NTIME vs DTIME
Suppose M is nondeterministic, T'(n) time bounded and T

accepts L. (Recall that every path of M (even
non-accepting ones) must be 7'(n) time bounded).

Number of different IDs of M (reachable within 7'(n) steps
from starting ID)

< s% (14T (n))k s k),

where s is the number of states of M,

k is the number of tapes and

r 1S the number of symbols used by M.

s (1 +T(n))k « rFT(") < 4T(") for some constant d.

-

M’ constructs a list of reachable IDs in a BFS manner
starting from initial 1D of M.

This list can be constructed in time polynomial in
number of IDs and max length of IDs.

M’ can then search the list to see whether it contains
an accepting ID.

Thus, total time required is bounded by (™ for some
constant c.

Note that ¢ depends on M (and thus L).

—p.2/??

NSPACE vs DSPACE

-

Trivial simulation (as for time) would give exponential
bounds.

Theorem (Savitch): Suppose S(n) is fully space constructible
and S(n) > logn. Then

NSPACE(S(n)) C DSPACE([S(n)]?).

—p.3/??

Proof: Suppose S(n) is fully space constructible and M is a T
nondeterministic S(n) space bounded machine which

accepts L.
WIlog assume that M has only one work tape.

Alphabet size of M: r
Number of states of M: s
Number of different IDs of M on inputs of length n:

< s(n+2)(S(n)) ()™ < &) for some constant c.

Thus if M accepts z, then it must do so within ¢°(") steps.
(Note that S(n) > logn; this is why we needed S(n) > logn).

|

—p. 4/2?

-

I =; I>: denotes the fact that M can reach from ID [; to ID
I> In atmost i steps.
We construct M’ as follows:

M ()
Let n = |z|. Let I be the initial ID of M on input z.
If there exists an accepting ID I, of M, of length atmost

S(n), such that TEST(Iy, I+, c°(™) is true, then accept.
Else reject.
End M’

—p.5/??

TEST(14, I, t)
If I; = I, then return true.
Elself ¢t < 1, then return false.
Elself t > 1 and one can reach I, from I; in one step,
then return true.
Elself there exists an ID, I’, of length at most S(n), such
that
TEST(11,1,|t/2]) and TEST(I', I, [t/2]),
then return true.

Else return false.
End TEST

—p.6/??

Clearly, M’ accepts =z iff M does. T
Space needed:
Each TEST routine needs about O(S(n)) local space.

"he depth of recursive calls to TEST is atmost O(S(n)).

nus the space used is atmost O([S(n)]?).

ne implementation of the above recursive routine TEST on
a TM can be done by separating the different recursive calls
by using special markers and doing a stacklike
implementation.

—p.7/2?

Suppose X is a class of languages. T
Then

coX ={L:L¢c X}.

Nondeterminism:
Guess (a proof, certificate) and Verify the correctness.

—p.8/??

Closure of NSPACE under complementation: T
Immerman-Szelepscenyi Result

DSTConn = {(G, s,t) : there is a path from sto ¢ in G}.
G Is a directed graph.

Proposition: DSTConn € N LogSpace.

—p.9/??

Proof: Suppose n is the number of nodes in the graph G. T
Starting with sy = s.

At stage r:
If s, = t, then accept.
Elself r > n, then abort.
Else: Guess s,.11, verify that there is an edge (s;, s,11).
If fail, then abort. Otherwise, continue to next stage.

—p.10/??

Theorem: DST'Conn € coN LogSpace. T

Proof: count(i): gives the number of nodes in G which can
be reached from s in at most ¢ steps.

CannotReach(s,t)
c=10
For each v € V(G) do:
Guess and verify that v is reachable from s using
path of length at most n.
If successful, then
let c = ¢+ 1; If v = ¢, then reject.
End For

If ¢ = count(n), then accept; Else reject.
End

- |

—p.11/22

If ¢ is not reachable, then the above algorithm can T
(non-deterministically) find count(n) other nodes which are

reachable from s, and accept.

—p.12/?2

We now show how to compute count(-); Note that T
count(0) = 1. We show how to compute count(i + 1) using

count(t).

—p.13/?2

count(i + 1)

c = 0.
For each v € V(G) do
d=0

For each w € V(G) do
Guess and verify a path from s to w of length at

most :.
If successful in above, then
letd =d + 1;

if w=vor (w,v)is an edge, then let
c = ¢+ 1, and continue with next v.
End For
If d # count(i), then reject the computation.
End For o

count(i + 1) = c

—p. 14/22

Theorem: N LogSpace = coN LogSpace. T
Theorem: Suppose S(n) is fully space constructible, and

S(n) > log(n). Then NSpace(S(n)) = coNSpace(S(n)).

—p. 15/?2

	NTIME vs DTIME
	NSPACE vs DSPACE

