
Relativized Classes and Probabilistic Classes

We will now consider some classes related to NP, relativized classes,
Probabilistic classes, and randomized algorithms for some interesting
problems.
Let L denote the complement of L.
coNP = {L : L ∈ NP}.
In general for any of the class C, we define coC = {L : L ∈ C}.
Consider the problem of primality. (That is: given a number n, in
binary, is n a prime?).
The complement problem of primality, is composite.
Easy: composite problem is in NP (just guess and verify a factor q
of n, such that 1 < q < n).
Thus, primality is in coNP.
It has recently been shown that primality is also in P.



Relativized classes

Suppose C is a class of languages. Then
P
C = {L : (∃ polynomial time oracle Turing Machine M )(∃L′ ∈

C)[ML′
accepts L]}.

NP
C = {L : (∃ polynomial time nondeterministic oracle Turing

Machine M )(∃L′ ∈ C)[ML′
accepts L]}.



Polynomial Hierarchy

Let Σ
p
0 = P.

Σ
p
1 = NP.

Π
p
1 = coNP.

Σ
p
i+1 = NP

Σ
p
i .

Π
p
i+1 = {L : L ∈ Σ

p
i+1}.

It can be shown that
L ∈ Σ

p
i iff there exists a polynomial time decidable predicate

R(x, y1, y2, . . . , yi) such that
x ∈ L ⇔ (∃y1) . . . (Qyi)[R(x, y1, y2, . . . , yi)], where the quantifiers
are polynomially bounded.
Similarly, L ∈ Π

p
i iff there exists a polynomial time decidable pred-

icate R(x, y1, y2, . . . , yi) such that
x ∈ L ⇔ (∀y1) . . . (Qyi)[R(x, y1, y2, . . . , yi)], where the quantifiers
are polynomially bounded.



P
NP∩coNP = NP ∩ coNP

Since P
C is closed under complementation, and NP ∩ coNP ⊆

P
NP∩coNP, it suffices to show that PNP∩coNP ⊆ NP.

Consider any polytime bounded oracle machine M , with oracle for
A ∈ NP ∩ coNP.
Let N1 witness that A ∈ NP and N2 witness that A ∈ NP.

N3(x):

Simulate M (x).

Whenever, M asks a question w, N3 guesses the answer. Based
on whether it guesses the answer to be Yes, or No, it tries to
verify the answer by simulating N1 or N2 respectively.

If it cannot verify, then it halts rejecting the input.

If it can verify the answer, it proceeds with the simulation of M .

At the end of simulation of M , N3 accepts, iff M does.



Clearly, N3 is polytime bounded.
Also, N3 doesn’t accept any x not accepted by M .
For x accepted by M , there is a sequence of right guesses for the
answers and right verification of the answers which allows N3 to
accept x. Thus N3 accepts the language accepted by MA. QED



Randomized algorithms

Consider a Turing Machine with the ability to flip coins (where each
coin flip takes one unit of time).
Let ProbM (x) denote the probability that a randomized Turing
Machine M accepts x.
The following are some interesting classes that can be defined based
on randomized Turing Machines.

Definition: A Language L is said to be in PP, iff there exists a
polynomial time bounded randomized Turing MachineM such that:
(1) For all x ∈ L, ProbM (x) > 1

2.

(2) For all x 6∈ L, ProbM (x) < 1
2.



Definition: A Language L is defined to be in BPP, iff there exists
a polynomial time bounded randomized Turing Machine M , and a
constant ǫ > 0, such that:
(1) For all x ∈ L, ProbM (x) > 1

2 + ǫ.

(2) For all x 6∈ L, ProbM (x) < 1
2 − ǫ.

Thus the probability of acceptance/rejection is bounded away from
1/2.

Definition: A Language L is defined to be in R, iff there exists
a polynomial time bounded randomized Turing Machine M , such
that:
(1) For all x ∈ L, ProbM (x) > 1

2.
(2) For all x 6∈ L, ProbM (x) = 0.

Thus, the machine never makes an error on elements not in the
language. For elements in the languages, it is correct at least 50%
of the time. (Thus it has one-sided error)



For ZPP consider machines with three possible outputs. Yes, NO
and ?.
Definition: A Language L is defined to be in ZPP, iff there exists
a polynomial time bounded randomized Turing Machine M , with
three outputs, Yes, No, and ?, such that:
(1.1) For all x ∈ L, Prob(M (x) = Y es) > 1

2.
(1.2) For all x ∈ L, Prob(M (x) = No) = 0.
(2.1) For all x 6∈ L, Prob(M (x) = No) > 1

2.
(2.2) For all x 6∈ L, Prob(M (x) = Y es) = 0.

