
NTIME vs DTIME

Suppose M is nondeterministic, T (n) time bounded and
accepts L. (Recall that every path of M (even
non-accepting ones) must be T (n) time bounded).

Number of different IDs of M (reachable within T (n) steps
from starting ID)

≤ s ∗ (1 + T (n))k ∗ rkT (n),
where s is the number of states of M ,
k is the number of tapes and
r is the number of symbols used by M .

s ∗ (1 + T (n))k ∗ rkT (n) ≤ dT (n) for some constant d.

– p. 1/??

M ′ constructs a list of reachable IDs in a BFS manner
starting from initial ID of M .

This list can be constructed in time polynomial in
number of IDs and max length of IDs.

M ′ can then search the list to see whether it contains
an accepting ID.

Thus, total time required is bounded by cT (n) for some
constant c.

Note that c depends on M (and thus L).

– p. 2/??

NSPACE vs DSPACE

Trivial simulation (as for time) would give exponential
bounds.

Theorem (Savitch): Suppose S(n) is fully space constructible
and S(n) ≥ log n. Then

NSPACE(S(n)) ⊆ DSPACE([S(n)]2).

– p. 3/??

Proof: Suppose S(n) is fully space constructible and M is a
nondeterministic S(n) space bounded machine which
accepts L.
Wlog assume that M has only one work tape.
Alphabet size of M : r
Number of states of M : s
Number of different IDs of M on inputs of length n:

≤ s(n+ 2)(S(n))(r)S(n) ≤ cS(n), for some constant c.

Thus if M accepts x, then it must do so within cS(n) steps.
(Note that S(n) ≥ log n; this is why we needed S(n) ≥ log n).

– p. 4/??

I1 ⇒i I2: denotes the fact that M can reach from ID I1 to ID
I2 in atmost i steps.
We construct M ′ as follows:

M ′(x)
Let n = |x|. Let I0 be the initial ID of M on input x.
If there exists an accepting ID If of M , of length atmost

S(n), such that TEST(I0, If , c
S(n)) is true, then accept.

Else reject.
End M ′

– p. 5/??

TEST(I1, I2, t)
If I1 = I2, then return true.
ElseIf t < 1, then return false.
ElseIf t ≥ 1 and one can reach I2 from I1 in one step,

then return true.
ElseIf there exists an ID, I ′, of length at most S(n), such

that
TEST(I1, I

′, ⌊t/2⌋) and TEST(I ′, I2, ⌈t/2⌉),
then return true.

Else return false.
End TEST

– p. 6/??

Clearly, M ′ accepts x iff M does.
Space needed:
Each TEST routine needs about O(S(n)) local space.
The depth of recursive calls to TEST is atmost O(S(n)).

Thus the space used is atmost O([S(n)]2).
The implementation of the above recursive routine TEST on
a TM can be done by separating the different recursive calls
by using special markers and doing a stacklike
implementation.

– p. 7/??

Suppose X is a class of languages.
Then
coX = {L : L ∈ X}.

Nondeterminism:
Guess (a proof, certificate) and Verify the correctness.

– p. 8/??

Closure of NSPACE under complementation:
Immerman-Szelepscenyi Result

DSTConn = {(G, s, t) : there is a path from s to t in G}.
G is a directed graph.

Proposition: DSTConn ∈ NLogSpace.

– p. 9/??

Proof: Suppose n is the number of nodes in the graph G.
Starting with s0 = s.

At stage r:
If sr = t, then accept.
ElseIf r > n, then abort.
Else: Guess sr+1, verify that there is an edge (sr, sr+1).

If fail, then abort. Otherwise, continue to next stage.

– p. 10/??

Theorem: DSTConn ∈ coNLogSpace.
Proof: count(i): gives the number of nodes in G which can
be reached from s in at most i steps.

CannotReach(s,t)
c = 0
For each v ∈ V (G) do:

Guess and verify that v is reachable from s using
path of length at most n.

if successful, then
let c = c+ 1; if v = t, then reject.

End For
If c = count(n), then accept; Else reject.

End

– p. 11/??

If t is not reachable, then the above algorithm can
(non-deterministically) find count(n) other nodes which are
reachable from s, and accept.

– p. 12/??

We now show how to compute count(·); Note that
count(0) = 1. We show how to compute count(i+ 1) using
count(i).

– p. 13/??

count(i+ 1)
c = 0.
For each v ∈ V (G) do

d = 0
For each w ∈ V (G) do

Guess and verify a path from s to w of length at
most i.

If successful in above, then
let d = d+ 1;
if w = v or (w, v) is an edge, then let

c = c+ 1, and continue with next v.
End For
If d 6= count(i), then reject the computation.

End For
count(i+ 1) = c

– p. 14/??

Theorem: NLogSpace = coNLogSpace.
Theorem: Suppose S(n) is fully space constructible, and
S(n) ≥ log(n). Then NSpace(S(n)) = coNSpace(S(n)).

– p. 15/??

	NTIME vs DTIME
	NSPACE vs DSPACE

