
Uncountable Automatic Classes and Learning

Sanjay Jaina,1, Qinglong Luoa, Pavel Semukhinb,2, Frank Stephanc,3

aDepartment of Computer Science, National University of Singapore, Singapore 117417,
Republic of Singapore.

bDepartment of Mathematics, National University of Singapore, Singapore 119076, Republic
of Singapore.

cDepartments of Mathematics and Computer Science, National University of Singapore,
Singapore 119076, Republic of Singapore.

Abstract

In this paper we consider uncountable classes recognizable by ω-automata and
investigate suitable learning paradigms for them. In particular, the counterparts
of explanatory, vacillatory and behaviourally correct learning are introduced for
this setting. Here the learner reads in parallel the data of a text for a language
L from the class plus an ω-index α and outputs a sequence of ω-automata such
that all but finitely many of these ω-automata accept the index α if and only if
α is an index for L.

It is shown that any class is behaviourally correct learnable if and only if
it satisfies Angluin’s tell-tale condition. For explanatory learning, such a result
needs that a suitable indexing of the class is chosen. On the one hand, every
class satisfying Angluin’s tell-tale condition is vacillatorily learnable in every
indexing; on the other hand, there is a fixed class such that the level of the class
in the hierarchy of vacillatory learning depends on the indexing of the class
chosen.

We also consider a notion of blind learning. On the one hand, a class is
blind explanatorily (vacillatorily) learnable if and only if it satisfies Angluin’s
tell-tale condition and is countable; on the other hand, for behaviourally correct
learning, there is no difference between the blind and non-blind version.

This work establishes a bridge between the theory of ω-automata and induc-
tive inference (learning theory).

Keywords: Inductive Inference, Uncountable Classes, Automatic Classes.

Email addresses: sanjay@comp.nus.edu.sg (Sanjay Jain), qlluo@singnet.com.sg
(Qinglong Luo), pavel@semukhin.name (Pavel Semukhin), fstephan@comp.nus.edu.sg
(Frank Stephan)

1Sanjay Jain was supported in part by NUS grant number R252-000-308-112
2Pavel Semukhin was supported in part by NUS grant number R146-000-114-112.
3Frank Stephan was supported in part by NUS grant numbers R146-000-114-112 and R252-

000-308-112.

Preprint submitted to Elsevier October 17, 2011

1. Introduction

Usually, in learning theory one considers classes consisting of countably many
languages from some countable domain. A typical example here is the class of
all recursive subsets of {0, 1, 2}∗, where {0, 1, 2}∗ is the set of all finite strings
over the alphabet {0, 1, 2}. However, each countably infinite domain has un-
countably many subsets, and thus we miss out many potential targets when we
consider only countable classes. The main goal of this paper is to find a gener-
alization of the classical model of learning which would be suitable for working
with uncountable classes of languages. The classes which we consider can be
uncountable, but they still have some structure, namely, they are recognizable
by Büchi automata. We will investigate, how the classical notions of learnability
have to be adjusted in this setting in order to obtain meaningful results. To
explain our approach in more detail, we first give an overview of the classical
model of inductive inference which is the underlying model of learning in our
paper.

Consider a class L = {Li}i∈I , where each language Li is a subset of Σ∗,
the set of finite strings over an alphabet Σ. In a classical model of learning,
which was introduced and studied by Gold [9], a learner M receives a sequence
of all the strings from a given language L ∈ L, possibly with repetitions. Such a
sequence is called a text for the language. After reading the first n strings from
the texts, the learner outputs a hypothesis in about what the target language
might be. The learner succeeds if it eventually converges to an index that
correctly describes the language to be learnt, that is, if limn in = i and L =
Li. If the learner succeeds on all texts for all languages from a class, then we
say that it learns this class. This is the notion of explanatory learning (Ex).
Such a model became the standard one for the learnability of countable classes.
Besides Ex, several other paradigms for learning have been considered like, e.g.,
behaviourally correct (BC) learning [3], vacillatory or finite explanatory (FEx)
learning [8], partial identification (Part) [13] and so on.

The indices that the learner outputs are usually finite objects like natural
numbers or finite strings. For example, Angluin [1] initiated the research on
learnability of uniformly recursive families indexed by natural numbers, and,
in recent work, Jain, Luo and Stephan [10] considered automatic indexings
by finite strings in place of uniformly recursive indexings. The collection of
such finite indices is countable, and hence we can talk only about countable
classes of languages. On the other hand, the collection of all the subsets of Σ∗

is uncountable, and it looks too restrictive to consider only countable classes.
Because of this, it is interesting to find a generalization of the classical model
which will allow us to study the learnability of uncountable classes.

Below is an informal description of the learning model that we investigate in
this paper. First, since we are going to work with uncountable classes, we need
uncountably many indices to index a class to be learnt. For this purpose we
will use infinite strings (or ω-strings) over a finite alphabet. Next, we want such
indexings to be effective or “computable” in some sense. There are computing
machines, called Büchi automata or ω-automata, which can be used naturally

2

for processing ω-strings. They were first introduced by Büchi [6, 7] to prove the
decidability of S1S, the monadic second-order theory of the natural numbers
with successor function S(x) = x + 1. Because of this and other decidability
results, the theory of ω-automata has become a popular area of research in
theoretical computer science (see, e.g., [14]). Taking these points into account,
we will assume that a class to be learnt has an indexing by ω-strings which is
Büchi recognizable.

The main difference between our model of learning and the classical one is
that the learner does not output hypotheses as it processes a text. The reason
for this is that it is not possible to output an arbitrary infinite string in a finite
amount of time. Instead, in our model, the learner is presented with an index α
and a text T , and it must decide whether T is a text for the set with the index
α. During its work, the learner outputs an infinite sequence of Büchi automata
{An}n∈ω (where ω denotes the set of natural numbers) such that An accepts
the index α if and only if the learner at stage n thinks that T is indeed a text
for the set with the index α. The goal of the learner is to converge in the limit
to the right answer.

As one can see from the description above, the outputs of a learner take the
form of ω-automata instead of just binary answers ‘yes’ or ‘no’. We chose such
definition due to the fact that a learner can read only a finite part of an infinite
index in a finite amount of time. If we required that a learner outputs its ‘yes’ or
‘no’ answer based on such finite information, then our model would become too
restrictive. On the other hand, a Büchi automaton allows a learner to encode
additional infinitary conditions that have to be verified before the index will be
accepted or rejected, for example, if the index contains infinitely many 1’s or
not. This approach makes a learner more powerful, and more nontrivial classes
become learnable.

Probably the most interesting property of our model is that for many learning
criteria, the learnability coincides with Angluin’s classical tell-tale condition for
the countable case (see the table at the end of this section). Angluin’s condition
states that for every set L from a class L, there is a finite subset DL ⊆ L such
that for any other L′ ∈ L with DL ⊆ L′ ⊆ L we have that L′ = L. It is also
well-known that in the classical case, every r.e. class is learnable according to
the criterion of partial identification [13]. We will show that in our model every
ω-automatic class can be learnt according to this criterion.

The results described above suggest that the notions defined in this paper
match the intuition of learnability, and that our model is a natural one suitable
for investigating the learnability of uncountable classes of languages.

We also consider a notion of blind learning. A learner is called blind if it
does not see an index presented to it. Such a learner can see only an input
text, but nevertheless it must decide whether the index and the text represent
the same language. It turns out that for the criterion of behaviourally correct
learning, the blind learners are as powerful as the non-blind ones, but for the
other learning criteria this notion becomes more restrictive.

The reader can find all formal definitions of the notions discussed here and
some necessary preliminaries in the next section. We summarize our results:

3

Criterion Condition Indexing Theorems
Ex ATTC New 4.1, 5.3
FEx ATTC Original 3.1, 5.3
BC ATTC Original 5.3
Part Any class Original 6.1
BlindBC ATTC Original 5.1, 5.3
BlindEx ATTC & Countable Original 5.2
BlindFEx ATTC & Countable Original 5.2
BlindPart Countable Original 6.2

In this table, the first column lists the learning criteria that we studied. Here,
Ex stands for explanatory learning, BC for behaviourally correct learning, FEx
for finite explanatory or vacillatory learning, and Part for partial identification.
A prefix Blind denotes the blind version of the corresponding criterion. The
second column describes equivalent conditions that an automatic class must
satisfy for being learnable under the given learning criterion of the first column.
Here, ATTC means that the class must satisfy Angluin’s tell-tale condition, and
Countable means that the class must be countable. The next column indicates
whether the learner uses the original indexing of the class or a new one. The
last column gives a reference to a theorem/corollary where the result is proved.

