
Tutorial 11:

Q1. Fill in the details to prove that (AM)[k] ⊆ AM .

Ans1: In (AM)[k], boost probabilities so that probability of error is at most 2−|x|. Assume
the 2nd last M sends p(|x|) bits of information to A.

Basically, consider the interaction (AM)[k − 2]AMAM , and status of the interaction (with
respective probabilities of success/error in these paths) after (AM)[k − 2]A.

(a) If the probability of error after the interaction is at least 2−|x|/2, we let it be considered
to be 1 giving advantage to opponent. Note that there is at most 2−|x|/2 probability for such
interaction paths, thus we have introduced error of at most 2−|x|/2 this way.

(b) For each of the other interaction paths, reduce probability of error to 2−p(|x|)−2 by usual
boosting. Note that this boosting will not effect the interaction in the portion (AM)[k − 2]A.
Thus, the above boosting does not effect the communication by M after (AM)[k − 2]A.

For paths in (b) now, use the MAM ⊆ AM method to interchange M and A. Thus, the
probability of error in each of these paths now is at most 1/4.

Thus, total probability of error is at most 1/4 + 2−|x|/2 < 1/3, and we have converted the
interaction to (AM)[k − 2]AAMM = (AM)[k − 1]. Thus, we are done by induction.

Q2. Suppose SAT ∈ PCP (r(n), 1) for some r(n) = o(log n). Then show that P = NP .

Ans2: PCP (r(n)) means we have O(r(n)) possible coin tosses, giving 2cr(n) possible paths
where at most some constant cq bits are queried, for some oonstant c. Now, x ∈ L, iff all the
paths lead to acceptance (for some proof w given by the prover). This, can be written as a SAT
formula of existance of a proof p1p2p3 . . . pm, where m ∈ O(q ∗ 2c∗r(n)) such that for each of the
2c∗r(n) possibilities of the coin tosses, a formula involving cq of the bits in p1p2 . . . pm satisfy some
condition. This is basically a SAT formula of length O(q)∗2c∗r(n) using the bits p1, p2 . . . pm, and
the question is whether there exist a proof p1p2 . . . pm which satisfies the formula.

Thus, we have done a self-reduction of SAT, and using the previous tutorial we will get that
SAT is in P .

Q3: Suppose L can be expressed as intersection of a language in NP, and a language in coNP.
That is, there exists L1 ∈ NP and L2 ∈ coNP , such that L = L1∩L2. Then show that L ∈ PP .

Ans1: Suppose L = L1 ∩ L2, where L1, L2 ∈ NP .

Then, L = L1− (L1∩L2) = [L1− (L1∩L2)]∪ [(L1∩L2)−L1], which is a symmetric difference
of two NP languages. As NP ⊆ PP , L is a symmetric difference of two PP languages, and thus
in PP based on result done in last tutorial.

For the following questions, let AM(x) and RM(x) denote the number of accepting paths and
number of rejecting paths on input x by nondeterministic Turing Machine M . Let DM(x) =
AM(x)−RM(x).

Q4. Suppose that M is a polynomial time bounded nondeterministic Turing machine and
[x ∈ L iff DM(x) > 0]. Then show that L ∈ PP .

Ans 4: Extend the computation tree of M to be of the same depth (i.e., same number of
coin tosses) on all paths, where each accepting path (rejecting path) of original M leads to 2
extra accepting paths (rejecting paths) compared to rejecting paths (accepting paths) of the new
machine.

CS4230 2

Above can be done as follows. Suppose the maximum depth (number of coin tosses) is q.
Then, for each path of length r ≤ q, extend it to a path of length q + 1, where the machine
repeats the accept/reject done after r tosses, if the next q − r tosses are all heads; otherwise, it
accepts/rejects iff the last toss is head/tail.

It is now easy to see that this winesses that L ∈ PP (where probability of acceptance being
1/2 means rejection of input).

Q5. Suppose we are given two non-deterministic Turing machines M1 and M2.

(a) Show that one can construct a non-deterministic Turing machine M such that DM(x) =
DM1(x)−DM2(x).

(b) Show that one can construct a non-deterministic Turing machine M such that DM(x) =
DM1(x) ∗DM2(x).

Make sure that your M is polynomial time bounded, if M1 and M2 are polynomial time
bounded.

