Tutorial 10:
Q1: Show that if $L_{1} \in P P, L_{2} \in P P$, then $\left(L_{1}-L_{2}\right) \cup\left(L_{2}-L_{1}\right) \in P P$.
$\left(*\left(L_{1}-L_{2}\right) \cup\left(L_{2}-L_{1}\right)\right.$ is also called symmetric difference of L_{1} and $\left.L_{2} .{ }^{*}\right)$
Q2: Show that QBF is PSPACE-complete.
Q3: A set L is said to be self-reducible iff there exists a polynomial time computable function f such that, for all x,
(a) $f(x)=0$ or $f(x)=1$ or $f(x) \subseteq \Sigma^{*}$.
(b) if $f(x)=0$ then $x \notin L$;
(c) if $f(x)=1$ then $x \in L$;
(d) if $f(x) \subseteq \Sigma^{*}$ then $x \in L$ iff at least one of member of $f(x)$ is in L. Furthermore, each member of $f(x)$ is of length strictly smaller than the length of x.

Show that $S A T$ is self-reducible.
Q4. Suppose we additionally require in Q3 that in part (d), $f(x)$ consists of exactly one element (rather than a set of elements). Then show that if L is self-reducible (according to new definition), then L is in P.

Q5: Consider the interactive proof protocol studied in class. Let α, β be rational numbers.
Define $I P_{\alpha, \beta}$ as the complexity class consisting of language L for which there exists a polynomial time bounded randomized verifier V and a prover P (as in the definition of $I P$ done in the class), such that:
(1) If $x \in L$, then after the interaction of P and V, V accepts with probability $\geq \alpha$;
(2) If $x \notin L$, then for any prover P^{\prime}, after the interaction of P^{\prime} and V, V accepts with probability $\leq \beta$.
(a) Show that NP $\subseteq I P_{1,0}$.
(b) Show that $I P_{2 / 3,0} \subseteq \mathbf{N P}$.

