Tutorial 4

Below \subseteq denotes subset, whereas \nsubseteq denotes proper subset.
Q1:
$D S P A C E(n) \subseteq \bigcup_{c>0} \operatorname{DTIME}\left(c^{n}\right) \subseteq \operatorname{DTIME}\left(2^{n^{1.1}}\right) \subsetneq \operatorname{DTIME}\left(2^{n^{2}}\right)$, where
(i) $D S P A C E(n) \subseteq \bigcup_{c>0} D T I M E\left(c^{n}\right)$ by result done in class,
(ii) $\bigcup_{c>0} D T I M E\left(c^{n}\right) \subseteq D T I M E\left(2^{n^{1.1}}\right)$, as $c^{n} \leq 2^{n^{1.1}}$, for any constant c and large enough n,
(iii) $\operatorname{DTIME}\left(2^{n^{1.1}}\right) \nsubseteq D T I M E\left(2^{n^{2}}\right)$, by time hierarchy theorem as $\lim _{n \rightarrow \infty} \frac{2^{n^{1.1}} * n^{1.1}}{2^{n^{2}}}=0$ and $2^{n^{2}}$ is fully time constructible.

Q2. Clearly, $\operatorname{DTIME}\left(2^{n}\right)$ is a subset of $\operatorname{DTIME}\left(2^{n}\left\lceil n^{2 / 3}\right\rceil\right)$.
We ignore floor and ceilings in the following for notation simiplicity. They don't matter due to linear speedup theorem.

Suppose by way of contradiction that
DTIME $\left(2^{n} n^{2 / 3}\right) \subseteq D T I M E\left(2^{n}\right)$.
Then, in translation lemma using $f(n)=2^{n}$ and $f(n)=2^{n}+\lfloor 2 n / 3\rfloor$ respectively we get
$\operatorname{DTIME}\left(2^{2^{n}} 2^{2 n / 3}\right) \subseteq \operatorname{DTIME}\left(2^{2^{n}}\right)$ and
DTIME $\left(2^{2^{n}+2 n / 3}\left(2^{n}+2 n / 3\right)^{2 / 3}\right) \subseteq \operatorname{DTIME}\left(2^{2^{n}+2 n / 3}\right)$,
and thus
$\operatorname{DTIME}\left(2^{2^{n}+4 n / 3}\right) \subseteq \operatorname{DTIME}\left(2^{2^{n}}\right)$.
But, $\lim _{n \rightarrow \infty} \frac{2^{2^{n}} * \log \left(2^{2^{n}}\right)}{2^{2^{n}+4 n / 3}}=0$, and thus by time hierarchy theorrem
$\operatorname{DTIME}\left(2^{2^{n}+n^{4 / 3}}\right)$ is a proper superset of $\operatorname{DTIME}\left(2^{2^{n}}\right)$.
A contradiction. Thus, our assumption must have been false and
$\operatorname{DTIME}\left(2^{n} n^{2 / 3}\right) \supset \operatorname{DTIME}\left(2^{n}\right)$.
Q3. (Gap theorem for Space)
What we need to show is: For all recursive $h^{\prime}\left(\right.$ with $\left.h^{\prime}(n) \geq n\right)$, there exists a g^{\prime} such that
$D S P A C E\left(g^{\prime}(n)\right)=D S P A C E\left(h^{\prime}\left(g^{\prime}(n)\right)\right.$.
Let $h(m)=2^{h^{\prime}(m) * h^{\prime}(m)}$.
Let g be as given by Gap theorem (for time) for above h.
Then, we have:
$\operatorname{DSPACE}\left(h^{\prime}(g(n)) \subseteq \operatorname{DTIME}\left(2^{\left(h^{\prime}(g(n))\right)^{2}}\right)=\operatorname{DTIME}(h(g(n)))=\operatorname{DTIME}(g(n)) \subseteq\right.$ $D S P A C E(g(n))$. Thus, $g^{\prime}=g$ satisfies the requirement of gap theorem for space.

Gap theorem for NSPACE and NTIME can be proved similarly.
Q4. False.
Let $h(n)=2^{n}$. Let g be increasing function as in the gap theorem. Let $T_{1}(n)=h(g(n))$ and $T_{2}(n)=g(n) * g(n)$.

Then, $\operatorname{DTIME}\left(T_{1}(n)\right) \subseteq D T I M E(g(n))$ by gap theorem, and $\operatorname{DTIME}(g(n)) \subseteq D T I M E\left(T_{2}(n)\right) \subseteq$ $\operatorname{DTIME}\left(T_{1}(n)\right)$ as $g(n) \leq T_{2}(n) \leq T_{1}(n)$ for all but finitely many n.

Thus, $\operatorname{DTIME}\left(T_{1}(n)\right) \subseteq \operatorname{DTIME}\left(T_{2}(n)\right)$ even though $T_{1}(n)$ is not in $O\left(\left(T_{2}(n)\right)\right)$.
Here note that $g(n) \geq n$ and thus $T_{2}(n)=g(n) * g(n) \geq n^{2}$.
Q5. Suppose \mathbf{M} accepts the language $\left\{w c w^{R}: w \in\{a, b\}^{*}\right\}$.

Without loss of generality assume that \mathbf{M} accepts by moving to the right end of the input. Consider the behaviour of \mathbf{M} on inputs of the form $w a^{m} c a^{m} w^{R}$, where $w \in\{a, b\}^{m}$ and m is large enough.

Let C_{j}^{w} denote the crossing sequence of \mathbf{M} on input $w a^{m} c a^{m} w^{R}$ at the boundary left of $a^{j} c$. Suppose s is the number of states of M. Let $d>0$ be a constant such that $(2 s+1)^{d * m}<$ $2^{m} /(m+1)$. Note that there exists such a constant d. Now consider the following cases.

Case 1: For some $w \in\{a, b\}^{m}$, all C_{j}^{w} are of length at least $d * m$. In this case \mathbf{M} takes time at least $d m^{2}$ on input $w a^{m} c a^{m} w^{R}$.

Case 2: For all $w \in\{a, b\}^{m}$, there exists a $j \leq m$ such that C_{j}^{w} is of length at most $d * m$. Thus there exists $j \leq m$ such that for at least $2^{m} /(m+1)$ different w 's, C_{j}^{w} is of length at most $d * m$. As the number of different C_{j}^{m} of length at most $d * m$ is bounded by $(2 s+1)^{d * m}$, we have that there are two different $w, w^{\prime} \in\{a, b\}^{m}$ such that $C_{j}^{w}=C_{j}^{w^{\prime}}$. But then \mathbf{M} also accepts $w a^{m} c a^{m}\left(w^{\prime}\right)^{R}$, a contradiction.