Ans 5(a): M first tosses a coin. If it is heads, it follows M1. If it is tails, it follows M2

but switches answers of M2 from accept to reject and reject to accept. Thus, the difference of
accepting vs rejecting paths of M is the difference of accepting vs rejecting paths of M1 minus
the difference of accepting vs rejecting paths of M2.

5(b): M runs M1 and M2 (with their respective tosses). M accepts if either both M1 and M2

accept or both reject. M rejects if one of M1 and M2 accepts and the other rejects. It is easy to
verify that this works.

Q6. Suppose x and y are integers.

Let Pn(x) = (x− 1)Πn
i=1(x− 2i)2.

Let Sn(x) = Pn(−x)−Pn(x)
Pn(−x)+Pn(x)

.

Show that:

(a) If 1 ≤ x ≤ 2n, then 0 ≤ 4Pn(x) < −Pn(−x).

(b) If 1 ≤ x ≤ 2n, then 1 ≤ Sn(x) < 5/3.

(c) If −2n ≤ x ≤ −1, then −5/3 < Sn(x) ≤ −1.

Below, 1 ≤ |x|, |y| ≤ 2n.

Let An(x, y) = Sn(x) + Sn(y)− 1. Show that

(d) if 1 ≤ x ≤ 2n and 1 ≤ y ≤ 2n, then An(x, y) > 0.

(e) if −2n ≤ x ≤ −1 or −2n ≤ y ≤ −1, then An(x, y) < 0.

Use techniques of the above questions to show that PP is closed under intersection.

(a) Clearly, Pn(x) ≥ 0 and Pn(−x) < 0. Note that (x − 2i)2 ≤ (−x − 2i)2. Moreover, for
2k ≤ x ≤ 2k+1, we have, 4(x− 2k+1)2 < (−x− 2k+1)2. Part (a) follows.

(b) Case of Pn(x) being zero is easy. For Pn(x) > 0, part (b) follows by simply putting
−Pn(−x) = (4 + δ)Pn(x), for δ > 0, and simplifying, as numerator is −(5 + δ)Pn(x) and denom-
inator is −(3 + δ)Pn(x) (when Pn(x) is non zero).

(c) Similar to (b).

CS4230 3

(d), (e): Follow easily from (b) and (c).

Now, suppose Mi is a PP machine which run in time p(length of input) and accept Li, for
i = 1, 2.

Now, 1 ≤ DMi
(z) ≤ 2p(|z|) if z ∈ L and −1 ≥ DMi

(z) ≥ −2p(|z|) if z 6∈ L (using the appropriate
version of PP definition).

Note that techniques of Q5, allow us to get any “polynomials” in DMi
(z), on input z, as a

difference in accepting vs rejecting path by a polynomial time probabilistic Turing machine M .

Suppose, An(x, y) = Q1(x,y)
Q2(x,y)

, for some polynomials Q1 and Q2 in x, y. Note that sign of

An(x, y) is the same as sign of Q1(x, y) ∗ Q2(x, y). So, we construct a PP machine M which
has the difference of accepting vs rejecting paths as Q1(x, y) ∗ Q2(x, y), where x = DM1(z) and
y = DM2(z) (note that M is polynomial time machine based on techniques of Q5). This would
work as a PP machine for the intersection of languages accepted by M1 and M2 as it has more
accepting paths compared to rejecting paths iff An(x, y) is positive.

Q7. (a) SAT can be considered as a polynomial size circuit over the input variables using
NOT gates and (2 input) AND/OR gates. Question is then whether some possible input leads
to circuit giving 1 as answer.

Now, clearly QuadEQ is in NP as one can guess a value for the variables, and then check
that all the quadratic equations are satisfied.

We reduce circuits (or SAT circuits if you wish) to QuadEQ by first labeling all the wires in
the circuits as u1, u2, . . . , ur.

Then, output of AND gate with inputs ui, uj and output uk can be written as: uiuj−uk = 0.

Output of OR gate with inputs ui, uj and output uk can be written as: ui+uj−uiuj−uk = 0.

Output of NOT gate with input ui and output uk can be written as: ui + uk = 1.

Suppose the final output of the SAT circuit is uk, then satisfiability of the formula can be
written as: uk = 1.

The input wires can be similarly written by equating the input xi with the corresponding
name of the wire.

It is easy to verify that the above quadratic equations are satisfied iff the SAT formula can
be satisfied.

