
Tutorial 5-6

Proof sketches.

a) Vertex Cover

Proof sketch: To see that Vertex Cover is in NP, given a graph (V,E), guess a V ′ ⊆ V , and
verify that (i) |V ′| ≤ k, and (ii) for all (v, w) ∈ E, at least one of v, w is in V ′. If the verification
is successful, then accept; otherwise reject.

To show that Vertex Cover is NP-hard, consider the following reduction from 3SAT.

Suppose U = {x1, x2, . . . , xn} is the set of variables and C = {c1, c2, . . . , cm} is the set of
clauses, where ci = (li,1 ∨ li,2 ∨ li,3).

Then form the vertex cover instance G = (V,E), where

V = {ui, wi : 1 ≤ i ≤ n} ∪ {zj,1, zj,2, zj,3 : 1 ≤ j ≤ m}.

Let E = {(ui, wi) : 1 ≤ i ≤ n} ∪ {(zj,1, zj,2), (zj,2, zj,3), (zj,1, zj,3) : 1 ≤ j ≤ m} ∪ {(zj,r, ui) :
lj,r = xi} ∪ {(zj,r, wi) : lj,r = ¬xi}.

Let k = 2m + n

Intuitively, ui represents xi and wi represents ¬xi. zj,r represents the literal lj,r. Clearly the
above reduction can be done in polynomial time.

It is easy to verify that in any vertex cover, one must have (i) at least one of ui, wi for each
i, 1 ≤ i ≤ n and (ii) at least two of zj,1, zj,2, zj,3, for each j, 1 ≤ j ≤ m. Thus, any vertex cover
for G of size at most 2m+ n must contain exactly one of ui, wi for each i, 1 ≤ i ≤ n and exactly
two of zj,1, zj,2, zj,3, for each j, 1 ≤ j ≤ m.

If the 3SAT problem (U,C) has a satisfying assignment, then by correspondingly choosing ui

in V ′ iff xi is true, wi in V ′ iff xi is false, and choosing two of zj,1, zj,2, zj,3 to be in V ′ such that
if zj,r is left out of V ′ then the literal lj,r is true, we can easily verify that V ′ is a vertex cover of
G.

If the Vertex Cover problem (V,E) has a vertex cover, then consider the truth assignment:
xi is true iff ui is in the vertex cover. It can now be shown that if zj,r is not in the vertex cover
then, lj,r must be true (otherwise, both the vertices of the edge (zj,r, si) are not in the vertex
cover, where si is ui, if lj,r = xi, and si is wi, if lj,r = ¬xi.)

b) Clique:

Suppose G = (V,E) is a graph. Then, one can show that G = (V,E) has a vertex cover of
size k iff G = (V,E) has an independent set of size |V | − k iff G = (V,Ec) has a clique of size
|V | − k. Here Ec = {(u, v) : u, v ∈ V, u 6= v} − E.

This proves that Clique and independent set are NP-complete.

c) X3C: It is easy to verify that X3C is in NP. Just guess a cover C ′ ⊆ C of size q, and check
that

⋃
S∈C′ S = A.

NP Hardness: By reduction from 3DM. Let (X, Y, Z, S) be a 3DM instance. Without loss of
generality assume that X, Y, Z are pairwise disjoint. Then construct a X3C instance (A,C) as
follows (here A is the set, and C is the collection of subsets of A):

A = X ∪ Y ∪ Z.

CS4230 2

C = {{x, y, z} : (x, y, z) ∈ S}.

It is easy to verify that X3C instance above has a solution iff there is a matching in the 3DM
instance and the reduction can be done in polynomial time.

d) 3-Colorability.

Proof sketch: To show that graph 3-colorability problem is in NP, just guess a coloring using
colors 0, 1, 2 and verify that for all edges (u, v) in the graph, u and v have different colors.

To show that it is NP-hard, consider reduction from 3-SAT.

Let (U,C) be a 3-SAT problem.

Suppose U = {x1, x2, . . . , xn} and C = {c1, c2, . . . , cm}, where ci = (`1i ∨ `2i ∨ `3i).

Then, construct the following 3-color problem:

V = {ui, wi : 1 ≤ i ≤ n} ∪ {C0, C2} ∪ {a1i , a2i , a3i , a4i , a5i , a6i : 1 ≤ i ≤ m}.

Let bri = uj, if `ri = xj, and bri = wj, if `ri = ¬xj.

E = {(C0, C2)} ∪ E1 ∪ E2 ∪ E3 ∪ E4, where

E1 = {(ui, wi), (ui, C2), (wi, C2) : 1 ≤ i ≤ n}

E2 = {(a6i , C0), (a6i , C2) : 1 ≤ i ≤ m}

E3 = {(a1i , a2i), (a1i , a4i), (a2i , a4i), (a4i , a5i), (a3i , a5i), (a3i , a6i), (a5i , a6i) : 1 ≤ i ≤ m}

E4 = {(bri , ari) : 1 ≤ i ≤ m, 1 ≤ r ≤ 3}.

Clearly the above reduction can be done in polynomial time.

