Turing Machines

- 1. Infinite tape, divided into cells.
- 2. Read/Write Head
- 3. Finite Number of States
- 4. In each step, head can read/write and move left/right.

Example:

Suppose we want to check if the input contains same number of a's as b's.

State	a	b	В	Х
q0	q1, X, R	q2, X, R	qA,B,R	q0, X, R
q1	q1, a, R	q3, X, L		q1, X, R
q2	q3, X, L	q2, b, R		q2, X, R
q3	q3, a, L	q3, b, L	q0,B,R	q3, X, L
qA				

Turing Machines

- 1. Function Computation
- 2. Language Acceptance

Turing Machines

- Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F).$
- Q: a set of states
- Σ : input alphabet set
- Γ : tape alphabet. $\Sigma \subseteq \Gamma$.
- δ : transition function from $Q \times \Gamma$ to $Q \times \Gamma \times \{L, R\}$.
- q_0 : starting state
- B: blank symbol. We assume $B \in \Gamma \Sigma$
- F: set of final/accepting states. $F \subseteq Q$.

Usually, input is given without any blanks in between.

Instantaneous Description

1. We leave out blanks on both ends. Exception: if head is among the blanks

$$2. x_0 x_1 \dots x_{n-1} q x_n x_{n+1} \dots x_m.$$

3.
$$x_0 x_1 \dots x_{n-1} q x_n x_{n+1} \dots x_m \vdash \text{next ID}$$

4. \vdash^* can be defined by saying 'zero or more steps'. $ID_0 \vdash ID_1 \vdash \ldots \vdash ID_n$, then $ID_0 \vdash^* ID_n$. (Here *n* maybe 0). $\label{eq:Language} \mbox{Language} \mbox{Accepted by Turing Machine} $$ TM accepts x , if $$$

$$\begin{split} q_0x \vdash^* \alpha q_f\beta \\ \text{where } q_f \in F. \\ L(M) &= \{ x: q_0x \vdash^* \alpha q_f\beta, \text{ for some } q_f \in F \}. \end{split}$$

Languages/Functions

1. A language L is said to be *recursively enumerable* (RE), (computably enumerable, CE) if some Turing Machine accepts the language L.

2. A language L is said to be *recursive* (*decidable*), if some Turing Machine accepts the language L, and Halts on all the inputs.

3. A function f is said to be *partial recursive* (partial computable), if some Turing Machine computes the function (it halts on all the inputs on which f is defined, and it does not halt on inputs on which f is not defined).

4. A function f is said to be *recursive* (computable), if some Turing Machine computes the function, and f is defined on all elements of Σ^* .

Turing Machine and Halting

Machine may never halt.

Cannot determine if a machine will halt on a particular input

Modifications of Turing Machines

- Stay where you are
- memorize a constant amount of information
- Multi Track Turing Machines
- Semi-Infinite Tapes
- Multi Tape Turing Machines
- Nondeterministic Turing Machines

Simulation of multi-track (one way infinite tape) TM

Simulation for 2 tracks.

Generalization to multitrack is easy.

Suppose $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$, a 2-track (one tape) TM is given.

Note:

 $\delta(q, x, y) = (p, u, v, m)$, means if the machine is in state q, reading x on first track and y on second track, then

— next state is p, u is written on the first track, v is written on the second track, and m is the movement of head (L, R or S).

We construct $M' = (Q', \Sigma', \Gamma', \delta', q'_0, B', F')$, a one track, one tape, TM as follows.

 Σ' : For each $x, y \in \Sigma$ we have $[x, y], [x, B], [B, y] \in \Sigma'$. Γ' : For each $x, y \in \Gamma$ we have $[x, y] \in \Gamma'$. B' = [B, B].Q' = Q.F' = F $q_0' = q_0.$ Input: Any input of the form $(x_1, y_1)(x_2, y_2) \dots (x_n, y_n)$ for M is mapped to input $[x_1, y_1][x_2, y_2] \dots [x_n, y_n]$ for M'. Note: In the above input $(x_1, y_1)(x_2, y_2) \dots (x_n, y_n)$ for M, means that x_1, x_2, \ldots, x_n is on the first track, and y_1, y_2, \ldots, y_n is on the second track. δ' is defined as follows: for $m \in \{S, L, R\}$, if $\delta(q, x, y) = (p, u, v, m)$, then $\delta'(q, [x, y]) = (p, [u, v], m).$

It is easy to verify that any instantaneous description of the form: $(x_1, y_1), (x_2, y_2), \dots, (x_l, y_l)q(x_{l+1}, y_{l+1}), \dots$ is mapped to $[x_1, y_1], [x_2, y_2], \dots, [x_l, y_l]q[x_{l+1}, y_{l+1}], \dots$

Simulation of TM with two-way infinite tape using TM with one way infinite tape

Suppose $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$, a TM with 2-way infinite tape, is given.