2. Preliminaries

An ω-automaton is essentially a finite automaton operating on ω-strings with an
infinitary acceptance condition which decides — depending upon the infinitely
often visited nodes — which ω-strings are accepted and which are rejected. For
a general background on the theory of finite automata the reader is referred
to [11].

Definition 2.1 (Büchi [6, 7]). A nondeterministic ω-automaton is a tuple A =
(S, Σ, I, T), where

(a) S is a finite set of states,
(b) Σ is a finite alphabet,
(c) I ⊆ S is the set of initial states, and
(d) T is the transition function T : S × Σ → P(S), where P(S) is the

power set of S.

An automaton A is deterministic if and only if |I| = 1, and for all s ∈ S and
a ∈ Σ, |T (s, a)| = 1.

An ω-string over an alphabet Σ is a function α : ω → Σ, where ω is the set
of natural numbers. We often identify an ω-string with the infinite sequence
α = α0α1α2 . . . , where αi = α(i). Let Σ∗ and Σω denote the set of all finite
strings and the set of all ω-strings over the alphabet Σ, respectively.

We always assume that the elements of an alphabet Σ are linearly ordered.
This order can be extended to the length-lexicographical order ≤llex on Σ∗;

4

here x ≤llex y if and only if |x| < |y| or |x| = |y| ∧ x ≤lex y, where ≤lex is the
standard lexicographical order.

Given an ω-automaton A = (S, Σ, I, T) and an ω-string α, a run of A on α
is an ω-string

r = s0 . . . snsn+1 . . . ∈ Sω

such that s0 ∈ I and for all n, sn+1 ∈ T (sn, αn). Note that if an ω-automaton
A is deterministic, then for every α, there is a unique run of A on α. In this
case we will use the notation StA(α, k) to denote the state of A after it has read
the first k symbols of α.

Definition 2.2. Let Inf (r) denote the infinity set of a run r, that is,

Inf (r) = {s ∈ S : s appears infinitely often in r}.

We define the following accepting conditions for the run r:

1) Büchi condition is determined by a subset F ⊆ S. The run r is accepting if
and only if Inf (r) ∩ F 6= ∅.

2) Muller condition is determined by a subset F ⊆ P(S). The run r is accepting
if and only if Inf (r) ∈ F .

3) Rabin condition is determined by Ω = {(F1, G1), . . . , (Fh, Gh)}, where all Fi

and Gi are subsets of S. The run r is accepting if and only if there is an i
such that 1 ≤ i ≤ h, Inf (r) ∩ Fi 6= ∅ and Inf (r) ∩Gi = ∅.

It can be shown that all these acceptance conditions are equivalent in the sense
that if a language is accepted by an automaton according to one of the above
acceptance criteria, it can also be accepted by an automaton according to any
other of these criteria (see [11]). Therefore, we assume that we have fixed one of
the acceptance conditions defined above and say that an ω-automaton A accepts
a string α if and only if there is a run of A on α that satisfies this condition.
Let L(A) denote the set of strings accepted by an automaton A according to
the chosen acceptance condition.

Furthermore, every ω-automaton is equivalent to a deterministic one with
Muller acceptance condition (again, see [11]). Thus, if not explicitly stated
otherwise, by an automaton we will always mean a deterministic ω-automaton
with Muller acceptance condition.

Definition 2.3 (Khoussainov and Nerode [11, 12]). 1) A finite automaton is a
tuple A = (S, Σ, I, T, F), where S, Σ, I and T are the same as in the definition
of an ω-automaton, and F ⊆ S is the set of final states.

2) For a finite string w = a0 . . . an−1 ∈ Σ∗, a run of A on w is a sequence
s0 . . . sn ∈ S∗ such that s0 ∈ I and si+1 ∈ T (si, ai) for all i ≤ n − 1. The
run is accepting if and only if sn ∈ F . The string w = a0 . . . an−1 is accepted
by A if and only if there is an accepting run of A on w.

5

Definition 2.4. 1) A convolution of k ω-strings α1, . . . , αk ∈ Σω is an ω-string
⊗(α1, . . . , αk) over the alphabet Σk defined as

⊗(α1, . . . , αk)(n) = (α1(n), . . . , αk(n)) for every n ∈ ω.

2) A convolution of k finite strings w1, . . . , wk ∈ Σ∗ is a string ⊗(w1, . . . , wk)
of length l = max{|w1|, . . . , |wk|} over the alphabet (Σ ∪ {#})k, where # is
a new padding symbol, defined as

⊗(w1, . . . , wk)(n) = (v1(n), . . . , vk(n)) for every n < l,

where for each i = 1, . . . , k and n < l,

vi(n) =

{
wi(n) if n < |wi|
otherwise.

3) Correspondingly one defines the convolution of finite strings and ω-strings:
one identifies each finite string σ with the ω-string σ#ω and forms then the
corresponding convolution of ω-strings.

4) A convolution of k-ary relation R on finite or ω-strings is defined as

⊗R = {⊗(x1, . . . , xk) : (x1, . . . , xk) ∈ R}.

5) A relation R on finite or ω-strings is automatic if and only if its convolution
⊗R is recognizable by a finite or an ω-automaton, respectively.

For the ease of notation, we often just write (x, y) instead of ⊗(x, y) and so on. It
is well-known that the automatic relations are closed under union, intersection,
projection and complementation. In general, the following theorem holds, which
we will often use in this paper.

Theorem 2.5 (Blumensath and Grädel [4, 5]). If a relation R on ω-strings
is definable from other automatic relations R1, . . . , Rk by a first-order formula,
then R itself is automatic.

Remark 2.6. 1) If we use additional parameters in a first-order definition of
a relation R, then these parameters must be ultimately periodic strings.

2) Furthermore, in a definition of a relation R we can use first-order variables
of two sorts, namely, one ranging over ω-strings and one ranging over finite
strings. We can do this because every finite string v can be identified with
its ω-expansion v#ω, and the set of all ω-expansions of the finite strings over
alphabet Σ is automatic.

A class L is a collection of sets of finite strings over some alphabet Γ, i.e.,
L ⊆ P(Γ∗). An indexing for a class L is an onto mapping f : I → L, where
I is the set of indices. We will often denote the indexing as {Lα}α∈I , where
Lα = f(α).

6

An indexing {Lα}α∈I is automatic if and only if I is an automatic subset
of Σω for some alphabet Σ and the relation {(x, α) : x ∈ Lα} is automatic.
A class is automatic if and only if it has an automatic indexing. If it is not
stated otherwise, all indexings and all classes considered herein are assumed to
be automatic.

Remark 2.7. According to the definition, an automatic class always comes
with an automatic indexing. However we will often say just an “automatic
class” instead of an “automatic class with a given automatic indexing.” Such
abbreviation makes sense because many results of the paper does not depend on
the particular choice of an indexing for a class. This can be seen from the table
in the introduction section that summarizes the main results. The fact that a
learner uses the original indexing of the class actually means that the choice of
such indexing is not important. In some cases, where an indexing is important,
it will be mentioned explicitly.

Example 2.8. Here are some examples of automatic classes:
1) the class of all open intervals I = {q ∈ D : p < q < r} of dyadic rationals

where the border points p and r can be any real numbers;
2) the class of such intervals where r − p is equal to 1 or 2 or 3;
3) the class of all sets of finite strings which are given as the prefixes of an

infinite sequence;
4) the class of all sets of natural numbers in unary coding.

On the other hand, the class of all finite sets of strings over the alphabet {0, 1}
is not automatic.

A text is an ω-string T of the form

T = u0, u1, u2, . . . ,

such that each ui is either equal to the pause symbol # or belongs to Γ∗, where
Γ is some alphabet. Note that the comma “ , ” is also part of the text and
servers as a delimiter for ui’s. We call ui the i-th input of the text. The content
of a text T is the set content(T) = {ui : ui 6= #}. If content(T) is equal to a
set L ⊆ Γ∗, then we say that T is a text for L. A canonical text for an infinite
set L is the listing of all the strings from L in length-lexicographical order. A
canonical text for a finite set L starts with the listing of all the strings from L
in length-lexicographical order, and ends in #ω.

