Turing Machines

1. Infinite tape, divided into cells.
2. Read/Write Head
3. Finite Number of States
4. In each step, head can read/write and move left/right.

Example:
Suppose we want to check if the input contains same number of a's as b's.

State	a	b	B	X
q 0	$\mathrm{q} 1, \mathrm{X}, \mathrm{R}$	$\mathrm{q} 2, \mathrm{X}, \mathrm{R}$	$\mathrm{qA}, \mathrm{B}, \mathrm{R}$	$\mathrm{q} 0, \mathrm{X}, \mathrm{R}$
q 1	$\mathrm{q} 1, \mathrm{a}, \mathrm{R}$	$\mathrm{q} 3, \mathrm{X}, \mathrm{L}$		$\mathrm{q} 1, \mathrm{X}, \mathrm{R}$
q 2	$\mathrm{q} 3, \mathrm{X}, \mathrm{L}$	$\mathrm{q} 2, \mathrm{~b}, \mathrm{R}$		$\mathrm{q} 2, \mathrm{X}, \mathrm{R}$
q 3	$\mathrm{q} 3, \mathrm{a}, \mathrm{L}$	$\mathrm{q} 3, \mathrm{~b}, \mathrm{~L}$	$\mathrm{q} 0, \mathrm{~B}, \mathrm{R}$	$\mathrm{q} 3, \mathrm{X}, \mathrm{L}$
qA				

Turing Machines

1. Function Computation
2. Language Acceptance

Turing Machines

Turing machine $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$.
Q : a set of states
Σ : input alphabet set
Γ : tape alphabet. $\Sigma \subseteq \Gamma$.
δ : transition function from $Q \times \Gamma$ to $Q \times \Gamma \times\{L, R\}$.
q_{0} : starting state
B : blank symbol. We assume $B \in \Gamma-\Sigma$
F : set of final/accepting states. $F \subseteq Q$.
Usually, input is given without any blanks in between.

Instantaneous Description

1. We leave out blanks on both ends.

Exception: if head is among the blanks
2. $x_{0} x_{1} \ldots x_{n-1} q x_{n} x_{n+1} \ldots x_{m}$.
3. $x_{0} x_{1} \ldots x_{n-1} q x_{n} x_{n+1} \ldots x_{m} \vdash$ next ID
4. \vdash^{*} can be defined by saying 'zero or more steps'.
$I D_{0} \vdash I D_{1} \vdash \ldots \vdash I D_{n}$, then
$I D_{0} \vdash^{*} I D_{n}$.
(Here n maybe 0).

Language Accepted by Turing Machine

TM accepts x, if

$$
q_{0} x \vdash^{*} \alpha q_{f} \beta
$$

where $q_{f} \in F$.
$L(M)=\left\{x: q_{0} x \vdash^{*} \alpha q_{f} \beta\right.$, for some $\left.q_{f} \in F\right\}$.

Languages/Functions

1. A language L is said to be recursively enumerable (RE), (computably enumerable, CE) if some Turing Machine accepts the language L.
2. A language L is said to be recursive (decidable), if some Turing Machine accepts the language L, and Halts on all the inputs.
3. A function f is said to be partial recursive (partial computable), if some Turing Machine computes the function (it halts on all the inputs on which f is defined, and it does not halt on inputs on which f is not defined).
4. A function f is said to be recursive (computable), if some Turing Machine computes the function, and f is defined on all elements of Σ^{*}.

Turing Machine and Halting

Machine may never halt.
Cannot determine if a machine will halt on a particular input

Modifications of Turing Machines

- Stay where you are
- memorize a constant amount of information
- Multi Track Turing Machines
- Semi-Infinite Tapes
- Multi Tape Turing Machines
- Nondeterministic Turing Machines

Simulation of multi-track (one way infinite tape) TM

Simulation for 2 tracks.
Generalization to multitrack is easy.
Suppose $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$, a 2-track (one tape) TM is given.
Note:
$\delta(q, x, y)=(p, u, v, m)$, means if the machine is in state q, reading x on first track and y on second track, then

- next state is p, u is written on the first track, v is written on the second track, and m is the movement of head (L, R or S).
We construct $M^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \Gamma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, B^{\prime}, F^{\prime}\right)$, a one track, one tape, TM as follows.
Σ^{\prime} : For each $x, y \in \Sigma$ we have $[x, y],[x, B],[B, y] \in \Sigma^{\prime}$.
Γ^{\prime} : For each $x, y \in \Gamma$ we have $[x, y] \in \Gamma^{\prime}$.
$B^{\prime}=[B, B]$.
$Q^{\prime}=Q$.
$F^{\prime}=F$.
$q_{0}^{\prime}=q_{0}$.
Input: Any input of the form $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$ for M is mapped to input $\left[x_{1}, y_{1}\right]\left[x_{2}, y_{2}\right] \ldots\left[x_{n}, y_{n}\right]$ for M^{\prime}.
Note: In the above input $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$ for M, means that $x_{1}, x_{2}, \ldots, x_{n}$ is on the first track, and $y_{1}, y_{2}, \ldots, y_{n}$ is on the second track.
δ^{\prime} is defined as follows: for $m \in\{S, L, R\}$, if $\delta(q, x, y)=(p, u, v, m)$, then $\delta^{\prime}(q,[x, y])=(p,[u, v], m)$.
It is easy to verify that any instantaneous description of the form: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{l}, y_{l}\right) q\left(x_{l+1}, y_{l+1}\right), \ldots$ is mapped to $\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right], \ldots,\left[x_{l}, y_{l}\right] q\left[x_{l+1}, y_{l+1}\right], \ldots$

