Tutorial 11:
Q1. Fill in the details to prove that $(A M)[k] \subseteq A M$.
Ans1: In $(A M)[k]$, boost probabilities so that probability of error is at most $2^{-|x|}$. Assume the 2nd last M sends $p(|x|)$ bits of information to A.

Basically, consider the interaction $(A M)[k-2] A M A M$, and status of the interaction (with respective probabilities of success/error in these paths) after $(A M)[k-2] A$.
(a) If the probability of error after the interaction is at least $2^{-|x| / 2}$, we let it be considered to be 1 giving advantage to opponent. Note that there is at most $2^{-|x| / 2}$ probability for such interaction paths, thus we have introduced error of at most $2^{-|x| / 2}$ this way.
(b) For each of the other interaction paths, reduce probability of error to $2^{-p(|x|)-2}$ by usual boosting. Note that this boosting will not effect the interaction in the portion $(A M)[k-2] A$. Thus, the above boosting does not effect the communication by M after $(A M)[k-2] A$.

For paths in (b) now, use the $M A M \subseteq A M$ method to interchange M and A. Thus, the probability of error in each of these paths now is at most $1 / 4$.

Thus, total probability of error is at most $1 / 4+2^{-|x| / 2}<1 / 3$, and we have converted the interaction to $(A M)[k-2] A A M M=(A M)[k-1]$. Thus, we are done by induction.

Q2. Suppose SAT $\in P C P(r(n), 1)$ for some $r(n)=o(\log n)$. Then show that $P=N P$.
Ans2: $P C P(r(n))$ means we have $O(r(n))$ possible coin tosses, giving $2^{c r(n)}$ possible paths where at most some constant $c q$ bits are queried, for some oonstant c. Now, $x \in L$, iff all the paths lead to acceptance (for some proof w given by the prover). This, can be written as a SAT formula of existance of a proof $p_{1} p_{2} p_{3} \ldots p_{m}$, where $m \in O\left(q * 2^{c * r(n)}\right)$ such that for each of the $2^{c * r(n)}$ possibilities of the coin tosses, a formula involving $c q$ of the bits in $p_{1} p_{2} \ldots p_{m}$ satisfy some condition. This is basically a SAT formula of length $O(q) * 2^{c * r(n)}$ using the bits $p_{1}, p_{2} \ldots p_{m}$, and the question is whether there exist a proof $p_{1} p_{2} \ldots p_{m}$ which satisfies the formula.

Thus, we have done a self-reduction of SAT, and using the previous tutorial we will get that SAT is in P.

Q3: Suppose L can be expressed as intersection of a language in NP, and a language in coNP. That is, there exists $L_{1} \in N P$ and $L_{2} \in \operatorname{coN} P$, such that $L=L_{1} \cap L_{2}$. Then show that $L \in P P$.

Ans1: Suppose $L=L_{1} \cap \overline{L_{2}}$, where $L_{1}, L_{2} \in N P$.
Then, $L=L_{1}-\left(L_{1} \cap L_{2}\right)=\left[L_{1}-\left(L_{1} \cap L_{2}\right)\right] \cup\left[\left(L_{1} \cap L_{2}\right)-L_{1}\right]$, which is a symmetric difference of two NP languages. As $N P \subseteq P P, L$ is a symmetric difference of two $P P$ languages, and thus in $P P$ based on result done in last tutorial.

For the following questions, let $A_{M}(x)$ and $R_{M}(x)$ denote the number of accepting paths and number of rejecting paths on input x by nondeterministic Turing Machine M. Let $D_{M}(x)=$ $A_{M}(x)-R_{M}(x)$.

Q4. Suppose that M is a polynomial time bounded nondeterministic Turing machine and $\left[x \in L\right.$ iff $\left.D_{M}(x)>0\right]$. Then show that $L \in P P$.

Ans 4: Extend the computation tree of M to be of the same depth (i.e., same number of coin tosses) on all paths, where each accepting path (rejecting path) of original M leads to 2 extra accepting paths (rejecting paths) compared to rejecting paths (accepting paths) of the new machine.

Above can be done as follows. Suppose the maximum depth (number of coin tosses) is q. Then, for each path of length $r \leq q$, extend it to a path of length $q+1$, where the machine repeats the accept/reject done after r tosses, if the next $q-r$ tosses are all heads; otherwise, it accepts/rejects iff the last toss is head/tail.

It is now easy to see that this winesses that $L \in P P$ (where probability of acceptance being $1 / 2$ means rejection of input).

Q5. Suppose we are given two non-deterministic Turing machines M_{1} and M_{2}.
(a) Show that one can construct a non-deterministic Turing machine M such that $D_{M}(x)=$ $D_{M_{1}}(x)-D_{M_{2}}(x)$.
(b) Show that one can construct a non-deterministic Turing machine M such that $D_{M}(x)=$ $D_{M_{1}}(x) * D_{M_{2}}(x)$.

Make sure that your M is polynomial time bounded, if M_{1} and M_{2} are polynomial time bounded.