Thus, for ZPP identification, machine commits no errors, and gives
the right answer with at least 50% probability.



Testing whether a multi-variate polynomial is identically zero

Suppose we are given a polynomial P (x1, x2, . . . , xm), in m vari-
ables, where the degree of each variable in the polynomial is at most
d. The question is, is the polynomial identically zero?
Let us consider a randomized algorithm for the above problem.
Lemma: Suppose P (x1, x2, . . . , xm), is a polynomial inm variables,
where each variable has degree at most d. Let M > 0, be a positive
integer.
If P is not identically zero, then the number ofm-tuples (x1, x2, . . . , xm) ∈
{0, 1, . . . ,M − 1}m, such that P (x1, . . . , xm) = 0, is at most
mdMm−1.
Proof By induction on m.
Base Case: Form = 1, the lemma says that a uni-variate polynomial
of degree≤ d, can have no more that d roots. This is standard result.



Induction Case:
Suppose the lemma holds for m = n.
That is, if a polynomial Q(x1, x2, . . . , xn) is not identically zero,
then the number of n-tuples (x1, x2, . . . , xn) ∈ {0, 1, . . . ,M − 1}n,
such that Q(x1, . . . , xn) = 0, is at most ndMn−1.
We will show that the lemma holds for m = n + 1. Consider
P (x1, . . . , xn+1).
Write the polynomial as a polynomial in xn+1, where the coefficients
are polynomials in x1, . . . , xn.
That is,
P (x1, . . . , xn+1) = Pd(x1, . . . , xn) ∗ xdn+1 + Pd−1(x1, . . . , xn) ∗

xd−1
n+1 + . . . + P0(x1, . . . , xn) ∗ x

0
n+1,

where Pi’s are degree d polynomials in x1, . . . , xn.



Now if P is 0 on some (x1, . . . , xn+1), there are two possibilities:

(Case 1) Highest degree coefficient of xn+1 evaluates to 0, or

(Case 2) Highest degree coefficient of xn+1 does not evaluate to 0,
but P (x1, . . . , xn+1) is 0.
Now we analyse how many different values of (x1, . . . , xn+1) can
lead to above cases.
Case 1: Note that highest degree coefficient of xn+1 cannot be iden-
tically zero (since P is not identically zero).
Thus, by induction hypothesis, Case 1 can happen for at most
ndMn−1 different values of x1, . . . , xn.
Since, xn+1 itself can have at most M different values, we have that
Case 1 can happen for at most ndMn different values of (x1, x2, . . . , xn+1).



Case 2: For each different value of x1, . . . , xn, case 2 can happen for
at most d different values of xn+1.
Thus, case 2 can hold for at most dMn different values of (x1, . . . , xn+1).
Summing up, we get that P (x1, . . . , xn+1) can be zero for at most
(n + 1)dMn different values of the tuple (x1, x2, . . . , xn+1). QED

The lemma gives us a (randomized) method to test whether a poly-
nomial P (x1, x2, . . . , xm), where each variable has degree at most
d, is not identically zero.



TestNonZero:

Input: A polynomial P (x1, x2, . . . , xm) with degree at most d in
each of the variables.

1. Let M > 2md.

2. Pick a random tuple (x1, x2, . . . , xm) ∈ {0, 1, . . . ,M − 1}m.

3. If P (x1, . . . , xm) 6= 0, then output “Not identicaly zero”.

4. Otherwise output “Probably identically zero”.

End

It is easy to verify:
(1) If P is identically zero, then the above algorithm always outputs
“Probably identically zero”
(2) If P is not identically zero, then the above algorithm outputs
“Not identically zero” with probability at least 1

2.
The run time of the above algorithm is bounded by a polynomial in
m, d.



2-SAT

It can be shown that 2-SAT is in P.
However, the technique used in the following algorithm is useful in
several other problems, and thus we will study it.

Input: (1) A set of n variables.

(2) A set of m clauses (with at most two literals per clause).

1. Initialize each variable to a random truth value.

2. For i = 1 to N , do

If all the clauses are satisfied, then output “satisfiable” and
stop.