We construct $M' = (Q', \Sigma', \Gamma', q'_0, B', F')$, a TM with one way infinite tape, as follows.

 Σ' : For each $x \in \Sigma$ we have $[x, B] \in \Sigma'$.

 Γ' : For each $x, y \in \Gamma$ we have $[x, y] \in \Gamma'$. In addition, for each $x \in \Gamma$, we have $[x, \$] \in \Gamma'$. Here \$ is a special symbol not in Γ . B' = [B, B].

Input: Each input x_1, x_2, \ldots, x_n for M is mapped to input $[x_1, B], [x_2, B], \ldots$, for M'.

Q': For each $q \in Q$, we have [q, U] and [q, D] in Q'. In addition we have a special state called q_{new} in Q'.

F': for each $q \in F$, we have [q, U] and [q, D] in F'.

 $q_0' = q_{new}.$

 δ' is defined as follows:

 $\delta'(q_{new}, [x, B]) = ([q_0, U], [x, \$], S).$ $(\delta'(q_{new}, [x, y])$ for $y \neq B$ is not defined; we will not be needing it).

- Suppose $x \in \Gamma$. Consider any $q \in Q$. Then δ' for remaining states, symbols in $Q' \times \Gamma'$ is defined as follows.
- 1. Suppose $x, y, w \in \Gamma$. If $\delta(q, x) = (p, y, S)$, then $\delta'([q, U], [x, w]) = ([p, U], [y, w], S), \text{ and } \delta'([q, D], [w, x]) =$ ([p, D], [w, y], S).If $\delta(q, x) = (p, y, R)$, then $\delta'([q, U], [x, w]) = ([p, U], [y, w], R), \text{ and } \delta'([q, D], [w, x]) =$ ([p, D], [w, y], L).If $\delta(q, x) = (p, y, L)$, then $\delta'([q, U], [x, w]) = ([p, U], [y, w], L), \text{ and } \delta'([q, D], [w, x]) =$ ([p, D], [w, y], R).

2. Suppose $x, y \in \Gamma$. If $\delta(q, x) = (p, y, S)$, then $\delta'([q, U], [x, \$]) = ([p, U], [y, \$], S)$. If $\delta(q, x) = (p, y, R)$, then $\delta'([q, U], [x, \$]) = ([p, U], [y, \$], R)$. If $\delta(q, x) = (p, y, L)$, then $\delta'([q, U], [x, \$]) = ([p, D], [y, \$], R)$. 3. Suppose $x \in \Gamma$.

$$\delta'([q, D], [x, \$]) = ([q, U], [x, \$], S).$$

Exercise: What is the correspondence between ID of M and ID of M'?

Exercise: Give details of how to simulate a multi-tape TM using one tape TM.

Church-Turing Thesis

Whatever can be computed by an algorithmic device (in function computation sense, or language acceptance sense) can be done by a Turing Machine.

Codings of TMs/Strings; Gödel Numbering

States: q_1, q_2, \ldots are the states, with q_1 being start state and q_2 the only accepting state.

Tape symbols: X_1, X_2, \ldots, X_s are tape symbols. X_1 is 0, X_2 is 1 and X_3 is blank.

Directions: L is D_1 and R is D_2 .

Coding Transition: $\delta(q_i, X_j) = (q_k, X_l, D_m)$, then code it using string $0^i 10^j 10^k 10^l 10^m$.

(Note that each of i, j, k, l, m is at least 1).

Code of TM is: $C_1 1 1 C_2 1 1 C_3 \ldots C_n$, where C_i are the codes of all the transitions in the TM.

For a string x over $\{0,1\}^*$, let 1x (in binary) -1 be its code. Similarly, for larger alphabets.

 M_i denotes the Turing Machine with code number *i*. $W_i = L(M_i)$ denotes the language accepted by Turing Machine with code number *i*.

 φ_i denotes the function computed by the *i*-th Turing Machine. Without loss of generality, we often take $W_i = L(M_i) = domain(M_i)$.

A non-RE language

Let $L_d = \{w_i : w_i \notin L(M_i)\}.$

Pairing Function

Bijection from $N \times N$ to N. $\langle x, y \rangle = 2^x (2y + 1) - 1.$ One can extend it to triples by using $\langle x, y, z \rangle = \langle x, \langle y, z \rangle \rangle.$ Extend to coding *m*-tuples N^m to N.

Universal Turing Machine

 $L_u = \{ \langle i, w \rangle : M_i \text{ accepts } w \}.$