Ans 5(a): M first tosses a coin. If it is heads, it follows M_{1}. If it is tails, it follows M_{2} but switches answers of M_{2} from accept to reject and reject to accept. Thus, the difference of accepting vs rejecting paths of M is the difference of accepting vs rejecting paths of M_{1} minus the difference of accepting vs rejecting paths of M_{2}.
$5(\mathrm{~b}): M$ runs M_{1} and M_{2} (with their respective tosses). M accepts if either both M_{1} and M_{2} accept or both reject. M rejects if one of M_{1} and M_{2} accepts and the other rejects. It is easy to verify that this works.

Q6. Suppose x and y are integers.
Let $P_{n}(x)=(x-1) \Pi_{i=1}^{n}\left(x-2^{i}\right)^{2}$.
Let $S_{n}(x)=\frac{P_{n}(-x)-P_{n}(x)}{P_{n}(-x)+P_{n}(x)}$.
Show that:
(a) If $1 \leq x \leq 2^{n}$, then $0 \leq 4 P_{n}(x)<-P_{n}(-x)$.
(b) If $1 \leq x \leq 2^{n}$, then $1 \leq S_{n}(x)<5 / 3$.
(c) If $-2^{n} \leq x \leq-1$, then $-5 / 3<S_{n}(x) \leq-1$.

Below, $1 \leq|x|,|y| \leq 2^{n}$.
Let $A_{n}(x, y)=S_{n}(x)+S_{n}(y)-1$. Show that
(d) if $1 \leq x \leq 2^{n}$ and $1 \leq y \leq 2^{n}$, then $A_{n}(x, y)>0$.
(e) if $-2^{n} \leq x \leq-1$ or $-2^{n} \leq y \leq-1$, then $A_{n}(x, y)<0$.

Use techniques of the above questions to show that PP is closed under intersection.
(a) Clearly, $P_{n}(x) \geq 0$ and $P_{n}(-x)<0$. Note that $\left(x-2^{i}\right)^{2} \leq\left(-x-2^{i}\right)^{2}$. Moreover, for $2^{k} \leq x \leq 2^{k+1}$, we have, $4\left(x-2^{k+1}\right)^{2}<\left(-x-2^{k+1}\right)^{2}$. Part (a) follows.
(b) Case of $P_{n}(x)$ being zero is easy. For $P_{n}(x)>0$, part (b) follows by simply putting $-P_{n}(-x)=(4+\delta) P_{n}(x)$, for $\delta>0$, and simplifying, as numerator is $-(5+\delta) P_{n}(x)$ and denominator is $-(3+\delta) P_{n}(x)$ (when $P_{n}(x)$ is non zero).
(c) Similar to (b).
(d), (e): Follow easily from (b) and (c).

Now, suppose M_{i} is a $P P$ machine which run in time p (length of input) and accept L_{i}, for $i=1,2$.

Now, $1 \leq D_{M_{i}}(z) \leq 2^{p(|z|)}$ if $z \in L$ and $-1 \geq D_{M_{i}}(z) \geq-2^{p(|z|)}$ if $z \notin L$ (using the appropriate version of $P P$ definition).

Note that techniques of Q5, allow us to get any "polynomials" in $D_{M_{i}}(z)$, on input z, as a difference in accepting vs rejecting path by a polynomial time probabilistic Turing machine M.

Suppose, $A_{n}(x, y)=\frac{Q_{1}(x, y)}{Q_{2}(x, y)}$, for some polynomials Q_{1} and Q_{2} in x, y. Note that sign of $A_{n}(x, y)$ is the same as sign of $Q_{1}(x, y) * Q_{2}(x, y)$. So, we construct a PP machine M which has the difference of accepting vs rejecting paths as $Q_{1}(x, y) * Q_{2}(x, y)$, where $x=D_{M_{1}(z)}$ and $y=D_{M_{2}(z)}$ (note that M is polynomial time machine based on techniques of Q5). This would work as a PP machine for the intersection of languages accepted by M_{1} and M_{2} as it has more accepting paths compared to rejecting paths iff $A_{n}(x, y)$ is positive.

Q7. (a) SAT can be considered as a polynomial size circuit over the input variables using NOT gates and (2 input) AND/OR gates. Question is then whether some possible input leads to circuit giving 1 as answer.

Now, clearly QuadEQ is in NP as one can guess a value for the variables, and then check that all the quadratic equations are satisfied.

We reduce circuits (or SAT circuits if you wish) to QuadEQ by first labeling all the wires in the circuits as $u_{1}, u_{2}, \ldots, u_{r}$.

Then, output of AND gate with inputs u_{i}, u_{j} and output u_{k} can be written as: $u_{i} u_{j}-u_{k}=0$.
Output of OR gate with inputs u_{i}, u_{j} and output u_{k} can be written as: $u_{i}+u_{j}-u_{i} u_{j}-u_{k}=0$.
Output of NOT gate with input u_{i} and output u_{k} can be written as: $u_{i}+u_{k}=1$.
Suppose the final output of the SAT circuit is u_{k}, then satisfiability of the formula can be written as: $u_{k}=1$.

The input wires can be similarly written by equating the input x_{i} with the corresponding name of the wire.

It is easy to verify that the above quadratic equations are satisfied iff the SAT formula can be satisfied.

