CS5230. Tutorial 2: Answer Sketches

Q1. Follows from a result to be done later in lectures. Main idea is to construct a machine which does a diagonalization against all 2-tape TMs (one input tape and one work tape), which use alphabet $\{0, 1, B\}$.

Q2.

Initially:

	E	E	E	2	Ε	E	E	E	E	*	Ε	E	E	E	E	E	E	Ε	E	
	c8	c7	c c	6	c5	c4	c3	c2	c1	b0	b1	b2	b3	b4	: b	$5 \mid 1$	b6	b7	b8	
After 1 step:																				
	E	E	E		Е	E	E	E	c1	*	E	Е	E	E	E	I	Ŧ	E	Е	
	c8	c7	' c	6	c5	c4	c3	c2	b0	b1	E	b2	b3	b4	b5	5 b	6	b7	b8	
After 2 steps:																				
	E	E	E	C	Е	E	c3	c1	E	*	E	E	E	E	E	E	2	E	E	
	c8	c7	c c	6	c5	c4	c2	b0	b1	b2	b3	Ε	Е	b4	b5	b	6 1	b7	b8	
After 3 steps:																				
	E	E	E	C	Е	E	c3	c1	b1	*	E	E	E	Е	Е	E	H	£	E	
	c8	c7	c c	6	c5	c4	c2	b0	b2	b3	E	Е	E	b4	b5	b6	b	7 1	58	
After	After 4 steps:																			
E		c7	c5	c3	3	c1	Е	Е	Е	*	E	Е	E	E	Е	E	Е	E		
c8		c6	c4	c2	2 1	b0	b1	b2	b3	b4	b5	b6	b7	E	Е	Е	Е	b8		
																			-	

Q3. Follows from a result to be done later in lectures. Main idea is to construct a machine which does a diagonalization against all 2-tape TMs, which use alphabet $\{0, 1, B\}$.

Q4. Suppose $L \in NPSPACE$. Then, for some polynomial $p, L \in NSPACE(p(n))$. Thus, by Savitch's theorem, $L \in DSPACE((p(n))^2) \subseteq PSPACE$. Hence we have that $NSPACE \subseteq PSPACE$. As, $PSPACE \subseteq NSPACE$ by definition, we have PSPACE = NPSPACE.

Q5. We know how to reuse space, but not time. This is the main reason why the simulations we did for (nondeterministic) space, do not carry over to time.