Definition 2.9. Let Γ and Σ be alphabets for sets and indices, respectively. A
learner is a Turing machine M that has the following:

1) two read-only tapes: one for an ω-string from Σω representing an index
and one for a text for a set L ⊆ Γ∗;

2) one write-only output tape on which M writes a sequence of automata
(in a suitable coding);

3) one read-write working tape.

7

Let Ind(M, α, T, s) and Txt(M, α, T, s) denote the number of symbols read in
the index and text tapes by learner M up to step s when it processes an index
α and a text T . Without loss of generality, we will assume that

lim
s→∞

Ind(M, α, T, s) = lim
s→∞

Txt(M, α, T, s) = ∞

for any α and T . ByM(α, T, k) we denote the k-th automaton output by learner
M when processing an index α and a text T . Without loss of generality, for the
learning criteria considered in this paper, we assume that M(α, T, k) is defined
for all k.

Definition 2.10 (Based on [3, 8, 9, 13]). Let a class L = {Lα}α∈I (together
with its indexing) and a learner M be given. We say that

1) M BC-learns L if and only if for any index α ∈ I and any text T with
content(T) ∈ L, there exists n such that for every m ≥ n,

M(α, T,m) accepts α if and only if Lα = content(T).

2) M Ex-learns L if and only if for any index α ∈ I and any text T with
content(T) ∈ L, there exists n such that for every m ≥ n, M(α, T,m) =
M(α, T, n) and

M(α, T,m) accepts α if and only if Lα = content(T).

3) M FEx-learns L if and only if M BC-learns L and for any α ∈ I and any
text T with content(T) ∈ L, the set {M(α, T, n) : n ∈ ω} is finite.

4) M FExk-learns L if and only if M BC-learns L and for any α ∈ I and any
text T with content(T) ∈ L, there exists n such that

|{M(α, T,m) : m ≥ n}| ≤ k.

5) M Part-learns L if and only if for any α ∈ I and any T with content(T) ∈
L, there exists a unique automaton A such that for infinitely many m,
M(α, T,m) = A, and for this unique A,

A accepts α if and only if Lα = content(T).

Here the abbreviations BC, Ex, FEx and Part stand for ‘behaviourally cor-
rect’, ‘explanatory’, ‘finite explanatory’ and ‘partial identification’, respectively;
‘finite explanatory learning’ is also called ‘vacillatory learning’. We will also use
the notations BC, Ex, FEx, FExk and Part to denote the collection of classes
(with corresponding indexings) that are BC-, Ex-, FEx-, FExk- and Part-
learnable, respectively.

Definition 2.11. A learner is called blind if it does not see the tape which
contains an index. The classes that are blind BC-, Ex-, etc. learnable are
denoted as BlindBC, BlindEx, etc., respectively.

8

Definition 2.12 (Angluin [1]). We say that a class L satisfies Angluin’s tell-tale
condition if and only if for every L ∈ L there is a finite DL ⊆ L such that for
every L′ ∈ L, if DL ⊆ L′ ⊆ L then L′ = L. Such DL is called a tell-tale set
for L.

Using techniques similar to those that were introduced in [1], it can be shown
that

Fact 2.13. If a class L is BC-learnable, then L satisfies Angluin’s tell-tale
condition.

The converse will also be shown to be true, hence for automatic classes one can
equate “L is learnable” with “L satisfies Angluin’s tell-tale condition”. Note
that the second and the third class given in Example 2.8 satisfy Angluin’s tell-
tale condition.

3. Vacillatory Learning

In the following it is shown that every learnable class can even be vacillatorily
learnt and that the corresponding FEx-learner uses overall on all possible inputs
only a fixed number of automata.

Theorem 3.1. Let {Lα}α∈I be a class that satisfies Angluin’s tell-tale condition.
Then there are finitely many automata A1, . . . , Ac and an FEx-learner M for
the class {Lα}α∈I with the property that for any α ∈ I and any text T for a
set from {Lα}α∈I , the learner M oscillates only between some of the automata
A1, . . . , Ac on α and T .

Proof. Let M be a deterministic automaton recognizing the relation {(x, α) :
x ∈ Lα}, and let N be a deterministic automaton recognizing

{ (x, α) : {y ∈ Lα : y ≤llex x} is a tell-tale for Lα }.

Such an N exists since the relation is first-order definable from ‘x ∈ Lα’ and
≤llex by the formula:

N accepts (x, α) ⇐⇒ ∀α′ ∈ I
(

if ∀y ((y ∈ Lα & y ≤llex x) → y ∈ Lα′) &

∀y (y ∈ Lα′ → y ∈ Lα), then ∀y (y ∈ Lα′ ↔ y ∈ Lα)
)
.

For each α ∈ I, consider an equivalence relation ≡M,α defined as

x ≡M,α y ⇐⇒ there is a t > max{|x|, |y|} such that
StM (⊗(x, α), t) = StM (⊗(y, α), t).

An equivalence relation ≡N,α is defined in a similar way.
Note that the number of the equivalence classes of ≡M,α and ≡N,α are

bounded by the number of states of M and N , respectively. Also, for every

9

x, y, if x ≡M,α y then x ∈ Lα ↔ y ∈ Lα. Therefore, Lα is the union of finitely
many equivalence classes of ≡M,α.

Let m and n be the number of states of M and N , respectively. Consider
the set of all finite tables U = {Ui,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} of size m× n such
that each Ui,j is either equal to a subset of {1, . . . , i} or to a special symbol
Reject. Note that the number of such tables is finite.

With each such table U we will associate an automaton A as described below.
The algorithm for learning {Lα}α∈I is now roughly as follows. On every step,
the learner M reads a finite part of the input text and the index and based on
this information constructs a table U . After that M outputs the automaton
associated with U .

First, we describe the construction of an automaton A for each table U . For
every α ∈ I, let m(α) and n(α) be the numbers of the equivalence classes of
≡M,α and ≡N,α, respectively. Also, let

x1 <llex · · · <llex xm(α)

be the length-lexicographically least representatives of the equivalence classes
of ≡M,α. Our goal is to construct A such that

A accepts α ⇐⇒ Um(α),n(α) is a subset of {1, . . . ,m(α)}, and Lα is equal
to the union of the ≡M,α-equivalence classes that are
represented by xi’s with i ∈ Um(α),n(α).

Let EqStM (α, x, y, z) be the relation defined as

EqStM (α, x, y, z) ⇐⇒ StM (⊗(x, α), |z|) = StM (⊗(y, α), |z|).

The relation EqStN (α, x, y, z) is defined similarly. Note that these relations are
automatic.

Instead of constructing A explicitly, we will show that the language which A
has to recognize is first-order definable from EqStM (α, x, y, z), EqStN (α, x, y, z)
and the relations recognized by M and N .

First, note that the equivalence relation x ≡M,α y can be defined by a
formula:

∃z (|z| > max{|x|, |y|} and EqStM (α, x, y, z)).

Similarly one can define x ≡N,α y. The fact that ≡M,α has exactly k many
equivalence classes can be expressed by a formula:

ClNumM,k(α) = ∃x1 . . .∃xk

(∧
1≤i<j≤k

xi 6≡M,α xj & ∀y
∨

1≤i≤k

y ≡M,α xi

)
.

Again, ClNumN,k(α) expresses the same fact for ≡N,α. Finally, the fact that A

10

accepts α can be expressed by the following first-order formula:∨
(i,j) : Ui,j 6=Reject

(
ClNumM,i(α) & ClNumN,j(α) &

∃x1 . . .∃xi

(
x1 <llex · · · <llex xi & ∀z (z ∈ Lα ↔

∨
k∈Ui,j

z ≡M,α xk) &

∧
1≤k≤i

∀y (y <llex xk → y 6≡M,α xk)
))

.

We now describe the algorithm for learning the class {Lα}α∈I . We will use the
notation x ≡M,α,s y as an abbreviation of

“there is t such that s ≥ t > max{|x|, |y|} and
StM (⊗(x, α), t) = StM (⊗(y, α), t).”

