
Tutorial 7:

1. Consider the Max-Cut Problem which can be described as follows.

Suppose G = (V,E) is an undirected graph. (X, Y) is said to be a cut of G, if (X, Y) is a
partition of V . That is, X ∩ Y = ∅ and X ∪ Y = V .

Size of a cut (X, Y) of G, is |{(v, w) | v ∈ X
∧

w ∈ Y
∧

(v, w) ∈ E}|. That is, size of a
cut (X, Y) is the number of edges in G which connect X and Y .

Max-Cut problem is to find a cut with maximum size. This optimization problem can be
shown to be NP-Hard.

Below is an approximation algorithm for Max-Cut.

For the following, let CutSize(X, Y) denote the size of the cut (X, Y) in the input graph
G.

App MAXCUT
Input: G = (V,E), an undirected graph with vertex set V and edge set E.
Output: a cut (X, Y) of G. (* with reasonably good size compared to the maxcut

*)
1. Let X = ∅, Y = V .

Done = False.
2. While not Done do

(* Intuitively, each iteration of while loop checks, whether moving some
vertex from one of the partitions to another, increases the size of the
cut. If so, then one such vertex is moved. If there is no such vertex,
then the procedure halts. *)

If there exists a v ∈ X such that CutSize(X−{v}, Y ∪{v}) > CutSize(X, Y),
Then

Let X = X − {v}, Y = Y ∪ {v}.
Else If there exists a w ∈ Y such that CutSize(X ∪ {w}, Y − {w}) >

CutSize(X, Y), Then
Let X = X ∪ {w}, Y = Y − {w}.

Else Done = True.
EndWhile

3. Output (X, Y).
End App MAXCUT

Show that the above alogrithm gives a cut which is of size within a factor of 2 of optimal.

2. Recall the Multiprocessor Scheduling problem which is NP-complete. Thus the corre-
sponding problem of finding an optimal schedule S (which minimizes T(S), the time taken
by schedule S) is NP-hard. Consider the following approximation algorithm for Multipro-
cessor Scheduling. Intuitively the idea is to schedule the tasks in order of decreasing length
(time taken to execute the task), where the tasks are assigned to the processors in rotating
order.

Multi Schedule (A, `,m)
(* A is a set of n tasks. ` is an array, where `(a) denotes the time taken by task
a. m is the number of processors. *)

2

1. Sort all the tasks based on non-increasing order of `(·).
Say the sorted order is a0, a1, . . . , an−1, where `(ai) ≥ `(ai+1), for i < n− 1.
2. For 0 ≤ i < m, let Ai = {aj | j < n and (j mod m) = i}
3. S = (A0, A1, . . . , Am−1) is the schedule for the m processors, where Ai is

the set of tasks assigned to processor i.
End

Show that the above algorithm is a good approximation algorithm by showing that the
completion time for the schedule generated by the above algorithm is no worse than twice
the completion time of the optimal schedule.

Hint: Consider the load due to the longest task and the rest of the tasks.

3. Recall that the satisfiability problem is:

INPUT: A set V = {x1, x2, . . . , xn} of variables, and a set C = {c1, c2, . . . , cm},
of clauses, where each ci is a disjunction of some literals.

(xj and xj are called literals, where xj denotes the negation of xj).
QUESTION: Is there a truth assignment to the variables such that all the clauses
are satisfied. That is, for each clause ci, there exists a j such that [(xj is true
and xj is a literal in ci) or (xj is false and xj is a literal in ci)].

The corresponding optimization problem is to find a truth assignment to the variables
which maximizes the number of clauses that can be satisfied. Consider the following ap-
proximation algorithm for this problem.

ApproxSAT(V,C)
(* V is a set of variables, and C is a set of clauses over V . Assume without loss

of generality that no clause contains both x and x for any variable x in V .
Furthermore assume that no clause contains multiple occurrence of the same
literal.*)

1. Let CLeft = C.
(* Intuitively, CLeft gives the clauses yet to be satisfied. *)

2. For i = 1 to n to do
(* Intuitively, we assign value to variable xi in this loop. *)
If the number of clauses in CLeft that xi appears in is more than the

number of clauses in CLeft in which xi appears in, then
Assign xi to be true.
Let CLeft = CLeft−{c : c is a clause in CLeft which contains
xi}.

Otherwise,
Assign xi to be false.
Let CLeft = CLeft−{c : c is a clause in CLeft which contains
xi}.

End while
End

3

Prove that the above is a good approximation algorithm by showing that
Alg
Opt
≥ k

k+1
, where

k is the minimal number of distinct literals in any of the clauses in C (that is,
each clause in C has at least k distinct literals),
Opt is the number of clauses that can be satisfied by an optimal truth assignment
to the variables, and
Alg is the number of clauses that the above algorithm satisfies.

