Tutorial 10:

A1: Suppose L_1 and L_2 in PP is witnessed by M_1 and M_2 respectively. Consider M(x), which runs $M_1(x)$ and $M_2(x)$ and accepts iff exactly one of $M_1(x)$ and $M_2(x)$ accepts. Then, M(x) is correct if both $M_1(x)$ and $M_2(x)$ are correct outputs, or both are wrong outputs. Thus, M is correct with probability $(1/2 + \alpha_1)(1/2 + \alpha_2) + (1/2 - \alpha_1)(1/2 - \alpha_2) = 1/2 + 2\alpha_1\alpha_2 > 1/2$, where $M_1(x)$ is correct with probability $1/2 + \alpha_1$ and $M_2(x)$ is correct with probability $1/2 + \alpha_2$.

A2: It is easy to verify that QBF is in PSPACE (details left to the student).

To show that QBF is PSPACE-hard, suppose L is a PSPACE language as witnessed by Turing Machine M which is n^k space bounded, and 2^{n^k} time bounded (being c^{n^k} time bounded can be done similarly).

Let $P_m(U, V)$ denote the formula for saying that the machine M can go from ID U to ID V in at most 2^m steps.

 P_0 is easy to define.

 $P_{m+1}(U,V) = (\exists Z)(\forall X)(\forall Y)[[(U = X \text{ and } Y = Z) \text{ or } (Z = X \text{ and } Y = V)] \Rightarrow P_m(X,Y)]$

equivalently:

 $P_{m+1}(U,V) = (\exists Z)(\forall X)(\forall Y)[[\neg(U=X) \text{ and } \neg(Z=X)] \text{ or } [\neg(U=X) \text{ and } \neg(Y=V)] \text{ or } [\neg(Y=Z) \text{ and } \neg(Z=X)] \text{ or } [\neg(Y=Z) \text{ and } \neg(Y=V)] \text{ or } P_m(X,Y)]$

Suppose $U = u_1 u_2 \dots u_{n^k}$, $V = v_1 v_2 \dots v_{n^k}$, $X = x_1 x_2 \dots x_{n^k}$, $Y = y_1 y_2 \dots y_{n^k}$, $Z = z_1 z_2 \dots z_{n^k}$. Now, for example, $\neg (U = X)$ and $\neg (Z = X)$ can be expressed as disjunction of n^{2k} formulas (for $1 \leq i, j \leq n^k$) as follows.

 $(\neg u_i \text{ and } x_i \text{ and } \neg z_j \text{ and } x_j)$ or $(\neg u_i \text{ and } x_i \text{ and } z_j \text{ and } \neg x_j)$ or $(u_i \text{ and } \neg x_i \text{ and } \neg z_j \text{ and } x_j)$ or $(u_i \text{ and } \neg x_i \text{ and } z_j \text{ and } \neg x_j)$.

The quantifiers in $P_m(X, Y)$ can be brought forwards to the beginning using standard methods. Thus, we can express $P_m(X, Y)$ in prenex form in length polynomial in m, n.

Now, $x \in L$ iff $P_{n^k}(SID, AID)$, where SID is starting ID and AID is accepting ID for M on input x.