively).

The matching is formed by taking the following three subsets of S. (1) $\cup_{t(i)=T} V_i^1 \cup \cup_{t(i)=F} V_i^2$. (2) $\{(w_j[j], s_1[j], s_2[j]) : 1 \leq j \leq m\}$. (3) G'.

where G' is an appropriate subset of G, such that all the elements of $\{t_i[j], f_i[j] : 1 \le i \le n \text{ and } 1 \le j \le m\} - \{w_j[j] : 1 \le j \le m\}$ are covered (using each of $g_1[k], g_2[k], 1 \le k \le m(n-1)$ exactly once).

Partition is **NP**-complete

In **NP**: Suppose a set A, and corresponding sizes s(a) is given. To see that Partition is in **NP**, one just needs to guess a subset A' of A and verify that $\Sigma_{a \in A'} s(a) = \Sigma_{a \in A - A'} s(a)$.

NP-hard: We show $3DM \leq_m^p Partition$. Suppose three disjoint sets X, Y, Z of size n each, and $S \subseteq X \times Y \times Z$ is an instance of 3DM.

We construct (in polynomial time) an instance of Partition by giving set A, and $s(a), a \in A$, such that S has a matching iff there exists a subset A' of A such that $\Sigma_{a \in A'} s(a) = \Sigma_{a \in A-A'} s(a)$. Suppose $X = \{x_1, x_2, \ldots, x_n\}, Y = \{y_1, y_2, \ldots, y_n\}$, and $Z = \{z_1, z_2, \ldots, z_n\}$. Suppose S has k elements m_1, m_2, \ldots, m_k . Then A will have k + 2 elements, a_1, \ldots, a_{k+2} . The elements a_1, \ldots, a_k will correspond to m_1, \ldots, m_k and a_{k+1}, a_{k+2} will be special elements. If $m_i = (x_{f(i)}, y_{q(i)}, z_{h(i)})$, then

 $s(a_i) = 2^{3pn-pf(i)} + 2^{2pn-pg(i)} + 2^{pn-ph(i)}$, where p is such that $2^p > k$. Intuitively one can consider the number $s(a_i)$ as being divided into 3n zones, each of p bits as follows.

The number $s(a_i)$ is formed by placing 1 at the rightmost bit corresponding to zones $x_{f(i)}, y_{g(i)}, z_{h(i)}$, and other bits being 0.

Important characteristic: on adding the sizes corresponding to any subset of $\{a_1, \ldots, a_k\}$, there is no "carry over" from one zone to another as long as $2^p > k$.

Thus if we let $B = \sum_{0 \le j \le 3n-1} 2^{pj}$, (which is the number formed by placing 1 in the rightmost bit of each zone), Then any subset $A' \subseteq \{a_1, \ldots, a_k\}$ will satisfy $\sum_{a \in A'} s(a) = B$, iff $\{m_i : a_i \in A'\}$ is a matching of S.

Let $s(a_{k+1}) = [2 * \sum_{1 \le i \le k} s(a_i)] - B$. Let $s(a_{k+2}) = \sum_{1 \le i \le k} s(a_i) + B$. Note that the number of bits needed to specify $s(a_{k+1})$ and $s(a_{k+2})$ is a polynomial in k, n. Claim: there exists a subset $A' \subseteq A$ such that $\Sigma_{a \in A'} s(a) = \Sigma_{a \in A-A'} s(a)$ iff S has a matching. Note that $\Sigma_{a \in A} s(a) = 4\Sigma_{1 \leq i \leq k} s(a_i)$. Suppose S has a matching S'. Then clearly, $A' = \{a_i : m_i \in S'\} \cup \{a_{k+1}\}$, gives $\Sigma_{a \in A'} s(a) = ([2\Sigma_{1 \leq i \leq k} s(a_i)] - B) + B = 2\Sigma_{1 \leq i \leq k} s(a_i) = \Sigma_{a \in A-A'} s(a)$

If there exists $A' \subseteq A$ such that $\Sigma_{a \in A'} s(a) = 2\Sigma_{1 \leq i \leq k} s(a_i),$ then exactly one of a_{k+1} and a_{k+2} must be in A' (otherwise the sum will be $\geq 3\Sigma_{1 \leq i \leq k} s(a_i)$). Without loss of generality suppose that $a_{k+1} \in A'$. Then $[\Sigma_{i \in A'} s(a_i)] - s(a_{k+1}) = B$. Hence $\{m_i : a_i \in A' - \{a_{k+1}\}\}$ is a matching of S. This shows that partition is **NP**-complete. Multi Processor Scheduling is **NP**-complete

The multiprocessor scheduling problem is as follows:

INSTANCE: A finite set A of *tasks*, a *length* l(a) for each $a \in A$, a number m of *processors*, and a deadline D. A schedule $S = (A_1, A_2, \ldots, A_m)$ is a partition of A into pairwise disjoint sets A_1, A_2, \ldots, A_m . Time taken by a schedule S, denoted Time(S), is max $\{\sum_{a \in A_i} l(a) : 1 \leq i \leq m\}$. QUESTION: Is there a schedule S such that $Time(S) \leq D$?

Clearly, Multiprocessor scheduling problem is in \mathbf{NP} (one just needs to guess a schedule, S, and verify that $Time(S) \leq D$).

We reduce Partition to Multiprocessor schedule.

Suppose a set A and size s(a), for $a \in A$ is an instance of Partition problem.

Generate the instance of Multiprocessor scheduling as follows.

Let $B = \sum_{a \in A} s(a)$.

If B is odd then let m = 1, $A = \{a_1\}$, $l(a_1) = 5$, and D = 2.

If B is even, then generate an instance of Multiprocessor scheduling as follows:

m=2.

A (of multiprocessor scheduling problem) = A (of Partition problem).

l(a) = s(a).D = B/2.

It is easy to verify that there exists a subset $A' \subseteq A$ such that $\Sigma_{a \in A} s(a) = \Sigma_{a \in A-A'} s(a) = B/2$ iff there exists a schedule such that $Time(S) \leq D = B/2$.