
Turing Machines

1. Infinite tape, divided into cells.
2. Read/Write Head
3. Finite Number of States
4. In each step, head can read/write and move left/right.
Example:
Suppose we want to check if the input contains same number of a’s
as b’s.
State a b B X

q0 q1, X, R q2, X, R qA,B,R q0, X, R

q1 q1, a, R q3, X, L q1, X, R

q2 q3, X, L q2, b, R q2, X, R

q3 q3, a, L q3, b, L q0,B,R q3, X, L

qA



Turing Machines

1. Function Computation
2. Language Acceptance



Turing Machines

Turing machine M = (Q,Σ,Γ, δ, q0, B, F ).
Q: a set of states
Σ: input alphabet set
Γ: tape alphabet. Σ ⊆ Γ.
δ: transition function from Q× Γ to Q× Γ× {L,R}.
q0: starting state
B: blank symbol. We assume B ∈ Γ− Σ
F : set of final/accepting states. F ⊆ Q.
Usually, input is given without any blanks in between.



Instantaneous Description

1. We leave out blanks on both ends.
Exception: if head is among the blanks .....

2. x0x1 . . . xn−1qxnxn+1 . . . xm.

3. x0x1 . . . xn−1qxnxn+1 . . . xm ⊢ next ID

4. ⊢∗ can be defined by saying ‘zero or more steps’.
ID0 ⊢ ID1 ⊢ . . . ⊢ IDn, then
ID0 ⊢

∗ IDn.
(Here n maybe 0).



Language Accepted by Turing Machine

TM accepts x , if

q0x ⊢∗ αqfβ

where qf ∈ F .
L(M ) = {x : q0x ⊢∗ αqfβ, for some qf ∈ F}.



Languages/Functions

1. A language L is said to be recursively enumerable (RE), (com-
putably enumerable, CE) if some Turing Machine accepts the lan-
guage L.

2. A language L is said to be recursive (decidable), if some Turing
Machine accepts the language L, and Halts on all the inputs.

3. A function f is said to be partial recursive (partial computable),
if some Turing Machine computes the function (it halts on all the
inputs on which f is defined, and it does not halt on inputs on which
f is not defined).

4. A function f is said to be recursive (computable), if some Turing
Machine computes the function, and f is defined on all elements of
Σ∗.



Turing Machine and Halting

Machine may never halt.
Cannot determine if a machine will halt on a particular input ....



Modifications of Turing Machines

– Stay where you are
– memorize a constant amount of information
– Multi Track Turing Machines
– Semi-Infinite Tapes
– Multi Tape Turing Machines
– Nondeterministic Turing Machines



Simulation of multi-track (one way infinite tape) TM

Simulation for 2 tracks.
Generalization to multitrack is easy.
Suppose M = (Q,Σ,Γ, δ, q0, B, F ), a 2-track (one tape) TM is
given.
Note:
δ(q, x, y) = (p, u, v,m), means if the machine is in state q, reading
x on first track and y on second track, then
— next state is p, u is written on the first track, v is written on the
second track, and m is the movement of head (L,R or S).
We construct M ′ = (Q′,Σ′,Γ′, δ′, q′0, B

′, F ′), a one track, one tape,
TM as follows.



Σ′: For each x, y ∈ Σ we have [x, y], [x,B], [B, y] ∈ Σ′.
Γ′: For each x, y ∈ Γ we have [x, y] ∈ Γ′.
B′ = [B,B].
Q′ = Q.
F ′ = F .
q′0 = q0.
Input: Any input of the form (x1, y1)(x2, y2) . . . (xn, yn) for M is
mapped to input [x1, y1][x2, y2] . . . [xn, yn] for M

′.
Note: In the above input (x1, y1)(x2, y2) . . . (xn, yn) for M , means
that x1, x2, . . . , xn is on the first track, and y1, y2, . . . , yn is on the
second track.
δ′ is defined as follows: form ∈ {S,L,R}, if δ(q, x, y) = (p, u, v,m),
then δ′(q, [x, y]) = (p, [u, v],m).
It is easy to verify that any instantaneous description of the form:
(x1, y1), (x2, y2), ...., (xl, yl)q(xl+1, yl+1), . . . is mapped to
[x1, y1], [x2, y2], ...., [xl, yl]q[xl+1, yl+1], . . ..



