NTIME vs DTIME

Suppose M is nondeterministic, $T(n)$ time bounded and accepts L. (Recall that every path of M (even non-accepting ones) must be $T(n)$ time bounded).

Number of different IDs of M (reachable within $T(n)$ steps from starting ID)
$\leq s *(1+T(n))^{k} * r^{k T(n)}$,
where s is the number of states of M,
k is the number of tapes and
r is the number of symbols used by M.
$s *(1+T(n))^{k} * r^{k T(n)} \leq d^{T(n)}$ for some constant d.

- M^{\prime} constructs a list of reachable IDs in a BFS manner starting from initial ID of M.
- This list can be constructed in time polynomial in number of IDs and max length of IDs.
- M^{\prime} can then search the list to see whether it contains an accepting ID.
- Thus, total time required is bounded by $c^{T(n)}$ for some constant c.
- Note that c depends on M (and thus L).

NSPACE vs DSPACE

Trivial simulation (as for time) would give exponential bounds.

Theorem (Savitch): Suppose $S(n)$ is fully space constructible and $S(n) \geq \log n$. Then $N S P A C E(S(n)) \subseteq D S P A C E\left([S(n)]^{2}\right)$.

Proof: Suppose $S(n)$ is fully space constructible and M is a nondeterministic $S(n)$ space bounded machine which accepts L.
Wlog assume that M has only one work tape.
Alphabet size of $M: r$
Number of states of $M: s$
Number of different IDs of M on inputs of length n :
$\leq s(n+2)(S(n))(r)^{S(n)} \leq c^{S(n)}$, for some constant c.
Thus if M accepts x, then it must do so within $c^{S(n)}$ steps. (Note that $S(n) \geq \log n$; this is why we needed $S(n) \geq \log n$).
$I_{1} \Rightarrow{ }_{i} I_{2}$: denotes the fact that M can reach from ID I_{1} to ID I_{2} in atmost i steps.
We construct M^{\prime} as follows:
$M^{\prime}(x)$
Let $n=|x|$. Let I_{0} be the initial ID of M on input x. If there exists an accepting ID I_{f} of M, of length atmost $S(n)$, such that $\operatorname{TEST}\left(I_{0}, I_{f}, c^{S(n)}\right)$ is true, then accept. Else reject.
End M^{\prime}
$\operatorname{TEST}\left(I_{1}, I_{2}, t\right)$
If $I_{1}=I_{2}$, then return true.
Elself $t<1$, then return false.
Elself $t \geq 1$ and one can reach I_{2} from I_{1} in one step, then return true.
Elself there exists an ID, I^{\prime}, of length at most $S(n)$, such that
$\operatorname{TEST}\left(I_{1}, I^{\prime},\lfloor t / 2\rfloor\right)$ and $\operatorname{TEST}\left(I^{\prime}, I_{2},\lceil t / 2\rceil\right)$, then return true.
Else return false.
End TEST

Clearly, M^{\prime} accepts x iff M does.
Space needed:
Each TEST routine needs about $O(S(n))$ local space. The depth of recursive calls to TEST is atmost $O(S(n))$.
Thus the space used is atmost $O\left([S(n)]^{2}\right)$.
The implementation of the above recursive routine TEST on a TM can be done by separating the different recursive calls by using special markers and doing a stacklike implementation.

Suppose X is a class of languages. Then
$\operatorname{co} X=\{\bar{L}: L \in X\}$.

Nondeterminism:
Guess (a proof, certificate) and Verify the correctness.

Closure of NSPACE under complementation: Immerman-Szelepscenyi Result $D S T C o n n=\{(G, s, t)$: there is a path from s to t in $G\}$. G is a directed graph.

Proposition: DSTConn \in NLogSpace.

Proof: Suppose n is the number of nodes in the graph G. Starting with $s_{0}=s$.

At stage r :
If $s_{r}=t$, then accept.
Elself $r>n$, then abort.
Else: Guess s_{r+1}, verify that there is an edge $\left(s_{r}, s_{r+1}\right)$. If fail, then abort. Otherwise, continue to next stage.

Theorem: DSTConn \in coNLogSpace.
Proof: count (i) : gives the number of nodes in G which can be reached from s in at most i steps.

CannotReach(s,t)
$c=0$
For each $v \in V(G)$ do:
Guess and verify that v is reachable from s using path of length at most n.
if successful, then
let $c=c+1$; if $v=t$, then reject.
End For
If $c=\operatorname{count}(n)$, then accept; Else reject.
End

If t is not reachable, then the above algorithm can (non-deterministically) find count(n) other nodes which are reachable from s, and accept.

We now show how to compute count (•); Note that $\operatorname{count}(0)=1$. We show how to compute count $(i+1)$ using count (i).

count $(i+1)$

$c=0$.
For each $v \in V(G)$ do
$d=0$
For each $w \in V(G)$ do
Guess and verify a path from s to w of length at most i.
If successful in above, then

$$
\begin{aligned}
& \text { let } d=d+1 \\
& \text { if } w=v \text { or }(w, v) \text { is an edge, then let } \\
& \quad c=c+1, \text { and continue with next } v .
\end{aligned}
$$

End For
If $d \neq \operatorname{count}(i)$, then reject the computation.
End For
count $(i+1)=c$

Theorem: N LogSpace $=$ coNLogSpace .
Theorem: Suppose $S(n)$ is fully space constructible, and $S(n) \geq \log (n)$. Then $N \operatorname{Space}(S(n))=\operatorname{coNSpace}(S(n))$.

