(CS5230
Tutorial 4

Below C denotes subset, whereas ; denotes proper subset.

Q1:

DSPACE(n) C Ueo DTIME(c®) C DTIME(2" " )SDTIME(2"), where

(i) DSPACE(n) € Ueso DTIME(c™) by result done in class,

(ii) Upno DTIME(c") C DTIME(2""), as ¢® < 2" for any constant ¢ and large enough
n?
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(iii) DTIME(2”1‘1)§DTIME(2"2), by time hierarchy theorem as lim,, 2712717*2”11 =0and

2% is fully time constructible.

Q2. Clearly, DTIM E(2") is a subset of DTTM E(2"[n?/3]).

We ignore floor and ceilings in the following for notation simiplicity. They don’t matter due
to linear speedup theorem.

Suppose by way of contradiction that

DTIME(2"n?/3) C DTIME(2").

Then, in translation lemma using f(n) = 2™ and f(n) = 2" + |2n/3] respectively we get

DTIME(2?"2%"/3) C DTIME(2%") and

DTIME(22"+27/3(2" 4 2n/3)%/3) C DTIM E(2%"+2"/3),

and thus
DTIME(2?"+%/3) C DTIME(2?").
But, lim, 00 % = 0, and thus by time hierarchy theorrem

DTIME(22"+”4/3) is a proper superset of DTIM E(22").

A contradiction. Thus, our assumption must have been false and

DTIME(2"n?/3) > DTIME(2").

Q3. (Gap theorem for Space)

What we need to show is: For all recursive b’ (with h'(n) > n), there exists a ¢’ such that

DSPACE(¢'(n)) = DSPACE(R (¢'(n)).

Let h(m) = 20 (m)*h'(m),

Let g be as given by Gap theorem (for time) for above h.

Then, we have:

DSPACE(W (g(n)) C DTIMEQ® @)Y = DTIME(h(g(n))) = DTIME(g(n)) C
DSPACE(g(n)). Thus, ¢’ = g satisfies the requirement of gap theorem for space.

Gap theorem for NSPACE and NTIME can be proved similarly.

Q4. False.

Let h(n) = 2™. Let g be increasing function as in the gap theorem. Let T1(n) = h(g(n))
and Ty(n) = g(n) * g(n).

Then, DTIME(T1(n)) € DTIME(g(n)) by gap theorem, and DTIME(g(n)) C DTIME(T5(n)) C
DTIME(Ti(n)) as g(n) < Ty(n) < Ti(n) for all but finitely many n.

Thus, DTIME(T1(n)) C DTIME(T3(n)) even though Ti(n) is not in O((T2(n))).

Here note that g(n) > n and thus T3(n) = g(n) * g(n) > n?.

Q5. Suppose M accepts the language {wew® : w € {a, b}*}.



Without loss of generality assume that M accepts by moving to the right end of the input.
Consider the behaviour of M on inputs of the form wa™ca™w’, where w € {a,b}™ and m is
large enough.

Let C}’ denote the crossing sequence of M on input wa™ca™w’ at the boundary left of
a’c. Suppose s is the number of states of M. Let d > 0 be a constant such that (2s + 1)%*™ <
2™ /(m 4+ 1). Note that there exists such a constant d. Now consider the following cases.

Case 1: For some w € {a,b}™, all C75" are of length at least d*m. In this case M takes time
at least dm? on input wa™ca™w™.

Case 2: For all w € {a,b}"™, there exists a j < m such that C}" is of length at most d * m.
Thus there exists j < m such that for at least 2 /(m + 1) different w’s, C}" is of length at most
d*m. As the number of different CJ* of length at most d + m is bounded by (2s + 1)&m we
have that there are two different w, w’ € {a,b}" such that cy = C}f"/. But then M also accepts

wa™ca™(w')’, a contradiction.



