Tutorial 8: Answer sketches.
A1: Suppose L_{1} and L_{2} are in $N P$ as witnessed by nondeterministic polytime bounded machines M_{1} and M_{2} respectively. Then, to show that $L_{1} \cup L_{2} \in N P$, consider a machine M which on input x, runs $M_{1}(x)$ and $M_{2}(x)$ and accepts x iff at least one of M_{1} and M_{2} accepts x. It is easy to verify that M is a nondeterministic polytime bounded machine which accepts $L_{1} \cup L_{2}$. It can be similarly shown that $N P$ is closed under intersection.

A2 (sketch): To show that $B P P$ is closed under intersection suppose L_{1} and L_{2} are two languages in BPP which are accepted by probabilistic machines M_{1} and M_{2}, with error probability at most $1 / 4$. Using boosting, one can reduce the error probability to $1 / 8$ (by using machines M_{1}^{\prime} and M_{2}^{\prime} respectively). Note that the boosting can be done by running M_{1} (respectively M_{2}) 101 times, and taking majority answer. Then consider M, which on input x simulates $M_{1}^{\prime}(x)$ and then $M_{2}^{\prime}(x)$. M accepts x iff M_{1}^{\prime} and M_{2}^{\prime} both accept x. The error probability of M is bounded by error probability of M_{1}^{\prime} plus the error probability of M_{2}^{\prime} on input x. Thus M makes error with probability at most $1 / 4$.

One can similarly show that BPP is closed under union and complementation.
A3: Suppose $N P$ is closed under complementation. Suppose L is in NP. Then \bar{L} is also in NP. Thus, there exist two nondeterministic polytime bounded machines M_{1} and M_{2} which accept L and \bar{L} respectively. Let M be a nondeterminstic machine which runs $M_{1}(x)$ and $M_{2}(x)$, and if $M_{1}(x)$ accepts then $M(x)$ accepts; if $M_{2}(x)$ accepts, then $M(x)$ rejects, and if neither accepts, then $M(x)$ outputs ? (neither accepts nor rejects). It is easy to verify that M above satisfies the requirements.

A4: To show that $Z P P \subseteq R$, convert ? outputs to 'no' (reject) outputs. As $Z P P$ is closed under complementation, we get that $Z P P \subseteq c o R$ also.

To show that $R \cap c o R \subseteq Z P P$, suppose L and \bar{L} are both in R as witnessed by M_{1} and M_{2} respectively. Now, $M(x)$ simulates $M_{1}(x)$ and $M_{2}(x) . M(x)$ accepts if $M_{1}(x)$ accepts; $M(x)$ rejects if $M_{2}(x)$ accepts, and outputs ? if both $M_{1}(x)$ and $M_{2}(x)$ reject. It is easy to verify that M witnesses that L is in $Z P P$.

Q5. Clearly, $P P \subseteq P P^{\prime}$. Now suppose L is in $P P^{\prime}$ as witnessed by machine M^{\prime}. Here we assume that M^{\prime} uses two sided coin tosses, and runs in time $p(|x|)$, for some polynomial p (where $|x|$ denotes the length of input $x)$.

Consider $M^{\prime \prime}$ which on input x, rejects with probability $1 / 2^{q(|x|)}$ and outputs the answer of $M^{\prime}(x)$ with probability $1-2^{-q(|x|)}$. Then, if $x \notin L$, then $M^{\prime \prime}(x)$ accepts with probability $<1 / 2$. If $x \in L$, then $M^{\prime \prime}(x)$ accepts with probability at least $\left(1-2^{-q(|x|)}\right)\left(\frac{1}{2}+2^{-p(|x|)}\right)$, which is $>1 / 2$ if we take $q(|x|)$ to be $p(|x|)+2$.

