Tutorial 6
Proof sketches.

1. Consider the following algorithm:

Assume without loss of generality that the graph is connected (otherwise consider each component separately).
A. Color 0 for one of the vertices.
B. Loop:

If there is a vertex v which is not colored and has two neighbours already colored differently, then output: not 2 -colorable and stop.

Else, if there is a vertex v which is not colored and has at least one neighbour w already colored then choose one such v, w, and set $\operatorname{color}(v)=1-\operatorname{color}(w)$.

End Loop
C. Output 2-colorable.

Now the above loop will either stop due to conflict as mentioned above, or will color all the vertices in a valid way. Note that it cannot be the case that some vertex is not colored at the end of the above loop (unless the algorithm stops due to output "not 2-colorable", as the graph is connected.

Q2: It is easy to see that Knapsack problem is in NP: just guess the subset S^{\prime} of S and verify that its weight is $\leq K$ and value is $\geq V$.

To show that it is NP-complete, reduce from partition:
If A is the set with s being the weight function in partition,
then make a knapsack problem as follows:
$S=A . \operatorname{value}(a)=\operatorname{weight}(a)=s(a)$, for each $a \in A$.
$K=\left\lfloor\frac{1}{2} * \sum_{a \in A} s(a)\right\rfloor$.
$V=\left\lceil\frac{1}{2} * \sum_{a \in A} s(a)\right\rceil$.
Now, it is easy to verify that there is a partition $A^{\prime}, A-A^{\prime}$ in the partition problem iff the choice $A^{\prime} \subseteq S$ satisfies the requirements of the knapsack problem.