As before, let m and n be the numbers of states of automata M and N , re-
spectively. At step s, M computes ≤llex least representatives of the equivalence
classes of ≡M,α,s and ≡N,α,s on the strings with length shorter than s. In other
words, it computes x1, . . . , xp and y1, . . . , yq such that

a) x1 is the empty string,
b) xk+1 is the ≤llex least x >llex xk such that |x| ≤ s and x 6≡M,α,s xi

for all i ≤ k. If such x does not exists then the process stops.

The sequence y1, . . . , yq is computed in a similar way.
Next, M constructs a table U of size m× n. For every i and j, the value of

Ui,j is defined as follows. If i > p or j > q, then let Ui,j = Reject . Otherwise,
let τs be the initial segment of the input text T consisting of the first s strings
in the text T . Check if the following two conditions are satisfied:

1) for every x, x′ ≤llex yj , if x ≡M,α,s x′, then x ∈ content(τs) if and only
if x′ ∈ content(τs),

2) for every k ≤ i and every y, if y ∈ content(τs) and y ≡M,α,s xk, then
xk ∈ content(τs).

If yes, then let Ui,j = {k : k ≤ i and xk ∈ content(τs)}. Otherwise, let
Ui,j = Reject . After U is constructed, M outputs an automaton A associated
with U as described above. As the number of different possible U is finite, the
number of distinct corresponding automata output by M is finite.

Recall that M(α, T, s) is the automaton output by learner M at step s
when processing the index α and the text T . To prove that the algorithm
is correct we need to show that for every α ∈ I and every text T such that
content(T) ∈ {Lβ}β∈I ,

a) if content(T) = Lα then for almost all s, M(α, T, s) accepts α,
b) if content(T) 6= Lα then for almost all s, M(α, T, s) rejects α.

Recall that m(α) and n(α) are the numbers of the equivalence classes of ≡M,α

and ≡N,α, respectively. Note that there is a step s0 after which the values

11

x1 <llex · · · <llex xm(α) and y1 <llex · · · <llex yn(α) computed by M will always
be equal to the ≤llex least representatives of the equivalence classes of ≡M,α

and ≡N,α, respectively.
Suppose that content(T) = Lα. Hence, there is s1 ≥ s0 such that for every

s ≥ s1 the following conditions are satisfied:

1) for every k ≤ m(α), xk ∈ content(τs) if and only if xk ∈ content(T),
2) for every x, x′ ≤llex yn(α), if x ≡M,α,s x′, then x ∈ content(τs) if and

only if x′ ∈ content(τs),
3) for every k ≤ m(α) and every y, if y ∈ content(τs) and y ≡M,α,s xk,

then xk ∈ content(τs).

The last two conditions are satisfied since content(T) = Lα is the union of
finitely many ≡M,α equivalence classes. Therefore, on every step s ≥ s1, the
learner M constructs a table U such that Um(α),n(α) = {k : k ≤ m(α) and xk ∈
content(T)}. By our construction of the automaton A associated with U , A
accepts α if Lα = {y : y ≡M,α xk for some xk ∈ content(T)}. But since
content(T) = Lα, this condition is satisfied.

Now suppose that content(T) 6= Lα. Note that for every s ≥ s0, yn(α)

computed by M at step s has the property that Dα = {x ∈ Lα : x ≤llex yn(α)}
is a tell-tale set for Lα. This follows from the definition of the automaton N and
the fact that yn(α) is the ≤llex largest among the representatives of the ≡N,α

equivalence classes.
First, consider the case when Dα * content(T), that is, there is x ∈ Lα,

x ≤llex yn(α) but x /∈ content(T). Let s1 ≥ s0 be such that x ≡M,α,s1 xk for
some k ≤ m(α). Note that xk ≤llex x since xk is the minimal representative in
its equivalence class. If for some s2 ≥ s1, xk ∈ content(τs2), then from this step
on Um(α),n(α) will be equal to Reject because of the Condition 1) in the definition
of Ui,j . HenceM(α, T, s) will reject α for all s ≥ s2. If xk /∈ content(T), then for
all s ≥ s1, M(α, T, s) will reject α either due to the fact that Um(α),n(α) = Reject
at step s, or because k /∈ Um(α),n(α) while it should be in Um(α),n(α) since both
x and xk are in Lα.

Now suppose that Dα ⊆ content(T). Since Dα is a tell-tale set for Lα and
content(T) 6= Lα, there is x ∈ content(T) \ Lα. Let s1 ≥ s0 be such that
x ∈ content(τs1) and x ≡M,α,s1 xk for some k ≤ m(α). If xk /∈ content(T)
then for every s ≥ s1, Um(α),n(α) = Reject and M(α, T, s) will reject α. If
there is s2 ≥ s1 such that xk ∈ content(τs2), then for every s ≥ s2 either
Um(α),n(α) = Reject or k ∈ Um(α),n(α). In both cases M(α, T, s) will reject α
since xk /∈ Lα.

Definition 3.2. 1) Let α ∈ {0, 1, . . . , k}ω and β ∈ {1, . . . , k}ω. The function
fα,β is defined as follows:

fα,β(n) =

{
α(m) if m = min{x ≥ n : α(x) 6= 0},
lim supx→∞ β(x) if such m does not exist.

12

Let Lα,β be the set of all nonempty finite prefixes of fα,β , that is,

Lα,β = {fα,β(0) . . . fα,β(n) : n ∈ ω}.

2) Define the class Lk together with its indexing as follows. Let the index set
be

Jk = {(α, β) : α ∈ {0, 1, . . . , k}ω, β ∈ {1, 2, . . . , k}ω}

and let
Lk = {Lα,β}(α,β)∈Jk

.

Note that the class Lk is uncountable and automatic.

Theorem 3.3. For every k ≥ 2, the class Lk = {Lα,β}(α,β)∈Jk
is in FExk \

FExk−1.

Proof. We first show that Lk is FExk-learnable. Let A0, A1, . . . , Ak be au-
tomata such that A0 rejects all ω-strings, and for i = 1, . . . , k

Ai accepts (α, β) ⇐⇒ lim sup
x→∞

α(x) 6= 0 or lim sup
x→∞

β(x) = i.

A learner M that FExk-learns Lk acts as follows. At every step s, M reads
the first s inputs from the input text. If all these inputs are equal to #, then
M outputs A0. Otherwise, let ts be the longest string among them. Next, M
checks if ts is consistent with α, that is, if there is a j with 1 ≤ j ≤ k such that
for every n < |ts|,

ts(n) =

{
α(m) if m = min{x : n ≤ x < |ts| and α(x) 6= 0},
j if such m does not exist.

If ts is inconsistent with α, then M outputs only the automaton A0 from step
s onward. Otherwise, in the end of step s the learner M outputs Ai, where i is
the last symbol of ts. Now it is not hard to verify that this algorithm is correct.

To show that Lk is not in FExk−1, assume, for the sake of contradiction, that
there is a learner M that can FExk−1-learn Lk. First, we need the following
two lemmas.

Lemma 3.4. There are finite strings α′, β′ and k − 1 automata A1, . . . , Ak−1

such that

a) α′ ∈ {0, 1, . . . , k}∗, β′ ∈ {1, . . . , k}∗ and |α′| = |β′|,

b) for every ω-string β such that β′ ⊂ β ∈ {1, . . . , k}ω, there is a text T
for Lα′0ω,β (which can be chosen to be the canonical text for Lα′0ω,β) such
that the learner M on index (α′0ω, β) and text T oscillates only between
A1, . . . , Ak−1 after it has seen (α′, β′).

13

Proof of Lemma 3.4. Suppose that there are no such α′, β′ and A1, . . . , Ak−1.
In other words, for any α′, β′ for which property a) holds and any k − 1 au-
tomata A1, . . . , Ak−1, there are an ω-string β with β′ ⊂ β ∈ {1, . . . , k}ω and
an automaton A /∈ {A1, . . . , Ak−1} such that M outputs A above (α′, β′) when
processing the index (α′0ω, β) and the canonical text for Lα′0ω,β , that is, M
outputs A at some step after the first step at which it has seen (α′, β′).

We now show that Lk /∈ FExk−1 by constructing ω-strings α, β and a text T
for Lα,β such that M oscillates between more than k− 1 many automata when
processing (α, β) and T . At each step i, we will construct finite strings αi, α′i,
βi, β′i and a finite text segment τi such that the following properties hold:

1) αi, α
′
i ∈ {0, 1, . . . , k}∗ and βi, β

′
i ∈ {1, . . . , k}∗.