Simulation of TM with two-way infinite tape using TM with one way infinite tape

Suppose $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$, a TM with 2-way infinite tape, is given.
We construct $M^{\prime}=\left(Q^{\prime}, \Sigma^{\prime}, \Gamma^{\prime}, q_{0}^{\prime}, B^{\prime}, F^{\prime}\right)$, a TM with one way infinite tape, as follows.
Σ^{\prime} : For each $x \in \Sigma$ we have $[x, B] \in \Sigma^{\prime}$.
Γ^{\prime} : For each $x, y \in \Gamma$ we have $[x, y] \in \Gamma^{\prime}$. In addition, for each $x \in \Gamma$, we have $[x, \$] \in \Gamma^{\prime}$. Here $\$$ is a special symbol not in Γ. $B^{\prime}=[B, B]$.
Input: Each input $x_{1}, x_{2}, \ldots, x_{n}$ for M is mapped to input $\left[x_{1}, B\right],\left[x_{2}, B\right] \ldots$, for M^{\prime}.
Q^{\prime} : For each $q \in Q$, we have $[q, U]$ and $[q, D]$ in Q^{\prime}. In addition we have a special state called $q_{\text {new }}$ in Q^{\prime}.
F^{\prime} : for each $q \in F$, we have $[q, U]$ and $[q, D]$ in F^{\prime}.
$q_{0}^{\prime}=q_{\text {new }}$.
δ^{\prime} is defined as follows:
$\delta^{\prime}\left(q_{\text {new }},[x, B]\right)=\left(\left[q_{0}, U\right],[x, \$], S\right) .\left(\delta^{\prime}\left(q_{\text {new }},[x, y]\right)\right.$ for $y \neq B$ is not defined; we will not be needing it).
Suppose $x \in \Gamma$. Consider any $q \in Q$. Then δ^{\prime} for remaining states, symbols in $Q^{\prime} \times \Gamma^{\prime}$ is defined as follows.

1. Suppose $x, y, w \in \Gamma$.

$$
\text { If } \delta(q, x)=(p, y, S) \text {, then }
$$

$$
\delta^{\prime}([q, U],[x, w])=([p, U],[y, w], S), \text { and } \delta^{\prime}([q, D],[w, x])=
$$ $([p, D],[w, y], S)$.

If $\delta(q, x)=(p, y, R)$, then
$\delta^{\prime}([q, U],[x, w])=([p, U],[y, w], R)$, and $\delta^{\prime}([q, D],[w, x])=$ $([p, D],[w, y], L)$.
If $\delta(q, x)=(p, y, L)$, then $\delta^{\prime}([q, U],[x, w])=([p, U],[y, w], L)$, and $\delta^{\prime}([q, D],[w, x])=$ $([p, D],[w, y], R)$.
2. Suppose $x, y \in \Gamma$.

$$
\begin{aligned}
& \text { If } \delta(q, x)=(p, y, S) \text {, then } \delta^{\prime}([q, U],[x, \$])=([p, U],[y, \$], S) \text {. } \\
& \text { If } \delta(q, x)=(p, y, R) \text {, then } \delta^{\prime}([q, U],[x, \$])=([p, U],[y, \$], R) . \\
& \text { If } \delta(q, x)=(p, y, L) \text {, then } \delta^{\prime}([q, U],[x, \$])=([p, D],[y, \$], R) .
\end{aligned}
$$

3. Suppose $x \in \Gamma$.

$$
\delta^{\prime}([q, D],[x, \$])=([q, U],[x, \$], S)
$$

Exercise: What is the correspondence between ID of M and ID of M^{\prime} ?
Exercise: Give details of how to simulate a multi-tape TM using one tape TM.

Church-Turing Thesis

Whatever can be computed by an algorithmic device (in function computation sense, or language acceptance sense) can be done by a Turing Machine.

Codings of TMs/Strings; Gödel Numbering

States: q_{1}, q_{2}, \ldots are the states, with q_{1} being start state and q_{2} the only accepting state.

Tape symbols: $X_{1}, X_{2}, \ldots, X_{s}$ are tape symbols. X_{1} is $0, X_{2}$ is 1 and X_{3} is blank.

Directions: L is D_{1} and R is D_{2}.
Coding Transition: $\delta\left(q_{i}, X_{j}\right)=\left(q_{k}, X_{l}, D_{m}\right)$, then code it using string $0^{i} 10^{j} 10^{k} 10^{l} 10^{m}$.
(Note that each of i, j, k, l, m is at least 1).
Code of TM is: $C_{1} 11 C_{2} 11 C_{3} \ldots C_{n}$, where C_{i} are the codes of all the transitions in the TM.

For a string x over $\{0,1\}^{*}$, let $1 x$ (in binary) -1 be its code. Similarly, for larger alphabets.
M_{i} denotes the Turing Machine with code number i. $W_{i}=L\left(M_{i}\right)$ denotes the language accepted by Turing Machine with code number i.
φ_{i} denotes the function computed by the i-th Turing Machine. Without loss of generality, we often take $W_{i}=L\left(M_{i}\right)=\operatorname{domain}\left(M_{i}\right)$.

A non-RE language
Let $L_{d}=\left\{w_{i}: w_{i} \notin L\left(M_{i}\right)\right\}$.

Pairing Function

Bijection from $N \times N$ to N.
$\langle x, y\rangle=2^{x}(2 y+1)-1$.
One can extend it to triples by using $\langle x, y, z\rangle=\langle x,\langle y, z\rangle\rangle$.
Extend to coding m-tuples N^{m} to N.

Universal Turing Machine

$$
L_{u}=\left\{\langle i, w\rangle: M_{i} \text { accepts } w\right\}
$$

