
Tutorial 10: Answer sketches.

A1: Suppose L1 and L2 in PP is witnessed by M1 and M2 respectively. Consider M(x),
which runs M1(x) and M2(x) and accepts iff exactly one of M1(x) and M2(x) accepts. Then,
M(x) is correct if both M1(x) and M2(x) are correct outputs, or both are wrong outputs. Thus,
M is correct with probability (1/2 +α1)(1/2 +α2) + (1/2−α1)(1/2−α2) = 1/2 + 2α1α2 > 1/2,
where M1(x) is correct with probability 1/2 +α1 and M2(x) is correct with probability 1/2 +α2.

2: It is easy to verify that QBF is in PSPACE (details left to the student).

To show that QBF is PSPACE-hard, suppose L is a PSPACE language as witnessed by Turing
Machine M which is nk space bounded, and 2nk

time bounded (being cn
k

time bounded can be
done similarly).

Let Pm(U, V ) denote the formula for saying that the machine M can go from ID U to ID V
in at most 2m steps.

P0 is easy to define.

Pm+1(U, V ) = (∃Z)(∀X)(∀Y )[[(U = X and Y = Z) or (Z = X and Y = V )]⇒ Pm(X, Y )]

equivalently:

Pm+1(U, V ) = (∃Z)(∀X)(∀Y )[[¬(U = X) and ¬(Z = X)] or [¬(U = X) and ¬(Y = V )] or
[¬(Y = Z) and ¬(Z = X)] or [¬(Y = Z) and ¬(Y = V )] or Pm(X, Y )]

Suppose U = u1u2 . . . unk , V = v1v2 . . . vnk , X = x1x2 . . . xnk , Y = y1y2 . . . ynk , Z =
z1z2 . . . znk . Now, for example, ¬(U = X) and ¬(Z = X) can be expressed as disjunction of
n2k formulas (for 1 ≤ i, j ≤ nk) as follows.

(¬ui and xi and ¬zj and xj) or (¬ui and xi and zj and ¬xj) or (ui and ¬xi and ¬zj and xj)
or (ui and ¬xi and zj and ¬xj).

The quantifiers in Pm(X, Y ) can be brought forwards to the beginning using

standard methods. Thus, we can express Pm(X, Y ) in prenex form in length polynomial in
m, n.

Now, x ∈ L iff Pnk(SID,AID), where SID is starting ID and AID is accepting ID for M on
input x.

A3: Consider the following function f on input (V,C). If the set of clauses is empty, then
output 1 (satisfiable). If the set of clauses contains an empty clause (note that empty clause
evaluates to false), then output 0 (not satisfiable). Otherwise, let x be a member of V . Let
V ′ = V −{x}. Let C ′ be formed from C by setting x to true and C ′′ be formed from C by setting
x to false.

Here: forming C ′ by setting x to true means that we delete the clauses which have x as a
literal (since these clauses evaluate to true when x is true), and by removing the literals ¬x (if
present) from rest of the clauses. (Similarly we get C ′′ by setting x to false).

Then, f(x) contains (V ′, C ′) and (V ′, C ′′). Note that (V,C) is satisfiable iff at least one of
(V ′, C ′) and (V ′, C ′′) is satisfiable. Furthermore, both (V ′, C ′) and (V ′, C ′′) are of size smaller
than (V,C).

A4: Consider the following procedure:
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On input x:

Let y = x.

Loop:

If f(y) = 1, then accept.
If f(y) = 0, then reject.
Otherwise, let y = f(y), and continue the loop.

End Loop.

Then, above procedure runs in polynomial time, as each loop iteration takes polynomial time,
and there are at most |x| + 1 iterations of the loop. Furthermore, due to the properties of f ,
we always have that x ∈ L iff y ∈ L, for any value y computed during the computation. Thus,
above procedure accepts L.

A5:

(a) Suppose L ∈ NP . LetQ be poly-time decidable predicate such that x ∈ L iff (∃y)[Q(x, y)],
where length of y is a polynomial in length of x.

Then, consider the prover which on input x sends one such y (if there) to the verifier. Verifier
checks that Q(x, y) is true or not, and answers correspondingly.

It is easy to verify that if x ∈ L, then the correct prover sends a y such that Q(x, y) is true,
and thus verifier accepts.

If x ∈ L, then whatever any prover may send, verifier rejects. Thus L ∈ IP1,0.

(b) Suppose L ∈ IP2/3,0 as witnessed by prover P and verifier V .

Then consider the nondeterministic machine M which on input x, guesses the strings sent
by prover, guesses the coin-tosses of the verifier and checks if the verifier accepts. If so, then M
accepts. Otherwise it rejects.

It is easy to verify that M would witness that L ∈ NP .