2) |αi| = |βi| and |α′i| = |β′i|.
3) α′i ⊆ αi ⊆ α′i+1, β′i ⊆ βi ⊆ β′i+1, and τi ⊆ τi+1.
4) α =

⋃
i∈ω αi, β =

⋃
i∈ω βi and T =

⋃
i∈ω τi.

5) For i > 0, αi does not end in 0.
6) τi is a finite prefix of the canonical text for Lαi0ω,β that contains strings

of length not greater than |αi| (for some β, but since αi does not end
in 0 and since we only consider strings which are shorter than αi, this
β is irrelevant).

7) When the learner M processes the input (αi, βi) and the text segment
τi, it does not try to read beyond τi in the text before it reads beyond
the prefix (α′i, β

′
i) of (αi, βi).

At step 0, let all α′0, α0, β′0, β0 and τ0 be equal to the empty string. At step
i + 1, let A1, . . . , Ak−1 be the last k − 1 different automata output by M up
to the first step at which it has seen (α′i, β

′
i) when processing (αi, βi) on text

segment τi (if there are less then k − 1 such automata, then consider the set of
all these automata instead of A1, . . . , Ak−1).

By our assumption, there are an ω-string β with βi ⊂ β ∈ {1, . . . , k}ω and
an automaton A /∈ {A1, . . . , Ak−1} such that M outputs A above (αi, βi) when
processing (αi0ω, β) and the canonical text T ′ for Lαi0ω,β . Due to property 6),
T ′ extends τi.

Now wait until the learner M outputs A /∈ {A1, . . . , Ak−1} on (αi0ω, β) and
T ′ above (αi, βi). Let (α′i+1, β

′
i+1) and τi+1 be the finite segments of the index

and the text seen by that time. Here, if τi+1 does not properly extend τi, then
we take τi+1 to be the extension of τi by one more symbol; furthermore, if τi+1

ends in a middle of a string from T ′, then we extend τi+1 up to the beginning
of the next string.

Let t be the maximum of |α′i+1|+1 and the length of the longest string from
τi+1. Let αi+1 = α′i+10sm, where m = lim supx→∞ β(x) and s is chosen in such
a way that |αi+1| = t. Finally, let βi+1 be the prefix of β of length t. This
concludes the description of step i + 1.

Now, by the construction, T is a text for Lα,β (in fact, the canonical one),
and M oscillates between more then k − 1 many automata when processing
(α, β) and T .

This completes the proof of Lemma 3.4.

14

Lemma 3.5. Suppose that there is l such that 1 < l < k, and there are l
many automata A1, . . . , Al together with finite strings α′, β′ with the following
properties:

a) α′ ∈ {0, 1, . . . , k}∗, β′ ∈ {1, . . . , k}∗ and |α′| = |β′|,

b) for every ω-string β ⊃ β′ such that 1 ≤ β(x) ≤ l + 1 for all x ≥ |β′|, the
learner M on index (α′0ω, β) and the canonical text for Lα′0ω,β oscillates
only between A1, . . . , Al after it has seen (α′, β′).

Then there are l − 1 many automata {A′
1, . . . , A

′
l−1} ⊂ {A1, . . . , Al} and finite

strings α′′, β′′ such that

1) α′′ ∈ α′{0}∗, β′′ ∈ β′{1, . . . , l + 1}∗ and |α′′| = |β′′|,

2) for every ω-string β ⊃ β′′ such that 1 ≤ β(x) ≤ l for all x ≥ |β′′|, the
learner M on index (α′′0ω, β) and the canonical text for Lα′′0ω,β oscillates
only between A′

1, . . . , A
′
l−1 after it has seen (α′′, β′′).

Proof of Lemma 3.5. Assume that there are no such α′′, β′′ and A′
1, . . . , A

′
l−1.

Thus, for any A ∈ {A1, . . . , Al} and any α′′, β′′ for which property 1) holds,
there is an ω-string β ∈ β′′{1, . . . , l}ω such that the learner M outputs A on
(α′′0ω, β) and the canonical text for Lα′′0ω,β above (α′′, β′′).

For n with 1 ≤ n ≤ l, let Tn be the canonical text for Lα′0ω, nω . We will
construct an ω-string β ∈ β′{1, . . . , l + 1}ω with lim supx→∞ β(x) = l + 1.
Moreover, for every A ∈ {A1, . . . , Al}, there will be n ∈ {1, . . . , l} such that
M outputs A infinitely often on index (α′0ω, β) and text Tn. At each step i
we will construct a finite string βi ∈ β′{1, . . . , l + 1}∗ such that βi ⊆ βi+1 and
β =

⋃
i βi.

At step 0, let β0 = β′. At step i+1, let m ∈ {1, . . . , l} be such that m ≡ i+1
(mod l). By our assumption, there exists an ω-string β ∈ βi{1, . . . , l}ω, and M
outputs Am on (α′0ω, β) and Tn above (α′0s, βi), where n = lim supx→∞ β(x)
and s = |βi| − |α′|. Now let β′i ⊇ βi be the finite prefix of β seen by M when it
outputs Am for the first time above (α′0s, βi) on text Tn, and let βi+1 be equal
to β′i(l + 1), that is, β′i followed by number l + 1. This concludes step i + 1.

By the construction, lim supx→∞ β(x) = l + 1 and for every m = 1, . . . , l
and every r ∈ ω, there is n ∈ {1, . . . , l} such that M outputs Am after reading
(α′0s, βr·l+m) on text Tn, where s = |βr·l+m| − |α′|. Therefore, for every A ∈
{A1, . . . , Al}, there is n ∈ {1, . . . , l} such that M outputs A infinitely often on
(α′0ω, β) and Tn.

Since lim supx→∞ β(x) = l + 1, each Tn is different from Lα′0ω,β . So, ev-
ery A ∈ {A1, . . . , Al} must reject (α′0ω, β). On the other hand, since β ∈
β′{1, . . . , l + 1}ω, the learner M on index (α′0ω, β) and the canonical text for
Lα′0ω,β oscillates only between A1, . . . , Al after it has seen (α′, β′). So, there is
A ∈ {A1, . . . , Al} which is output by M infinitely often, and this A must accept
(α′0ω, β). But we just showed that every such A must reject (α′0ω, β). This
contradiction proves the lemma.

This completes the proof of Lemma 3.5.

15

By Lemma 3.4, the assumption of Lemma 3.5 holds for l = k−1. Now, applying
Lemma 3.5 inductively for l from k − 1 down to 2, we eventually obtain that
there are finite strings α′, β′ and an automaton A such that

1) α′ ∈ {0, 1, . . . , k}∗, β′ ∈ {1, . . . , k}∗ and |α′| = |β′|,

2) for every ω-string β ⊃ β′ such that β(x) ∈ {1, 2} for all x ≥ |β′|, the learner
M on index (α′0ω, β) and the canonical text for Lα′0ω,β outputs only A
above (α′, β′).

For n ∈ {1, 2}, let Tn be the canonical text for Lα′0ω, nω . We now construct
an ω-string β ∈ β′{1, 2}ω with lim supx→∞ β(x) = 2 such that M outputs only
A on (α′0ω, β) and T1 above (α′, β′). Again, for every i, we will construct
βi ∈ β′{1, 2}∗ such that βi ⊆ βi+1 and β =

⋃
i βi.

Let β0 = β′. Suppose we have constructed βi. By our assumption, the
learner M on (α′0ω, βi1ω) and T1 outputs only A above (α′, β′). Now wait until
the first step when M outputs A above (α′0s, βi), where s = |βi| − |α′|. Let
β′i ⊇ βi be the finite prefix of βi1ω seen by M by that time, and let βi+1 = β′i2.

Since lim supx→∞ β(x) = 2 and since M outputs only A on (α′0ω, β) and
T1 above (α′, β′), A must reject (α′0ω, β). On the other hand, M on (α′0ω, β)
and T2 outputs only A above (α′, β′). Therefore, A must accept (α′0ω, β). This
contradiction proves the theorem.

Remark 3.6. The last result can be strengthened in the following sense: for
every k ≥ 1 there is an indexing {Lβ}β∈I of the class L = { {α0α1α2 . . . αn−1 :
n ∈ ω} : α ∈ {1, 2}ω} such that {Lβ}β∈I is FExk+1-learnable but not FExk-
learnable. That is, the class can be kept fixed and only the indexing has to be
adjusted. In order to keep the proof above more readable, this adjustment was
not implemented there.

