Translation Lemma Example

 $DTIME(2^n)$ is a proper subset of $DTIME(n2^n)$.

Proof: It is easy to show that 2^n and $n2^n$ are fully time constructible.

Note that time hierarchy theorem cannot be directly used as

$$\lim_{n\to\infty} 2^n (\log(2^n))/(n2^n) = 1.$$

Suppose by way of contradiction that

$$DTIME(n2^n) \subseteq DTIME(2^n)$$
.

Take
$$S_1(n) = n2^n$$
, $S_2(n) = 2^n$ and $f_1(n) = 2^n$.

Then, we have by translation lemma:

(A)
$$DTIME(2^{n}2^{2^{n}}) \subseteq DTIME(2^{2^{n}})$$
.

If we use $f_2(n) = n + 2^n$, then we get Then, we have by translation lemma:

(B)
$$DTIME((n+2^n)2^{n+2^n}) \subseteq DTIME(2^{n+2^n})$$
.

Combining, (A) and (B), we get:

(C)
$$DTIME((n+2^n)2^{n+2^n}) \subseteq DTIME(2^{2^n})$$
.

However, $\lim_{n\to\infty} \frac{2^{2^n} \log(2^{2^n})}{(n+2^n)2^{n+2^n}} = 0$, contradicting the

time-hierarchy theorem. Here note that 2^{2^n} and $(n+2^n)2^{n+2^n}$ are both fully time-constructible functions.