Pairwise Random

Operations are mod 2.
Definition: Pairwise independence.
Suppose we take $h \in \mathcal{H}$ randomly, where $h:\{0,1\}^{n}$ to $\{0,1\}^{m}$. Then, for $x \neq y$, for h chosen randomly from \mathcal{H}, $\operatorname{Prob}(h(x)=a, h(y)=b)=2^{-2 m}$.
Theorem: Consider a function from $\{0,1\}^{n}$ to $\{0,1\}^{m}$.
If we use $C \in m \times n$ matrix and $d \in\{0,1\}^{m}$, then $\lambda C, d .[C x+d]$ is pairwise random family.
Proof:
$\operatorname{Prob}(C x+d=a$ and $C y+d=b)$
$=\operatorname{Prob}(C x-a=d$ and $C(y-x)=b-a)$
$=2^{-m} * 2^{-m}$.

Theorem: Suppose $T \subseteq\{0,1\}^{n}$ and $2^{k} \leq|T|<2^{k+1}$. Then, for pairwise independent hash function family, $\{0,1\}^{n}$ to $\{0,1\}^{k+2}$
$\operatorname{Prob}_{|h \in \mathcal{H}|}(|\{x: x \in T, h(x)=0\}|=1) \geq 1 / 8$
Proof: For any fixed $x \in T$,
$\operatorname{Prob}(h(x)=0$ and $h(y) \neq 0$, for all $y \in T-\{x\})$
$=\operatorname{Prob}(h(x)=0) * \operatorname{Prob}(h(y) \neq 0$, for all
$y \in T-\{x\} \mid h(x)=0)$.
$=2^{-k-2} *(1-\operatorname{Prob}(h(y)=0$, for some
$y \in T-\{x\} \mid h(x)=0)$).
$\geq 2^{-k-2} *\left(1-(|T|-1) * 2^{-k-2}\right) \geq 2^{-k-2} * 1 / 2=2^{-k-3}$.
Considering all possible $x \in T$, we get that the probability of success as required is at least
$2^{k} * 2^{-k-3}=1 / 8$.

Reduction from SAT to U-SAT

- Formula φ, with variables x_{1}, \ldots, x_{n}.
- ψ_{k} : the formula for $C x+d=0$, assuming number of satisfying assigments is between $\geq 2^{k}$ and $<2^{k+1}$.
- Thus, $\varphi \wedge \psi_{k}$ will have exactly one satisfying assignment with probability at least $1 / 8$ if φ is satisfyable with number of satisfying assignments in $\left[2^{k}, 2^{k+1}\right)$ and 0 satisfying assignments otherwise.
- Making formula for ψ_{k} : make formulas for $C_{i} \cdot x+d_{i}=0$.

$$
\begin{aligned}
& y_{i, 1}=c_{i, 1} \cdot x_{1}+d_{1} \\
& y_{i, j+1}=y_{i, j}+c_{i, j+1} \cdot x_{j+1}+d_{j+1} \\
& y_{i, n}=0
\end{aligned}
$$

