Pairwise Random

Operations are mod 2. Definition: Pairwise independence. Suppose we take $h \in \mathcal{H}$ randomly, where $h : \{0, 1\}^n$ to $\{0,1\}^m$. Then, for $x \neq y$, for h chosen randomly from \mathcal{H} , $Prob(h(x) = a, h(y) = b) = 2^{-2m}.$ Theorem: Consider a function from $\{0,1\}^n$ to $\{0,1\}^m$. If we use $C \in m \times n$ matrix and $d \in \{0,1\}^m$, then $\lambda C, d. [Cx + d]$ is pairwise random family. Proof: Prob(Cx + d = a and Cy + d = b)= Prob(Cx - a = d and C(y - x) = b - a)

$$= 2^{-m} * 2^{-m}$$

Theorem: Suppose $T \subseteq \{0,1\}^n$ and $2^k \leq |T| < 2^{k+1}$. Then, for pairwise independent hash function family, $\{0,1\}^n$ to $\{0,1\}^{k+2}$ $Prob_{|h\in\mathcal{H}|}(|\{x:x\in T,h(x)=0\}|=1) \ge 1/8$ Proof: For any fixed $x \in T$, $Prob(h(x) = 0 \text{ and } h(y) \neq 0, \text{ for all } y \in T - \{x\})$ $= Prob(h(x) = 0) * Prob(h(y) \neq 0$, for all $y \in T - \{x\} \mid h(x) = 0$). $= 2^{-k-2} * (1 - Prob(h(y)) = 0, \text{ for some})$ $y \in T - \{x\} \mid h(x) = 0)$. $> 2^{-k-2} * (1 - (|T| - 1) * 2^{-k-2}) \ge 2^{-k-2} * 1/2 = 2^{-k-3}.$ Considering all possible $x \in T$, we get that the probability of success as required is at least $2^k * 2^{-k-3} = 1/8.$

Reduction from SAT to U-SAT

- Formula φ , with variables x_1, \ldots, x_n .
- ψ_k : the formula for Cx + d = 0, assuming number of satisfying assignments is between $\geq 2^k$ and $< 2^{k+1}$.
- Thus, $\varphi \wedge \psi_k$ will have exactly one satisfying assignment with probability at least 1/8 if φ is satisfyable with number of satisfying assignments in $[2^k, 2^{k+1})$ and 0 satisfying assignments otherwise.
- Making formula for ψ_k : make formulas for $C_i \cdot x + d_i = 0$. $y_{i,1} = c_{i,1} \cdot x_1 + d_1$ $y_{i,j+1} = y_{i,j} + c_{i,j+1} \cdot x_{j+1} + d_{j+1}$. $y_{i,n} = 0$