Otherwise pick the first unsatisfied clause. Randomly flip the
truth value of one of the variables involved in the clause.

EndFor

3. Output “Probably not satisfiable”

End



Note that, if the clauses are not satisfiable, then the algorithm always
outputs, “Probably not satisfiable”.
We now argue that if the clauses are satisfiable, then with probability
at least 1

2, the algorithm outputs “satisfiable”, when we chose N =

2n2.
Suppose A is one of the satisfying assignments for the clauses.
For ease of writing the proof, suppose N = ∞.
For any truth assignment A′ let dist(A,A′) denote the number of
variables on which the truth assignments A and A′ differ.
E(k): the expected number of flips to the variable assignment, when
one starts the for loop with an A′ such that k = dist(A,A′), be-
fore the algorithm above halts, i.e. reaches a satisfying assignment.
(Here, A′ is chosen in a worst case manner among all truth assign-
ments which are at a distance k of A).



In 1 iteration of the For loop, the distance to A either becomes 1
smaller or 1 greater, where it becomes 1 smaller with probability at
least half, and becomes 1 larger with probability at most half. Thus,

E(k) ≤ E(k+1)+E(k−1)
2 + 1.

E(0) = 0 and E(n) = E(n− 1) + 1.

(Where, we use ≤ since the algorithm may find a satisfying assign-
ment different from A, or switching of both literals takes A′ closer
to A).
Note that if we replace ≤ in the above equation by =, to get equa-
tions:

E′(k) = E′(k+1)+E′(k−1)
2 + 1.

E′(0) = 0 and E′(n) = E′(n− 1) + 1.

and then solve for E′, then E(k) ≤ E′(k).



It can be verified that E′(k) = 2kn − k2, satisfies the above equa-
tions.
Thus we have E(k) ≤ 2kn− k2, or E(k) ≤ n2.
Thus, whatever the initial value of truth assignments we start with,
the expected number of iterations of the For loop before we reach A
(or some other satisfying assignment) is at most n2.
Thus with probability at least 1/2, we take at most 2n2 iterations.



To see that E(k) ≤ E′(k), let ∆(k) = E′(k)− E(k).

As ∆(k) ≥ ∆(k+1)+∆(k−1)
2 , we have that ∆(k) ≤ ∆(k + 1) implies

∆(k − 1) ≤ ∆(k).
It thus follows from ∆(n− 1) = ∆(n) that for all m < n, ∆(m) ≤
∆(m + 1).
Now from ∆(0) = 0, it follows that ∆(k) ≥ 0, for all k ≤ n.



Boosting Probabilities

Lemma (Chernoff Bounds) Suppose we have a coin, which has prob-
ability p of coming up heads and probability (1 − p) of coming up
tails.
Suppose we toss the coin n times.
Let Xn be the random variable denoting the number of heads (in n
tosses).

Then Prob(Xn ≥ (1 + θ)pn) ≤ e−f(θ)pn. For θ < 1, one can take
f (θ) to be θ2/3.

Proof: Note that Prob(etXn ≥ kE(etXn)) ≤ 1
k . Thus,

Prob(Xn ≥ (1+θ)pn) = Prob(etXn ≥ et(1+θ)pn) ≤ e−t(1+θ)pnE(etXn)

(by choosing k = et(1+θ)pn

E(etXn)
).

Now, E(etXn) = (E(etX1))n = [(1− p) + pet]n.



Thus,

Prob(Xn ≥ (1 + θ)pn) ≤ e−t(1+θ)pn[1 + p(et − 1)]n

Thus, since (1 + a)n ≤ ean,

Prob(Xn ≥ (1 + θ)pn) ≤ e−t(1+θ)pn[epn(e
t−1)]

Taking t = ln(1 + θ), we have

Prob(Xn ≥ (1 + θ)pn) ≤ epn(θ−(1+θ)ln(1+θ))

Thus one can take f (θ) = [(1 + θ)ln(1 + θ))]− θ.
For θ < 1,

ln(1 + θ) = θ − θ2
2 + θ3

3 − . . .. Thus, (θ − (1 + θ)ln(1 + θ)) =
−θ2
2 + θ3

6 − θ4
12 . . . ≤ −θ2

3 . QED



Chernoff Bounds allows us to boost the correctness probability to
quite close to 1, in BPP, R and similar classes.

