CS5230 Tutorial 4

Below \subseteq denotes subset, whereas $\stackrel{\subseteq}{\neq}$ denotes proper subset. Q1:

 $DSPACE(n) \subseteq \bigcup_{c>0} DTIME(c^n) \subseteq DTIME(2^{n^{1,1}}) \stackrel{\subseteq}{\neq} DTIME(2^{n^2})$, where

(i) $DSPACE(n) \subseteq \bigcup_{c>0} DTIME(c^n)$ by result done in class, (ii) $\bigcup_{c>0} DTIME(c^n) \subseteq DTIME(2^{n^{1,1}})$, as $c^n \leq 2^{n^{1,1}}$, for any constant c and large enough n.

(iii) $DTIME(2^{n^{1.1}}) \stackrel{\subseteq}{\neq} DTIME(2^{n^2})$, by time hierarchy theorem as $\lim_{n\to\infty} \frac{2^{n^{1.1}}*n^{1.1}}{2n^2} = 0$ and 2^{n^2} is fully time constructible.

Q2. Clearly, $DTIME(2^n)$ is a subset of $DTIME(2^n \lceil n^{2/3} \rceil)$.

We ignore floor and ceilings in the following for notation simiplicity. They don't matter due to linear speedup theorem.

Suppose by way of contradiction that $DTIME(2^n n^{2/3}) \subset DTIME(2^n).$ Then, in translation lemma using $f(n) = 2^n$ and $f(n) = 2^n + \lfloor 2n/3 \rfloor$ respectively we get $DTIME(2^{2^n}2^{2n/3}) \subseteq DTIME(2^{2^n})$ and $DTIME(2^{2^n+2n/3}(2^n+2n/3)^{2/3}) \subseteq DTIME(2^{2^n+2n/3}),$ and thus and thus $DTIME(2^{2^n+4n/3}) \subseteq DTIME(2^{2^n}).$ But, $\lim_{n\to\infty} \frac{2^{2^n} * \log(2^{2^n})}{2^{2^n+4n/3}} = 0$, and thus by time hierarchy theorrem $DTIME(2^{2^n+n^{4/3}})$ is a proper superset of $DTIME(2^{2^n}).$ A contradiction. Thus, our assumption must have been false and $DTIME(2^n n^{2/3}) \supset DTIME(2^n).$ Q3. (Gap theorem for Space) What we need to show is: For all recursive h' (with $h'(n) \ge n$), there exists a q' such that DSPACE(q'(n)) = DSPACE(h'(q'(n))).Let $h(m) = 2^{h'(m) * h'(m)}$. Let q be as given by Gap theorem (for time) for above h. Then, we have: $DSPACE(h'(q(n)) \subseteq DTIME(2^{(h'(q(n)))^2}) = DTIME(h(q(n))) = DTIME(q(n)) \subseteq$ DSPACE(q(n)). Thus, q' = q satisfies the requirement of gap theorem for space. Gap theorem for NSPACE and NTIME can be proved similarly. Q4. False. Let $h(n) = 2^n$. Let g be increasing function as in the gap theorem. Let $T_1(n) = h(g(n))$ and $T_2(n) = g(n) * g(n)$. Then, $DTIME(T_1(n)) \subseteq DTIME(g(n))$ by gap theorem, and $DTIME(g(n)) \subseteq DTIME(T_2(n)) \subseteq DTIME(T_2(n))$

 $DTIME(T_1(n))$ as $q(n) \leq T_2(n) \leq T_1(n)$ for all but finitely many n.

Thus, $DTIME(T_1(n)) \subseteq DTIME(T_2(n))$ even though $T_1(n)$ is not in $O((T_2(n)))$. Here note that $g(n) \ge n$ and thus $T_2(n) = g(n) * g(n) \ge n^2$. Q5. Suppose **M** accepts the language $\{wcw^R : w \in \{a, b\}^*\}$.

Without loss of generality assume that \mathbf{M} accepts by moving to the right end of the input. Consider the behaviour of \mathbf{M} on inputs of the form $wa^m ca^m w^R$, where $w \in \{a, b\}^m$ and m is large enough.

Let C_j^w denote the crossing sequence of **M** on input $wa^m ca^m w^R$ at the boundary left of $a^j c$. Suppose s is the number of states of **M**. Let d > 0 be a constant such that $(2s+1)^{d*m} < 2^m/(m+1)$. Note that there exists such a constant d. Now consider the following cases.

Case 1: For some $w \in \{a, b\}^m$, all C_j^w are of length at least d * m. In this case **M** takes time at least dm^2 on input $wa^m ca^m w^R$.

Case 2: For all $w \in \{a, b\}^m$, there exists a $j \leq m$ such that C_j^w is of length at most d * m. Thus there exists $j \leq m$ such that for at least $2^m/(m+1)$ different w's, C_j^w is of length at most d * m. As the number of different C_j^m of length at most d * m is bounded by $(2s+1)^{d*m}$, we have that there are two different $w, w' \in \{a, b\}^m$ such that $C_j^w = C_j^{w'}$. But then **M** also accepts $wa^m ca^m (w')^R$, a contradiction.