CS5230
 Tutorial 3: Answer sketches

Q1 (sketch): Suppose M witnesses that $L \in N S P A C E(S(n))$. Without loss of generality assume there is only one accepting ID of M on input x. We will then show below that \bar{L} is in $N S P A C E(S(n))$. This would imply $N S P A C E(S(n)) \subseteq \operatorname{coNSPACE}(S(n))$, and thus, $N S P A C E(S(n))=c o N S P A C E(S(n))$.

For any input x, construct a graph G as follows. The vertices of G are all the possible IDs of M (where for the input tape, we only consider head location). There is an edge from $I D_{1}$ to $I D_{2}$ iff there is a one step transition from $I D_{1}$ to $I D_{2}$ (for M). Thus, in the graph, we can test whether there is an edge between two vertices (using space proportional to the space used by two vertices).

Now, $x \notin L$ iff there is no path from startID to AcceptingID. As done in ImmermanSzelepscenyi result, this can be determined in nondeterministic space s, where s is the space for representing each vertex (each ID).

Each vertex can be represented using space:

- $O(S(n))$ for contents of the working tapes and head location
- $O(\log n)$ for head location on the input tape
- $O(1)$ for state of the machine M

Thus, we have that \bar{L} is in $N S P A C E(O(S(n)))=N S P A C E(S(n))$.
Q2. (sketch) Follows from Q1 as context sensitive languages are exactly the languages in NSPACE(n).

To show that a context sensitive language is in $N S P A C E(n)$ do as follows. On input w, first lay down $|w|$ space. Then start with the start symbol S, of the context sensitive grammar, and do a derivation guessing the productions used in the derivation. If w can be derived in this fashion then accept.

To show that a language L in $N S P A C E(n)$ is a CSL, construct a grammar as follows. Suppose M witnesses that L is in $N S P A C E(n)$. Since we are considering linear space, we may assume that the input tape is read/write and the only tape used by M. Furthermore, assume that M, on any input of length n, has unique accepting ID $q_{f}(\#)^{n}$, where q_{f} is the only accepting state. For ease of presentation, we give a grammar to generate strings of the form $\$_{l} w \$_{r}$, where w is in L; here $\$_{l}$ and $\$_{r}$ stand for left-end and right-end markers respectively (one can get rid of $\$_{l}$ and $\$_{r}$ by using appropriate coding). We also assume without loss of generality that M does not move to the left of $\$_{l}$ or right of $\$_{r}$ during its computation.

Besides the terminals (which are symbols used by M), in the grammar we have nonterminals S and p^{a} for each state p and symbol a used by M. Intuitively, p^{a} means that the machine is in state p and reading the symbol a. The IDs of M are represented in the form $\Gamma^{*} p^{a} \Gamma^{*}$. We intend to do the "reverse" simulation of M to derive the original string from S.

The following productions are used by the grammar:

- S is the starting symbol which derives $q_{f}^{\#} \#^{*}$ (via productions of the form $S \rightarrow S \#$, $\left.S \rightarrow q_{f}^{\#}\right)$. Note that $q_{f}^{\#} \#^{*}$ is accepting ID.
- For transitions $\delta(q, b)=\left(p, b^{\prime}, R\right)$, in M, we have a production of the form $b^{\prime} p^{c} \rightarrow q^{b} c$, for all c in the alphabet.
- For transitions $\delta(q, b)=\left(p, b^{\prime}, L\right)$, in M, we have a production of the form $p^{a} b^{\prime} \rightarrow a q^{b}$, for all a in the alphabet.
- We also have a production of the form $q_{0}^{\$_{l}} \rightarrow \$_{l}$.

It can now be easily verified that M accepts w iff the above grammar has a derivation of the form $S \Rightarrow^{*} q_{f}^{\#} \#^{|w|+1} \Rightarrow^{*} q_{0}^{\$_{l}} w \Phi_{r} \Rightarrow \$_{l} w \Phi_{r}$.

Remark: If one wants to generate w rather than $\$_{l} w \Phi_{r}$ as above, one could code $\$_{l}$ with the first symbol of w and $\$_{r}$ with the last symbol of w and get rid of them at the end using special production rules.

In above, we will only generate strings of length at least 2 in the language. Other strings of length ≤ 1 can be generated using separate rules (of the form $S^{\prime} \rightarrow S$ and $S^{\prime} \rightarrow x$, where x denotes string of length one in the language).

Q3 (sketch): Basically the same proof as done in class for non-deterministic space works. For deterministic cases, use i as $f(n)-n$.

Q4: $N S P A C E\left(n^{2}\right) \subseteq D S P A C E\left(n^{4}\right)$ by Savitch's theorem.
$D S P A C E\left(n^{4}\right) \subset D S P A C E\left(n^{5}\right)$ by space hierarchy theorem.
$D S P A C E\left(n^{5}\right) \subseteq N S P A C E\left(n^{5}\right)$ by definition.
Thus, $N S P A C E\left(n^{2}\right) \subset N S P A C E\left(n^{5}\right)$.
Q5. Clearly, $\operatorname{NSPACE}\left(n^{3}\right) \subseteq \operatorname{NSPACE}\left(n^{5}\right)$. Suppose by way of contradiction that
$\operatorname{NSPACE}\left(n^{5}\right) \subseteq \operatorname{NSPACE}\left(n^{3}\right)$
Let $f(n)=\left\lfloor n^{1.5}\right\rfloor$. Note that $f(n)$ is fully space constructible. Thus, using translation lemma and (2), we get
$\operatorname{NSPACE}\left(\left(\left\lfloor n^{1.5}\right\rfloor\right)^{5}\right) \subseteq \operatorname{NSPACE}\left(\left(\left\lfloor n^{1.5}\right\rfloor\right)^{3}\right)$.
But then, using (2) we have
$\operatorname{DSPACE}\left(n^{7}\right) \subseteq \operatorname{NSPACE}\left(n^{7}\right) \subseteq \operatorname{NSPACE}\left(\left(\left\lfloor n^{1.5}\right\rfloor\right)^{5}\right) \subseteq \operatorname{NSPACE}\left(\left(\left\lfloor n^{1.5}\right\rfloor\right)^{3}\right) \subseteq \operatorname{NSPACE}\left(n^{5}\right) \subseteq$ $\operatorname{NSPACE}\left(n^{3}\right) \subseteq D S P A C E\left(n^{6}\right)$.
(where the last \subseteq is due to Savitch's theorem).
But, this contradicts space hierarchy theorem as $\lim _{n \rightarrow \infty} \frac{n^{6}}{n^{7}}=0$.