Now, if the 3-SAT problem (U,C) is satisfiable, then fix one such satisfying assignment. Color
the vertices in V as follows.

ui is colored 1, and wi is colored 0 iff xi is true.

ui is colored 0, and wi is colored 1 iff xi is false.

C0 is colored 0.

C2 is colored 2.

a4i is colored as (color(b1i) OR color(b2i)) and a6i is colored as 1 (that is (color(a4i) OR color(b3i)).

One of a1i , a
2
i is colored 2 and the other is colored 1− color(a4i) (note that this can be done as

at least one of b1i , b
2
i is the same color as a4i). Similarly, one of a3i , a

5
i is colored 2 and the other is

colored 1− color(a6i) (note that this can be done as at least one of a4i , b
3
i is the same color as a6i).

On the other hand, if the coloring is possible, then without loss of generality assume that the
color of C2 is 2, and color of C0 is 0. This implies that color of one of ui, wi is 0 and the other
1. Consider the truth assignment Q(xi) =true iff ui is colored 1.

Now, if bri , 1 ≤ r ≤ 3 are all colored 0, then a4i and a6i must also be colored 0. But this will
cause a conflict with the edge (a6i , C0). Thus, at least one of bri , 1 ≤ r ≤ 3 is colored 1, and thus
at least one literal in ci is true.

e) Not-All-Equal SAT (NAESAT).

Proof sketch: It is easy to see that NAESAT is in NP: Certificates would be truth assignment

CS4230 3

which make each clause have at least one true and at least one false literal. Verification checks
if the truth assignment indeed makes at least one literal true and one literal false in each clause.

To show that NAESAT is NP-hard, we reduce 3-SAT to NAESAT.

Suppose (U,C) is an instance of 3SAT. Suppose the clauses in C are c1, . . . , cm.

Let U ′ = U ∪ {wi, ri : 1 ≤ i ≤ m} ∪ {T}, where ri, wi and T are new variables.

Suppose the i-th clause ci is (li1∨li2∨li3). Then, let C ′ = {(li1∨li2∨wi), (l
i
1∨li3∨ri), (ri∨wi∨T) :

1 ≤ i ≤ m}.

Clearly the above reduction can be done in polynomial time.

We claim that (U,C) is satisfiable iff (U ′, C ′) is in NAESAT.

Suppose (U,C) is satisfiable: Fix a truth assignment A(·) to variables in U which satisfies all
clauses in C.

Consider the following truth assignment A′ to variables in U ′. A′(v) = A(v), for v ∈ U .
A′(T) =True. For, 1 ≤ i ≤ m, let A′(wi) be false iff at least one of li1 or li2 is true. For,
1 ≤ i ≤ m, let A′(ri) be false iff at least one of li1 or li3 is true. Note that at least one of ri and
wi is false. It is now easy to verify that the truth assignment A′ witnesses that each clause in C ′

has at least one true literal and at least one false literal.

Now suppose that there exists a truth assignment A′ to variables in U ′ such that each clause
in C ′ has at least one true literal and at least one false literal. Without loss of generality assume
that A′(T) is true (otherwise just flip the truth assignment of each variable). We claim that A′

restricted to variables in U is a satisfying truth assignment for C. To see this note that both ri
and wi cannot be true (otherwise all three literals in (ri, wi, T) are true). If wi is false, then at
least one of li1, l

i
2 is true. If ri is false, then at least one of li1, l

i
3 is true. Thus C is satisfiable.

(f) MAX2SAT

Proof sketch: It is easy to see that MAX2SAT is in NP: Certificates would be truth assignment
which makes at least k of the clauses true. For verification, check if the truth assignment indeed
makes at least one literal true in at least k of the clauses.

To show that MAX2SAT is NP-hard, we reduce 3-SAT to MAX2SAT.

Suppose (U,C) is an instance of 3SAT. Suppose the clauses in C are c1, . . . , cm, where clause
ci is (li,1, li,2, li,3).

Then the instance of MAX2SAT (U ′, C ′, k′) is created as follows.

k′ = 7m.

V ′ = V ∪ {wi : 1 ≤ i ≤ m}.

C ′ =
⋃

1≤i≤m C ′i, where C ′i consists of 10 clauses as follows:

(li,1), (li,2), (li,3), (wi), (¬li,1 ∨ ¬li,2), (¬li,2 ∨ ¬li,3), (¬li,1 ∨ ¬li,3), (li,1 ∨ ¬wi), (li,2 ∨ ¬wi),
(li,3 ∨ ¬wi).

Clearly the above reduction can be done in polynomial time.

Note that if all of li,1, li,2, li,3 are false, then one can make at most six of the above clauses
true.

If at least one of li,1, li,2, li,3 is true, then we can make 7 clauses true by making some truth

CS4230 4

assignment to wi (by setting wi to be true if all of x, y, z are true, and wi to be false otherwise).
Moreover, there is no assignment to wi which will make more than 7 clauses true in all the cases.

It follows that one can satisfy at least 7m of the clauses in C ′ iff there is a satisfying assignment
which makes all the clauses in C true.