4. Explanatory Learning

The main result of this section is that for every class that satisfies Angluin’s tell-
tale condition, there is an indexing in which the class is explanatorily learnable.
A learner which we construct will, in general, have a mind change sequence
which is a subsequence of Reject–Accept–Reject. That is, at first, the learner
may think that the index is wrong and reject it. Then it may change its mind
and start to think that the index is correct and accept it. In the end, the
learner may change its mind again, and in this case it will keep rejecting the
index forever. The mind changes mentioned above are the worst case, and in
some situations, such mind changes may not happen. In the second part of
this section we will consider such patterns of mind changes in more detail and
characterize the classes that can be learnt that way.

Theorem 4.1. If a class L = {Lα}α∈I satisfies Angluin’s tell-tale condition,
then there is an indexing for L such that L with this indexing is Ex-learnable.

16

Proof. Let M be a deterministic automaton recognizing {(x, α) : x ∈ Lα},
and QM be its set of states. The set J of new indices for L will consist of
convolutions ⊗(α, β, γ), where α ∈ I, β ∈ {0, 1}ω determines a tell-tale set for
Lα, and γ ∈ {P(QM)}ω keeps track of states of M when it reads ⊗(x, α) for
some finite strings x ∈ Lα. To simplify the notations we will write (α, β, γ)
instead of ⊗(α, β, γ). Formally, J is defined as follows:

(α, β, γ) ∈ J ⇐⇒ α ∈ I, β = 0n1ω for the minimal n such that
{x ∈ Lα : |x| < n} is a tell-tale set for Lα,
and for every k, γ(k) = { q ∈ QM :

∃x ∈ Lα (|x| ≤ k and StM (⊗(x, α), k) = q)}.

We want to show that J is automatic. Again, it is enough to show that it is
first-order definable from other automatic relations. We can define β as the
lexicographically largest β′ that satisfies the formula:

β′ ∈ 0∗1ω & ∀σ ∈ 0∗
(

(σ ⊆ β′ & σ0 6⊆ β′) →
{x ∈ Lα : |x| < |σ|} is a tell-tale set for Lα

)
.

The first-order definition for a tell-tale set is given in the beginning of the proof
of Theorem 3.1. All other relations in this definition are clearly automatic.

The definition for γ can be written as

∀σ ∈ 0∗
∧

q∈QM

(
q ∈ γ(|σ|) ↔ ∃x ∈ Lα (|x| ≤ |σ| & StM (⊗(x, α), |σ|) = q)

)
.

For every q ∈ QM , there are automata Aq and Bq that recognize the relations

{(σ, γ) : σ ∈ 0∗ & q ∈ γ(|σ|) } and {(σ, x, α) : σ ∈ 0∗ & StM (⊗(x, α), |σ|) = q) }.

Therefore, J is first-order definable from automatic relations, and hence itself
is automatic.

We now show that for every finite string x,

x ∈ Lα ⇐⇒ StM (⊗(x, α), |x|) ∈ γ(|x|),

provided that γ is correctly defined from α as in the definition of J . Indeed,
if x ∈ Lα, then StM (⊗(x, α), |x|) ∈ γ(|x|) by the definition of γ. On the other
hand, if StM (⊗(x, α), |x|) ∈ γ(|x|), then, again by the definition of γ, there is
y ∈ Lα with |y| ≤ |x| such that

StM (⊗(y, α), |x|) = StM (⊗(x, α), |x|).

Therefore, after |x| many steps the run of M on ⊗(x, α) coincides with the run
on ⊗(y, α). Hence M accepts ⊗(x, α), and x is in Lα.

We define a new indexing {Hα,β,γ}(α,β,γ)∈J for the class L as follows

Hα,β,γ = Lα.

17

Clearly, this indexing is automatic since

x ∈ Hα,β,γ ⇐⇒ x ∈ Lα and (α, β, γ) ∈ J.

Now we describe a learner M that can Ex-learn the class L in the new indexing.
Let A be an automaton that recognizes the set J , and let Z be an automaton
that rejects all ω-strings. The learner M will output only automata A and Z
in a sequence Z–A–Z (or a subsequence of this). In other words, M can start
outputting automaton Z, then change its mind to A and then again change its
mind to Z, after which it will be outputting Z forever.

When an index (α, β, γ) is given to the learner M, it always assumes that
β and γ are correctly defined from α. Otherwise, it does not matter which
automaton M will output in the limit, since both A and Z will reject the index
(α, β, γ).

At every step s, M reads the first s inputs x1, . . . , xs from the input text.
Then M outputs A if the following conditions hold:

– There exists n ≤ s such that 0n1 ⊆ β.
– For every i with xi 6= #, xi belongs to Lα according to γ, that is,

StM (⊗(xi, α), |xi|) ∈ γ(|xi|).
– For every x with |x| < n, if x belongs to Lα according to γ, then

x ∈ {x1, . . . , xs}.
Otherwise, M outputs Z. This concludes the step s.

Note that M makes a change from Z to A or from A to Z at most once.
Thus it always converges to one of these automata. If the index (α, β, γ) is not
in J , then M always rejects it. If (α, β, γ) ∈ J , then for every x, we have that
x ∈ Lα according to γ if and only if x is indeed in Lα. Moreover, the set

Dn = {x : |x| < n and x ∈ Lα according to γ}

is a tell-tale set for Lα, where n is such that β = 0n1ω.
Let T be the input text. If content(T) = Hα,β,γ , then there is a step s ≥ n

such that Dn is contained in {x1, . . . , xs}. Therefore, M will output only A from
step s onward. If content(T) 6= Hα,β,γ , then Dn * content(T) or content(T) *
Hα,β,γ . In the first case, M will output Z on every step. In the second case,
there is a step s and an xi ∈ {x1, . . . , xs} such that xi 6= # and xi is not in Lα

according to γ. Therefore, M will output Z from step s onward. This proves
the correctness of the algorithm.

In the previous theorem we showed that a class L can be Ex-learnt in a suitable
indexing with the Reject–Accept–Reject sequence of mind changes (or a sub-
sequence thereof) if and only if it satisfies Angluin’s tell-tale condition. In the
rest of this section we will characterize the classes that are Ex-learnable with
the sequences of mind changes as Accept–Reject, Reject–Accept and Accept–
Reject–Accept (or a subsequence thereof). For the ease of notation, we will
drop the phrase “or a subsequence thereof” in the following.

Theorem 4.2. For every automatic class L, the following are equivalent:

18

1) L can be Ex-learnt with the Accept–Reject sequence of mind changes
in a suitable indexing.

2) L is an inclusion free class, that is, ∀L,L′ ∈ L (L′ is not a proper
subset of L).

Proof. Suppose that there is a learner M that Ex-learns L with the sequence
of mind changes as Accept–Reject in the indexing {Lα}α∈I , and suppose that
there are different sets Lα and Lβ such that Lα ⊂ Lβ . Run the learner M on
the index β and some text for Lα. Since Lα 6= Lβ , there is a step s at which
M changes its mind to Reject. Let τs be the finite segment of the text seen by
M at step s. Since Lα ⊂ Lβ , we can extend τs to a text T for Lβ . Then M
will reject β on text T , which is impossible. Therefore, L is inclusion free.

Now let L = {Lα}α∈I be an inclusion free class, and let M be a deterministic
automaton recognizing {(x, α) : x ∈ Lα}. Consider a new set of indices J defined
as

(α, γ) ∈ J ⇐⇒ α ∈ I and for every k, γ(k) = { q ∈ QM :
∃x ∈ Lα (|x| ≤ k and StM (⊗(x, α), k) = q)}.

Define a new automatic indexing {Hα,γ}(α,γ)∈J for the class L as

Hα,γ = Lα.

Let A be an automaton that recognizes the set J , and let Z be an automaton
that rejects all ω-strings. The learner M that Ex-learns L in this new indexing
works as follows. At every step s, M reads the first s inputs x1, . . . , xs from
the input text. If every xi which is not equal to the pause symbol # belongs
to Hα,γ according to γ, i.e., if StM (⊗(xi, α), |xi|) ∈ γ(|xi|), then M outputs A.
Otherwise, M outputs Z.

One can verify that M Ex-learns {Hα,γ}(α,γ)∈J with the Accept–Reject
sequence of mind changes.

