
CS5230
Tutorial 3: Answer sketches

Q1 (sketch): Suppose M witnesses that L ∈ NSPACE(S(n)). Without loss of generality
assume there is only one accepting ID of M on input x. We will then show below that L
is in NSPACE(S(n)). This would imply NSPACE(S(n)) ⊆ coNSPACE(S(n)), and thus,
NSPACE(S(n)) = coNSPACE(S(n)).

For any input x, construct a graph G as follows. The vertices of G are all the possible IDs
of M (where for the input tape, we only consider head location). There is an edge from ID1

to ID2 iff there is a one step transition from ID1 to ID2 (for M). Thus, in the graph, we can
test whether there is an edge between two vertices (using space proportional to the space used
by two vertices).

Now, x 6∈ L iff there is no path from startID to AcceptingID. As done in Immerman-
Szelepscenyi result, this can be determined in nondeterministic space s, where s is the space
for representing each vertex (each ID).

Each vertex can be represented using space:

• O(S(n)) for contents of the working tapes and head location

• O(log n) for head location on the input tape

• O(1) for state of the machine M

Thus, we have that L is in NSPACE(O(S(n))) = NSPACE(S(n)).
Q2. (sketch) Follows from Q1 as context sensitive languages are exactly the languages in

NSPACE(n).
To show that a context sensitive language is in NSPACE(n) do as follows. On input w,

first lay down |w| space. Then start with the start symbol S, of the context sensitive grammar,
and do a derivation guessing the productions used in the derivation. If w can be derived in this
fashion then accept.

To show that a language L in NSPACE(n) is a CSL, construct a grammar as follows.
Suppose M witnesses that L is in NSPACE(n). Since we are considering linear space, we
may assume that the input tape is read/write and the only tape used by M . Furthermore,
assume that M , on any input of length n, has unique accepting ID qf (#)n, where qf is the only
accepting state. For ease of presentation, we give a grammar to generate strings of the form
$lw$r, where w is in L; here $l and $r stand for left-end and right-end markers respectively
(one can get rid of $l and $r by using appropriate coding). We also assume without loss of
generality that M does not move to the left of $l or right of $r during its computation.

Besides the terminals (which are symbols used by M), in the grammar we have nonterminals
S and pa for each state p and symbol a used by M . Intuitively, pa means that the machine is
in state p and reading the symbol a. The IDs of M are represented in the form Γ∗paΓ∗. We
intend to do the “reverse” simulation of M to derive the original string from S.

The following productions are used by the grammar:

• S is the starting symbol which derives q#f #∗ (via productions of the form S → S#,

S → q#f ). Note that q#f #∗ is accepting ID.
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• For transitions δ(q, b) = (p, b′, R), in M , we have a production of the form b′pc → qbc, for
all c in the alphabet.

• For transitions δ(q, b) = (p, b′, L), in M , we have a production of the form pab′ → aqb, for
all a in the alphabet.

• We also have a production of the form q$l0 → $l.

It can now be easily verified that M accepts w iff the above grammar has a derivation of
the form S ⇒∗ q#f #|w|+1 ⇒∗ q$l0 w$r ⇒ $lw$r.

Remark: If one wants to generate w rather than $lw$r as above, one could code $l with the
first symbol of w and $r with the last symbol of w and get rid of them at the end using special
production rules.

In above, we will only generate strings of length at least 2 in the language. Other strings
of length ≤ 1 can be generated using separate rules (of the form S′ → S and S′ → x, where x
denotes string of length one in the language).

Q3 (sketch): Basically the same proof as done in class for non-deterministic space works.
For deterministic cases, use i as f(n)− n.

Q4: NSPACE(n2) ⊆ DSPACE(n4) by Savitch’s theorem.
DSPACE(n4) ⊂ DSPACE(n5) by space hierarchy theorem.
DSPACE(n5) ⊆ NSPACE(n5) by definition.
Thus, NSPACE(n2) ⊂ NSPACE(n5).
Q5. Clearly, NSPACE(n3) ⊆ NSPACE(n5). Suppose by way of contradiction that
NSPACE(n5) ⊆ NSPACE(n3) — (2)
Let f(n) = bn1.5c. Note that f(n) is fully space constructible. Thus, using translation

lemma and (2), we get
NSPACE((bn1.5c)5) ⊆ NSPACE((bn1.5c)3).
But then, using (2) we have
DSPACE(n7) ⊆NSPACE(n7) ⊆NSPACE((bn1.5c)5) ⊆NSPACE((bn1.5c)3) ⊆NSPACE(n5) ⊆

NSPACE(n3) ⊆ DSPACE(n6).
(where the last ⊆ is due to Savitch’s theorem).

But, this contradicts space hierarchy theorem as limn→∞
n6

n7 = 0.
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