(CS5230
Tutorial 3: Answer sketches

Q1 (sketch): Suppose M witnesses that L € NSPACE(S(n)). Without loss of generality
assume there is only one accepting ID of M on input z. We will then show below that L
is in NSPACE(S(n)). This would imply NSPACE(S(n)) € coNSPACE(S(n)), and thus,
NSPACE(S(n)) = coNSPACE(S(n)).

For any input x, construct a graph G as follows. The vertices of G are all the possible IDs
of M (where for the input tape, we only consider head location). There is an edge from D,
to I D iff there is a one step transition from I Dy to I D9 (for M). Thus, in the graph, we can
test whether there is an edge between two vertices (using space proportional to the space used
by two vertices).

Now, x ¢ L iff there is no path from startID to AcceptinglD. As done in Immerman-
Szelepscenyi result, this can be determined in nondeterministic space s, where s is the space
for representing each vertex (each ID).

Each vertex can be represented using space:

e O(S(n)) for contents of the working tapes and head location
e O(logn) for head location on the input tape

e O(1) for state of the machine M

Thus, we have that L is in NSPACE(O(S(n))) = NSPACE(S(n)).

Q2. (sketch) Follows from Q1 as context sensitive languages are exactly the languages in
NSPACE(n).

To show that a context sensitive language is in NSPACE(n) do as follows. On input w,
first lay down |w| space. Then start with the start symbol S, of the context sensitive grammar,
and do a derivation guessing the productions used in the derivation. If w can be derived in this
fashion then accept.

To show that a language L in NSPACE(n) is a CSL, construct a grammar as follows.
Suppose M witnesses that L is in NSPACE(n). Since we are considering linear space, we
may assume that the input tape is read/write and the only tape used by M. Furthermore,
assume that M, on any input of length n, has unique accepting ID ¢¢(#)", where ¢; is the only
accepting state. For ease of presentation, we give a grammar to generate strings of the form
$;w$,, where w is in L; here $; and $, stand for left-end and right-end markers respectively
(one can get rid of $; and $, by using appropriate coding). We also assume without loss of
generality that M does not move to the left of $; or right of $, during its computation.

Besides the terminals (which are symbols used by M), in the grammar we have nonterminals
S and p® for each state p and symbol a used by M. Intuitively, p* means that the machine is
in state p and reading the symbol a. The IDs of M are represented in the form I™p®I™. We
intend to do the “reverse” simulation of M to derive the original string from S.

The following productions are used by the grammar:

e S is the starting symbol which derives qué#* (via productions of the form S — S#,
S — qu&) Note that q]##* is accepting ID.



e For transitions §(q,b) = (p,¥’, R), in M, we have a production of the form v'p® — ¢’c, for
all ¢ in the alphabet.

e For transitions §(q,b) = (p,V’, L), in M, we have a production of the form p®y’ — aq®, for
all a in the alphabet.

e We also have a production of the form qu — 9.

It can now be easily verified that M accepts w iff the above grammar has a derivation of
the form S =* qffaéoé'“”+1 =* qglw& = $w$,.

Remark: If one wants to generate w rather than $;w$, as above, one could code $; with the
first symbol of w and $, with the last symbol of w and get rid of them at the end using special
production rules.

In above, we will only generate strings of length at least 2 in the language. Other strings
of length < 1 can be generated using separate rules (of the form S — S and S’ — z, where x
denotes string of length one in the language).

Q3 (sketch): Basically the same proof as done in class for non-deterministic space works.
For deterministic cases, use i as f(n) — n.

Q4: NSPACE(n?) C DSPACE(n*) by Savitch’s theorem.

DSPACE(n*) ¢ DSPACE(n®) by space hierarchy theorem.

DSPACE(n®) C NSPACE(n%) by definition.

Thus, NSPACE(n?) C NSPACE(n®).

Q5. Clearly, NSPACE(n3) C NSPACE(n%). Suppose by way of contradiction that

NSPACE(n%) € NSPACE(n?) —(2)

Let f(n) = [n'?]. Note that f(n) is fully space constructible. Thus, using translation
lemma and (2), we get

NSPACE((|n!?])%) € NSPACE((|n'®])3).

But then, using (2) we have

DSPACE(n") C NSPACE(n") € NSPACE((|n!])®) € NSPACE((|n'®])?) € NSPACE(n®) C
NSPACE(n3) € DSPACE(nb).

(where the last C is due to Savitch’s theorem).
But, this contradicts space hierarchy theorem as lim,, Z—? = 0.