Theorem 4.3. For every automatic class L, the following are equivalent:

1) L can be Ex-learnt with the Reject–Accept sequence of mind changes
in a suitable indexing.

2) For every L ∈ L there is a finite DL ⊆ L such that for every L′ ∈ L,
if DL ⊆ L′ then L′ = L.

Proof. Suppose that there is a learner M that Ex-learns L with the sequence of
mind changes as Reject–Accept in the indexing {Lα}α∈I . Run M on an index
α and any text for Lα. There must be a step s at which M changes its mind
to Accept. Let τs be the finite segment of the input text seen by M at step s,
and let Dα = content(τs). Suppose that there is Lβ 6= Lα such that Dα ⊆ Lβ .
Consider a text T for Lβ that extends τs. If we run M on index α and text T ,
then at step s the learner will change its mind to Accept, and after that it will
be accepting α forever. On the other hand, M must eventually reject α since
Lα 6= content(T). Therefore, L satisfies the condition 2) of the theorem.

19

Suppose that the class L = {Lα}α∈I satisfies condition 2) of the theorem.
Let M be a deterministic automaton that recognizes {(x, α) : x ∈ Lα}. The set
J of new indices is defined as follows:

(α, β, γ) ∈ J ⇐⇒ α ∈ I, β = 0n1ω for the minimal n such that
∀α′ ∈ I ({x ∈ Lα : |x| < n} ⊆ Lα′ → Lα′ = Lα),
and for every k, γ(k) = { q ∈ QM :

∃x ∈ Lα (|x| ≤ k and StM (⊗(x, α), k) = q)}.

Using a similar argument as in the proof of Theorem 4.1, one can show that J
is automatic. Define a new automatic indexing {Hα,β,γ}(α,β,γ)∈J for the class
L as follows

Hα,β,γ = Lα.

Let A be an automaton that recognizes the set J , and let Z be an automaton
that rejects all ω-strings. The learner M that Ex-learns L in this new indexing
works as follows. At every step s, M reads the first s inputs x1, . . . , xs from
the input text. Then M outputs A if the following conditions hold:

– There exists n ≤ s such that 0n1 ⊆ β.
– If 0n1 ⊆ β, then for every x with |x| < n, if x belongs to Lα according

to γ, i.e., StM (⊗(x, α), |x|) ∈ γ(|x|), then x ∈ {x1, . . . , xs}.
Otherwise, M outputs Z.

From this description of M one can see that it Ex-learns {Hα,β,γ}(α,β,γ)∈J

with the Reject–Accept sequence of mind changes.

Theorem 4.4. For every automatic class L, the following are equivalent:

1) L can be Ex-learnt with the Accept–Reject–Accept sequence of mind
changes in a suitable indexing.

2) L = H ∪ K, where for every L ∈ H and L′ ∈ L (L′ ⊆ L ⇒ L′ = L),
and for every L ∈ K there is a finite DL ⊆ L such that for every
L′ ∈ L (DL ⊆ L′ ⇒ L′ = L).

Proof. Suppose that there is a learner M that Ex-learns L with the Accept–
Reject–Accept sequence of mind changes in the indexing {Lα}α∈I . Define H
and K as follows:

H = {Lα : every automaton output by M on index α and any text
for Lα, accepts α}

and

K = {Lα : there is a text T for Lα such that the learner M has a
Reject–Accept or Accept–Reject–Accept pattern of
mind changes when it processes α and T}.

Suppose that there are different Lα ∈ L and Lβ ∈ H such that Lα ⊂ Lβ . Run
the learner M on index β and some text for Lα. There must be a step s at

20

which M outputs an automaton rejecting β. Let τs be the finite segment of the
text seen by M at step s. Since Lα ⊂ Lβ , we can extend τs to a text T for Lβ .
Now M outputs an automaton rejecting β when it processes β and T . This
contradicts our definition of H.

Suppose that Lα ∈ K and let T be a text for Lα such that the learner M
has a pattern of mind changes Reject–Accept or Accept–Reject–Accept when it
processes α and T . Run M on the index α and the text T . Let s be the step
at which M changes its mind from Reject to Accept, and let τs be the finite
segment of text T seen by this step. Define Dα = content(τs).

Suppose that there is Lβ ∈ L such that Lβ 6= Lα and Dα ⊆ Lβ . Consider a
text T for Lβ that extends τs. If we run M on index α and text T , then at step
s the learner will change its mind from Reject to Accept, and after that it will
be accepting α forever. On the other hand, M must eventually reject α since
Lα 6= content(T). Therefore, L satisfies the condition 2) of the theorem.

Now suppose that the class L = {Lα}α∈I satisfies condition 2) of the the-
orem. Let M be a deterministic automaton that recognizes {(x, α) : x ∈ Lα}.
The set J of new indices is defined as follows:

(α, β, γ) ∈ J ⇐⇒ α ∈ I, β = 0n1ω for the minimal n such that
∀α′ ∈ I ({x ∈ Lα : |x| < n} ⊆ Lα′ → Lα′ = Lα),
and for every k, γ(k) = { q ∈ QM :

∃x ∈ Lα (|x| ≤ k and StM (⊗(x, α), k) = q)}.

Again, the set J is automatic, and we can define a new automatic indexing
{Hα,β,γ}(α,β,γ)∈J for the class L as follows

Hα,β,γ = Lα.

Let A be an automaton that recognizes the set J , and let Z be an automaton
that rejects all ω-strings. The learner M that Ex-learns L in this new indexing
works as follows. At every step s, M reads the first s inputs x1, . . . , xs from
the input text. Then M outputs A or Z according to the following rules:

Case A: There is no n ≤ s such that 0n1 ⊆ β. In this case M outputs A
if every xi which is different from # belongs to Lα according to γ.
Otherwise, M outputs Z.

Case B: There exists n ≤ s such that 0n1 ⊆ β. In this case M outputs A
if ∀x ((|x| < n and x ∈ Lα according to γ) → x ∈ {x1, . . . , xs}).
Otherwise, M outputs Z.

It is clear that M has an Accept–Reject–Accept sequence of mind changes
(or a subsequence thereof) for any index (α, β, γ) ∈ J and any text T with
content(T) ∈ L. If M always stays in Case A, then Hα,β,γ = Lα is not in K
and hence Lα ∈ H. By construction, M eventually accepts (α, β, γ) if and only
if content(T) ⊆ Lα. But since Lα ∈ H, we have that content(T) ⊆ Lα implies
content(T) = Lα.

If at some step the learner M is in Case B, then Hα,β,γ = Lα ∈ K. By
construction, M eventually accepts (α, β, γ) if and only if Dα ⊆ content(T),

21

where Dα = {x ∈ Lα : |x| < n}. By the definition of β, Dα ⊆ content(T)
implies Lα = content(T).

5. Blind Learning

Blind learning is distinguished from models of learning described in the previous
sections in that a learner itself does not see the index tape. So the learner
has to encode all the necessary information into a sequence of automata which
determines in the limit whether an index is correct or incorrect. In the case
of behaviourally correct learning, this can be done by coding more and more
finite information into such a sequence in a way that every incorrect index is
eventually rejected (but the point from which on this happens depends on an
index). In the case of explanatory learning, this turns out to be impossible.
However if a class is countable, then we can simulate a traditional learner (for
a countable class) and encode its output conjecture into an ω-automaton which
then checks whether the index provided is equivalent to the current output of
the traditional learner. In some sense, this is the best that one can do, as all
blind explanatorily learnable classes are countable.

Theorem 5.1. If a class L = {Lα}α∈I satisfies Angluin’s tell-tale condition,
then L is BlindBC-learnable.

Proof. We describe an algorithm for a BlindBC-learner M.
At step s, the learner reads the first s inputs x1, . . . , xs from the input text. If

every xi is equal to the pause symbol #, then the learner outputs an automaton
which accepts exactly the indices of ∅. Otherwise, let zs

1, . . . , z
s
t be such that

zs
1 <llex · · · <llex zs

t and {zs
1, z

s
2, . . . , z

s
t } = {x1, x2, . . . , xs} − {#}. For every k

with 1 ≤ k ≤ t, let As
k be an automaton such that

As
k accepts α ⇐⇒ α ∈ I, ({x1, . . . , xs} − {#}) ⊆ Lα,

{x1, . . . , xs} ∩ {x : x ≤llex zs
k} = Lα ∩ {x : x ≤llex zs

k},
and Lα ∩ {x : x ≤llex zs

k} is a tell-tale set for Lα.