Theorem: Suppose L ∈ BPP. Then there exists a polynomial time
bounded probabilistic Turing Machine M such that
(1) x ∈ L ⇒ ProbM (x) ≥ 1− 2−|x|.

(2) x 6∈ L ⇒ ProbM (x) ≤ 2−|x|.

Proof Suppose M is such that
(1) x ∈ L ⇒ ProbM (x) ≥ 1

2 + ǫ.

(2) x 6∈ L ⇒ ProbM (x) ≤ 1
2 − ǫ.

Let p = maximum probability of error = 1
2 − ǫ.

Let θ = ǫ.



Consider the following algorithm M ′

M ′(x)

1. Let n = 6|x|
ǫ2−2ǫ3

.

2. Run M (x), n times.

3. Output the answer, which is obtained in the majority of the above
runs.

End

Note that the probability of error in each run is at most p = 1
2 − ǫ.

Let θ = ǫ.
Thus, the probability that in n trials, the number of wrong answers
is more than (12− ǫ)(1+ ǫ)n (which is < n

2) is at most e−|x| ≤ 2−|x|

(where the first inequality is by Chernoff Bounds). QED



Note that
ZPP ⊆ R ⊆ BPP ⊆ PP.
ZPP ⊆ R ⊆ NP ⊆ PP.



Theorem: BPP ⊆ Σ
p
2.

Proof: Suppose L ∈ BPP. Suppose M is a machine such that
(1) if x ∈ L, then M accepts L with probability > 1− 2−|x|.

(2) if x 6∈ L, then M accepts L with probability < 2−|x|.
Suppose M is p(|x|) time bounded on input x, where p is a polyno-
mial.
Let Ax = {y : |y| = p(|x|)}.
Let, Bx = {y : |y| = p(|x|) and M (x, y) accepts}.
(Here, when we say M (x, y) accepts we mean M (x) accepts, when
the random tosses are according to y.)
Let Cx = Ax − Bx.
Intuitively, Bx is tosses, on which M accepts, and Cx are the tosses
on which M rejects.



Thus, we have
(1) if x ∈ L, then card(Bx)/card(Ax) > 1− 2−|x|.

(2) if x 6∈ L, then card(Bx)/card(Ax) < 2−|x|.

Let k = p(|x|)
|x| .

Let y⊕z denote bitwise xor. Now, for each x, consider the following
set:
Dx = {(y1, y2, . . . , yk) : yi ∈ Ax and (∀z ∈ Ax)(∃i : 1 ≤ i ≤
k)[yi ⊕ z ∈ Bx]}.



Claim: For large enough x, if x ∈ L, then Dx is not empty.
Proof: For each z, let Sz = {(y1, . . . , yk) : (∀i : 1 ≤ i ≤ k)[yi ∈ Ax

and yi ⊕ z ∈ Cx]}.
Intutively, Sz are bad tuples.
Note that card(Sz) ≤ [card(Cx)]

k.

Thus, card(⋃z∈Ax
Sz) < 2p(|x|)∗2k(p(|x|)−|x|) = 2p(|x|)+k(p(|x|)−|x|) =

2kp(|x|).
Thus, for large enough x, there exists a (y1, y2, . . . , yk) such that
(y1, y2, . . . , yk) 6∈

⋃

z∈Ax
Sz; i.e., (∀z ∈ Ax)(∃i : 1 ≤ i ≤ k)[yi⊕z 6∈

Cx]. Thus, (y1, y2, . . . , yk) ∈ Dx.



Claim: For large enough x, if x 6∈ L, then Dx is empty.
Proof: Suppose x 6∈ L.
If Dx, is not empty, then let (y1, . . . , yk) ∈ Dx.
Thus, for each z ∈ Ax, there exists a yi, such that M (x, yi ⊕ z)
Accepts.
But this implies (by pigeonhole principle), that Bx contains at least

2p(|x|)/k elements.
A contradiction for large enough x.
QED Claim



From the above claims it follows that
For large enough x,
(x ∈ L) ⇔ (∃(y1, . . . , yk) : yi ∈ Ax)(∀z ∈ Ax)[(∃i : 1 ≤ i ≤
k)[yi ⊕ z ∈ Bx]].
But, the above is a Σ

p
2 formula.

Thus L ∈ Σ
p
2.

QED Theorem

Note that Σ
p
2 = NPNP . Thus, BPP ⊆ NPNP .


