Tutorial 11:

Q1. Fill in the details to prove that $AM[k] \subseteq AM$.

Q2. Suppose SAT $\in PCP(r(n), 1)$ for some $r(n) = o(\log n)$. Then show that P = NP.

Q3: Suppose L can be expressed as an intersection of a language in NP, and a language in coNP. That is, there exists $L_1 \in NP$ and $L_2 \in coNP$, such that $L = L_1 \cap L_2$. Then show that $L \in PP$.

For the following questions, let $A_M(x)$ and $R_M(x)$ denote the number of accepting paths and number of rejecting paths on input x by nondeterministic Turing Machine M. Let $D_M(x) =$ $A_M(x) - R_M(x).$

Q4. Suppose that M is a polynomial time bounded nondeterministic Turing machine and $[x \in L \text{ iff } D_M(x) > 0]$. Then show that $L \in PP$.

Q5. Suppose we are given two non-deterministic Turing machines M_1 and M_2 .

(a) Show that one can construct a non-deterministic Turing machine M such that $D_M(x) =$ $D_{M_1}(x) - D_{M_2}(x).$

(b) Show that one can construct a non-deterministic Turing machine M such that $D_M(x) =$ $D_{M_1}(x) * D_{M_2}(x).$

Make sure that your M is polynomial time bounded, if M_1 and M_2 are polynomial time bounded.

Q6. Suppose x and y are integers.

Let
$$P_n(x) = (x - 1)\prod_{i=1}^n (x - 2^i)^2$$
.
Let $S_n(x) = \frac{P_n(-x) - P_n(x)}{P_n(-x) + P_n(x)}$.
Show that:
(a) If $1 \le x \le 2^n$, then $0 \le 4P_n(x) < -P_n(-x)$.
(b) If $1 \le x \le 2^n$, then $1 \le S_n(x) < 5/3$.
(c) If $-2^n \le x \le -1$, then $-5/3 < S_n(x) \le -1$.
Below, $1 \le |x|, |y| \le 2^n$.
Let $A_n(x, y) = S_n(x) + S_n(y) - 1$. Show that
(d) if $1 \le x \le 2^n$ and $1 \le y \le 2^n$, then $A_n(x, y) > 0$.
(e) if $-2^n \le x \le -1$ or $-2^n \le y \le -1$, then $A_n(x, y) < 0$.

Use techniques of the above questions to show that PP is closed under intersection.

Q7. QuadEQ is the following problem:

INPUT: Given a set of n variables, u_1, u_2, \ldots, u_n and a set of r quadratic equations (mod 2) over the variables (that is, each term in the equation could be having degree two (either as u_i^2 or as $u_i u_i$)).

0.

QUESTION: Is there a boolean vector u_1, u_2, \ldots, u_n such that the equations hold?

Show that QuadEQ is NP-complete.