Tutorial 7 Answer sketches

Q1: Let X, Y denote the cut obtained by the algorithm and U, W be the optimal cut. Let alg denote the size of the cut as given by the algorithm, and opt denote the optimal size cut.

Let $V_{1}=X \cap U$ and $V_{2}=X \cap W, V_{3}=Y \cap U$ and $V_{4}=Y \cap W$.
For $i, j \in 1,2,3,4, i \neq j$, let $e_{i, j}$ denote the number of edges from V_{i} to V_{j}.
Thus, $a l g=e_{1,3}+e_{1,4}+e_{2,3}+e_{2,4}$.
$o p t=e_{1,2}+e_{1,4}+e_{2,3}+e_{3,4}$.
As the algorithm is not able to find a vertex to switch from X to Y (or vice versa), we have that for any vertex $v \in V_{1}$, the number of edges from v to V_{2} is at most the number of edges from v to $V_{3} \cup V_{4}$. It follows that

$$
e_{1,2} \leq e_{1,3}+e_{1,4}
$$

Similarly

$$
e_{3,4} \leq e_{1,3}+e_{2,3}
$$

Thus, we have that

$$
o p t=e_{1,2}+e_{1,4}+e_{2,3}+e_{3,4} \leq\left(e_{1,3}+e_{1,4}\right)+e_{1,4}+e_{2,3}+\left(e_{1,3}+e_{2,3}\right) \leq 2 a l g .
$$

Q2. Note that the load on the processor 1 is highest. Furthermore, if we drop a_{1} from processor 1 , then its load will become the least.

Thus, based on the schedule given by the algorithm, maximum load maxalg is at most

$$
\ell\left(a_{1}\right)+\left[\sum_{i=2}^{n} \ell\left(a_{i}\right)\right] / m
$$

Let optmax denote the maximum processor load given by optimal schedule. Then,

$$
\ell\left(a_{1}\right) \leq \text { optmax }
$$

and

$$
\left[\sum_{i=2}^{n} \ell\left(a_{i}\right)\right] / m \leq \sum_{i=1}^{n} \ell\left(a_{i}\right) / m \leq \text { optmax }
$$

Thus, we immediately have that
maxalg ≤ 20 optmax.
Q3. Let C Left $t_{\text {end }}$ denote the value of C Left at the end of the algorithm. Whenever a literal ℓ is set true in the loop, let n_{ℓ} denote the number of clauses which get satisfied due to ℓ being set true in the corresponding while loop. Thus, if $\bar{\ell}$ occurs in CLeft $_{\text {end }}$, then the number of occurences of $\bar{\ell}$ in C Left $t_{\text {end }}$ is at most n_{ℓ}. (Since this is the property ensured by the algorithm when making ℓ true). It follows that the number of clauses which are satisfied is at least the number of literals left in $C L E F T_{\text {end }}$. If each clause has at least k literals, then $k *\left|C L E F T_{\text {end }}\right| \leq$ number of clauses satisfied. Thus, the number of clauses satisfied is at least $k /(k+1)$ of the number of clauses. As the optimal algorithm can at best satisfy all the clauses, we have our result.

