
Tutorial 9: Answer sketches.

A1 (a) Similar to (b) below, except that we don’t need to worry about error probability. The
whole simulation is in PSPACE.

(b). Suppose L ∈ BPPBPP . Suppose M1 is polynomial time bounded probabilitic Turing
Machine and A ∈ BPP are such that L is accepted by MA

1 with the error probibility bounded
by 2−n on inputs of length n.

Let A′ = {x#∗ : x ∈ A}. Note that A′ is also in BPP. Furthermore, we can replace A by
A′ as an oracle without changing the fact that MA

1 accepts L with error probability bounded by
2−n on inputs of length n.

Suppose M2 is a polynomial time bounded probabilistic Turing Machine which accepts A′

with error probability bounded by 2−n on inputs of length n.

Note that such M1 and M2 exist using boosting technique done in class. Suppose M1 is p(n)
time bounded.

Now let M(x) simulate M1 on input x and whenever questions are asked by M1 for y, then
simulate M2(y#p(|x|)−|y|) and answer the question accordingly. As there are at most polynomially
many queries, and for each of such queries, error is bounded by 2−p(|x|), all questions are answered
correctly with probability at least 1−p(|x|)∗2−p(|x|). Furthermore M1 makes error with probability
at most 2−|x|, if all its questions are answered correctly. Thus, M gives correct answer with
probability at least (1− 2−|x|) ∗ (1− p(|x|) ∗ 2−p(|x|)), which is more than 3/4 for large enough x.

A2: Suppose M witnesses that L ∈ PP . Then consider the machine M ′ which rejects with
probability 1/2 and with probability 1/2 just simulates M . Then, M ′ witnesses that L is in
PP ′′′.

Now suppose L ∈ PP ′′ as witnessed by M . Without loss of generality assume that if x ∈ L
then M accepts with probability > 1/4 and if x 6∈ L, then M accepts with probability < 1/4
(see technique used in previous tutorial). To show that L ∈ PP , consider a machine M ′ which
accepts with probability 1/3, and with probability 2/3 simulates M(x) and accepts iff M does.
Then, it is easy to verify that M ′ witnesses that L is in PP .

Note: The above uses 3-sided (along with 2-sided) coin tosses.

To simulate 3-sided coin toss using 2-sided coin toss, one can do the following. Suppose M
is a machine which uses 3-sided coin toss, and runs in time p(|x|). Then, one can simulate each
3-sided coin toss, by tossing a 2-sided coin q(|x|) times, and dividing the 2q(|x|) outcomes into
three groups of nearly equal size (where the difference between any two groups is at most one).
This simulation provides an “error” in simulation of each coin toss of probability at most 2−q(|x|).
Thus the total error introduced in the simulation is at most 3p(|x|) ∗ (2−q(|x|), which is less than
7−p(|x|), for q(|x|) = |x| ∗ p(|x|), and large enough |x|. This error is smaller than the “quantum”
of each probability used by M (since acceptance and rejection probabilities of M are away from
1/2 by at least 6−p(|x|)).


