Tutorial 10: Answer sketches.
A1: Suppose L_{1} and L_{2} in $P P$ is witnessed by M_{1} and M_{2} respectively. Consider $M(x)$, which runs $M_{1}(x)$ and $M_{2}(x)$ and accepts iff exactly one of $M_{1}(x)$ and $M_{2}(x)$ accepts. Then, $M(x)$ is correct if both $M_{1}(x)$ and $M_{2}(x)$ are correct outputs, or both are wrong outputs. Thus, M is correct with probability $\left(1 / 2+\alpha_{1}\right)\left(1 / 2+\alpha_{2}\right)+\left(1 / 2-\alpha_{1}\right)\left(1 / 2-\alpha_{2}\right)=1 / 2+2 \alpha_{1} \alpha_{2}>1 / 2$, where $M_{1}(x)$ is correct with probability $1 / 2+\alpha_{1}$ and $M_{2}(x)$ is correct with probability $1 / 2+\alpha_{2}$.

2: It is easy to verify that QBF is in PSPACE (details left to the student).
To show that QBF is PSPACE-hard, suppose L is a PSPACE language as witnessed by Turing Machine M which is n^{k} space bounded, and $2^{n^{k}}$ time bounded (being $c^{n^{k}}$ time bounded can be done similarly).

Let $P_{m}(U, V)$ denote the formula for saying that the machine M can go from ID U to ID V in at most 2^{m} steps.
P_{0} is easy to define.

$$
P_{m+1}(U, V)=(\exists Z)(\forall X)(\forall Y)\left[[(U=X \text { and } Y=Z) \text { or }(Z=X \text { and } Y=V)] \Rightarrow P_{m}(X, Y)\right]
$$

equivalently:
$P_{m+1}(U, V)=(\exists Z)(\forall X)(\forall Y)[[\neg(U=X)$ and $\neg(Z=X)]$ or $[\neg(U=X)$ and $\neg(Y=V)]$ or $[\neg(Y=Z)$ and $\neg(Z=X)]$ or $[\neg(Y=Z)$ and $\neg(Y=V)]$ or $\left.P_{m}(X, Y)\right]$

Suppose $U=u_{1} u_{2} \ldots u_{n^{k}}, V=v_{1} v_{2} \ldots v_{n^{k}}, X=x_{1} x_{2} \ldots x_{n^{k}}, Y=y_{1} y_{2} \ldots y_{n^{k}}, Z=$ $z_{1} z_{2} \ldots z_{n^{k}}$. Now, for example, $\neg(U=X)$ and $\neg(Z=X)$ can be expressed as disjunction of $n^{2 k}$ formulas (for $1 \leq i, j \leq n^{k}$) as follows.
$\left(\neg u_{i}\right.$ and x_{i} and $\neg z_{j}$ and $\left.x_{j}\right)$ or $\left(\neg u_{i}\right.$ and x_{i} and z_{j} and $\left.\neg x_{j}\right)$ or (u_{i} and $\neg x_{i}$ and $\neg z_{j}$ and $\left.x_{j}\right)$ or (u_{i} and $\neg x_{i}$ and z_{j} and $\neg x_{j}$).

The quantifiers in $P_{m}(X, Y)$ can be brought forwards to the beginning using
standard methods. Thus, we can express $P_{m}(X, Y)$ in prenex form in length polynomial in m, n.

Now, $x \in L$ iff $P_{n^{k}}(S I D, A I D)$, where $S I D$ is starting ID and AID is accepting ID for M on input x.

A3: Consider the following function f on input (V, C). If the set of clauses is empty, then output 1 (satisfiable). If the set of clauses contains an empty clause (note that empty clause evaluates to false), then output 0 (not satisfiable). Otherwise, let x be a member of V. Let $V^{\prime}=V-\{x\}$. Let C^{\prime} be formed from C by setting x to true and $C^{\prime \prime}$ be formed from C by setting x to false.

Here: forming C^{\prime} by setting x to true means that we delete the clauses which have x as a literal (since these clauses evaluate to true when x is true), and by removing the literals $\neg x$ (if present) from rest of the clauses. (Similarly we get $C^{\prime \prime}$ by setting x to false).

Then, $f(x)$ contains $\left(V^{\prime}, C^{\prime}\right)$ and $\left(V^{\prime}, C^{\prime \prime}\right)$. Note that (V, C) is satisfiable iff at least one of $\left(V^{\prime}, C^{\prime}\right)$ and $\left(V^{\prime}, C^{\prime \prime}\right)$ is satisfiable. Furthermore, both $\left(V^{\prime}, C^{\prime}\right)$ and $\left(V^{\prime}, C^{\prime \prime}\right)$ are of size smaller than (V, C).

A4: Consider the following procedure:

On input x :
Let $y=x$.
Loop:
If $f(y)=1$, then accept.
If $f(y)=0$, then reject.
Otherwise, let $y=f(y)$, and continue the loop.
End Loop.

Then, above procedure runs in polynomial time, as each loop iteration takes polynomial time, and there are at most $|x|+1$ iterations of the loop. Furthermore, due to the properties of f, we always have that $x \in L$ iff $y \in L$, for any value y computed during the computation. Thus, above procedure accepts L.

A5:
(a) Suppose $L \in N P$. Let Q be poly-time decidable predicate such that $x \in L$ iff $(\exists y)[Q(x, y)]$, where length of y is a polynomial in length of x.

Then, consider the prover which on input x sends one such y (if there) to the verifier. Verifier checks that $Q(x, y)$ is true or not, and answers correspondingly.

It is easy to verify that if $x \in L$, then the correct prover sends a y such that $Q(x, y)$ is true, and thus verifier accepts.

If $x \in L$, then whatever any prover may send, verifier rejects. Thus $L \in I P_{1,0}$.
(b) Suppose $L \in I P_{2 / 3,0}$ as witnessed by prover P and verifier V.

Then consider the nondeterministic machine M which on input x, guesses the strings sent by prover, guesses the coin-tosses of the verifier and checks if the verifier accepts. If so, then M accepts. Otherwise it rejects.

It is easy to verify that M would witness that $L \in N P$.