Simulation of TM with two-way infinite tape using TM with one
way infinite tape

Suppose M = (Q,Σ,Γ, δ, q0, B, F ), a TM with 2-way infinite tape,
is given.
We construct M ′ = (Q′,Σ′,Γ′, q′0, B

′, F ′), a TM with one way infi-
nite tape, as follows.
Σ′: For each x ∈ Σ we have [x,B] ∈ Σ′.
Γ′: For each x, y ∈ Γ we have [x, y] ∈ Γ′. In addition, for each
x ∈ Γ, we have [x, $] ∈ Γ′. Here $ is a special symbol not in Γ.
B′ = [B,B].
Input: Each input x1, x2, . . . , xn forM is mapped to input [x1, B], [x2, B] . . . , [
for M ′.
Q′: For each q ∈ Q, we have [q, U ] and [q,D] in Q′. In addition we
have a special state called qnew in Q′.
F ′: for each q ∈ F , we have [q, U ] and [q,D] in F ′.
q′0 = qnew.



δ′ is defined as follows:
δ′(qnew, [x,B]) = ([q0, U ], [x, $], S). (δ′(qnew, [x, y]) for y 6= B is
not defined; we will not be needing it).

Suppose x ∈ Γ. Consider any q ∈ Q. Then δ′ for remaining states,
symbols in Q′ × Γ′ is defined as follows.

1. Suppose x, y, w ∈ Γ.

If δ(q, x) = (p, y, S), then
δ′([q, U ], [x,w]) = ([p, U ], [y, w], S), and δ′([q,D], [w, x]) =
([p,D], [w, y], S).

If δ(q, x) = (p, y, R), then
δ′([q, U ], [x,w]) = ([p, U ], [y, w], R), and δ′([q,D], [w, x]) =
([p,D], [w, y], L).

If δ(q, x) = (p, y, L), then
δ′([q, U ], [x,w]) = ([p, U ], [y, w], L), and δ′([q,D], [w, x]) =
([p,D], [w, y], R).



2. Suppose x, y ∈ Γ.

If δ(q, x) = (p, y, S), then δ′([q, U ], [x, $]) = ([p, U ], [y, $], S).
If δ(q, x) = (p, y, R), then δ′([q, U ], [x, $]) = ([p, U ], [y, $], R).
If δ(q, x) = (p, y, L), then δ′([q, U ], [x, $]) = ([p,D], [y, $], R).

3. Suppose x ∈ Γ.

δ′([q,D], [x, $]) = ([q, U ], [x, $], S).

Exercise: What is the correspondence between ID of M and ID of
M ′?
Exercise: Give details of how to simulate a multi-tape TM using one
tape TM.



Church-Turing Thesis

Whatever can be computed by an algorithmic device (in function
computation sense, or language acceptance sense) can be done by a
Turing Machine.



Codings of TMs/Strings; Gödel Numbering

States: q1, q2, . . . are the states, with q1 being start state and q2 the
only accepting state.

Tape symbols: X1, X2, . . . , Xs are tape symbols. X1 is 0, X2 is 1
and X3 is blank.

Directions: L is D1 and R is D2.

Coding Transition: δ(qi, Xj) = (qk, Xl, Dm), then code it using

string 0i10j10k10l10m.
(Note that each of i, j, k, l,m is at least 1).

Code of TM is: C111C211C3 . . . Cn, where Ci are the codes of all
the transitions in the TM.



For a string x over {0, 1}∗, let 1x (in binary) −1 be its code.
Similarly, for larger alphabets.

Mi denotes the Turing Machine with code number i.
Wi = L(Mi) denotes the language accepted by Turing Machine with
code number i.
ϕi denotes the function computed by the i-th Turing Machine.
Without loss of generality, we often takeWi = L(Mi) = domain(Mi).



A non-RE language

Let Ld = {wi : wi 6∈ L(Mi)}.



Pairing Function

Bijection from N ×N to N .
〈x, y〉 = 2x(2y + 1)− 1.
One can extend it to triples by using 〈x, y, z〉 = 〈x, 〈y, z〉〉.
Extend to coding m-tuples Nm to N .



Universal Turing Machine

Lu = {〈i, w〉 : Mi accepts w}.