Such an As
k exists since the property of being a tell-tale set is first-order definable

from other automatic relations as described in the beginning of the proof of
Theorem 3.1. Finally, in the end of step s, M outputs an automaton As such
that

L(As) =
⋃

1≤k≤t

L(As
k).

To verify that the algorithm is correct, we need to show that for every input
text T with content(T) ∈ L and for every index α

a) if α ∈ I and Lα = content(T), then As accepts α for almost all s,
b) if α ∈ I and Lα 6= content(T) or if α /∈ I, then As rejects α for
almost all s.

22

First, suppose that Lα = content(T). Since L satisfies Angluin’s tell-tale con-
dition, there are s0 and k such that for all s ≥ s0

Lα ∩ {x : x ≤llex zs
k} is a tell-tale set for Lα.

Let s1 ≥ s0 be such that for every s ≥ s1

{x1, . . . , xs} ∩ {x : x ≤llex zs
k} = Lα ∩ {x : x ≤llex zs

k}.

Then, by definition, As
k accepts α for all s ≥ s1. Therefore, As accepts α for all

s ≥ s1.
If α /∈ I, then every As rejects α (note that our definitions of learning do

not place any requirements on the learner when α /∈ I; this point is just for
emphasis). So, suppose that α ∈ I and Lα 6= content(T). If ∃x ∈ content(T) \
Lα, then for some s0 we have that x ∈ {x1, . . . , xs} for all s ≥ s0. Therefore, for
all s ≥ s0, ({x1, . . . , xs}−{#}) 6⊆ Lα and As rejects α. Suppose that content(T)
is a proper subset of Lα. Note that for every s and k, if Lα ∩ {x : x ≤llex zs

k} is
a tell-tale set for Lα, then

{x1, . . . , xs} ∩ {x : x ≤llex zs
k} 6= Lα ∩ {x : x ≤llex zs

k}.

Otherwise, content(T) would be a proper subset of Lα containing a tell-tale set
for Lα, which is impossible. So, every As

k and hence every As rejects α.

Theorem 5.2. For every class L = {Lα}α∈I , the following are equivalent

1) L is BlindEx-learnable.

2) L is BlindFEx-learnable.

3) L is at most countable and satisfies Angluin’s tell-tale condition.

Proof. It is obvious that BlindEx-learnable class is BlindFEx-learnable. Sup-
pose that L ∈ BlindFEx; then Fact 2.13 implies that L satisfies Angluin’s
tell-tale condition. We will show that L is countable.

Let M be a BlindFEx-learner for L. Thus for every L ∈ L and every input
text T with content(T) = L, the learner M outputs at least one automaton AL

infinitely often. Since M is blind, AL must accept all indices α with Lα = L
and reject all indices β with Lβ 6= L. If L and L′ are two different sets from L,
then AL 6= AL′ . Since there are only countably many different automata, the
class L is at most countable.

Suppose that L is countable and satisfies Angluin’s tell-tale condition. Con-
sider the following equivalence relation on the set I of indices for L:

α ∼ β if and only if ∀x (x ∈ Lα ↔ x ∈ Lβ).

This equivalence relation is automatic since it is first-order definable from au-
tomatic relations. By assumption, it has countable index. As Bárány, Kaiser
and Rubin [2] showed, every automatic equivalence relation of countable index

23

has a countable automatic set of representatives. Let J ⊆ I be a set of such
representatives.

It is well-known that every automatic set of ω-strings is a finite union of
sets of the form V · Uω, where V and U are automatic sets of finite strings
(e.g., see [11]). If the set is countable, then U contains only a single string u.
Therefore, we have that J =

⋃k
i=1 Vi · {ui}ω for some automatic sets Vi and

finite strings ui.
We now define an automatic indexing of the class L by finite strings. Let Σ

be the alphabet of the set I and let Γ be the alphabet of the sets Lα. Consider
an expanded alphabet Σ′ = Σ ∪ {1, . . . , k} (we assume here that Σ does not
contain {1, . . . , k}). A set G of new indices will be

G = { vi : v ∈ Vi and i ∈ {1, . . . , k} }.

Note that G is automatic. The new indexing {Hw}w∈G of L is defined as follows:
for every vi ∈ G, let

Hvi = Lvuω
i
.

We need to show that the relation R = {(x,w) : x ∈ Hw} is automatic. Let M be
a deterministic Muller automaton that recognizes the relation {(x, α) : x ∈ Lα}.
A finite automaton A that recognizes R can be defined informally as follows.
On input ⊗(x, vi), A simulates M on the input ⊗(x, vuω

i). After processing its
input, A accepts it if and only if there is an accepting run of M on ⊗(x, vuω

i)
(that is, A replaces i by uω

i in its simulation). Thus,

A accepts ⊗ (x, vi) ⇐⇒ M accepts ⊗ (x, vuω
i).

Below is a formal definition of A.
Suppose that M = (QM , (Γ ∪ Σ ∪ {#})2, qM

0 , TM). For each i = 1, . . . , k,
let ui = ui,1 . . . ui,ni

, where ni is the length of ui. The automaton A is defined
as A = (Q, (Γ ∪ Σ′ ∪ {#})2, q0, T, F), where

1) Q = { (q, i, j) : q ∈ QM , 0 ≤ i ≤ k, if i = 0 then j = 0, and if i > 0
then 1 ≤ j ≤ ni }.

2) q0 = (qM
0 , 0, 0).

3) The transition function T is defined as follows:

a) for every a ∈ Γ ∪ {#} and b ∈ Σ,
T ((q, 0, 0), (a, b)) = (TM (q, (a, b)), 0, 0);

b) for every a ∈ Γ ∪ {#} and i ∈ {1, . . . , k},
T ((q, 0, 0), (a, i)) = (TM (q, (a, ui,1)), i, 1);

c) for every a ∈ Γ, i ∈ {1, . . . , k} and j ∈ {1, . . . , ni},
T ((q, i, j), (a, #)) = (TM (q, (a, ui,j+1)), i, j + 1),

where it is assumed that ni + 1 = 1.

4) The final states are defined as

F = { (q, i, j) ∈ Q : i > 0, and there exists an accepting run of M

on the string ⊗
(
#ω, (u[j]

i)ω
)

starting from q },

24

where u
[j]
i is the cyclic shift of ui by j symbols, i.e.,

u
[j]
i = ui,j+1 . . . ui,niui,1 . . . ui,j .

Note that the final states F of the automaton A can be computed effectively.
Since {Hw}w∈G is automatic and satisfies Angluin’s tell-tale condition, there

is a recursive learner M′ such that, on any input text T for Hw (where w ∈
G), M′ converges on T to an index w′ such that Hw′ = Hw (see [10]; this
is traditional Ex-learning of countable automatic families satisfying Angluin’s
tell-tale condition). For every w ∈ G, let Aw be an automaton such that

L(Aw) = {α ∈ I : ∀x (x ∈ Lα ↔ x ∈ Hw)}.

Such an Aw exists since L(Aw) is first-order definable from automatic relations.
Now the BlindEx-learner M for the class L = {Lα}α∈I acts as follows: on an
input text T for some L ∈ L, it simulates the work of M′, and whenever M′

outputs an index w ∈ G, the learner M outputs the automaton Aw.
Since M′ converges to an index w such that Hw = content(T), we have

that M converges to the automaton Aw such that L(Aw) = {α ∈ I : Lα =
content(T)}. Therefore, the class L is BlindEx-learnable.

The following corollary summarizes the main results from this and the previous
sections.

Corollary 5.3. For every automatic class L, the following are equivalent:

1) L satisfies Angluin’s tell-tale condition.

2) L is BC-learnable.

3) L is BlindBC-learnable.

4) L is FEx-learnable.

5) L is Ex-learnable in a suitable indexing.

Proof. The implications 3) ⇒ 2) and 4) ⇒ 2) are trivial; 2) ⇒ 1) and 5) ⇒ 1)
follow from Fact 2.13; 1) ⇒ 3) follows from Theorem 5.1; 1) ⇒ 4) follows from
Theorem 3.1; and 1) ⇒ 5) follows from Theorem 4.1.

6. Partial Identification

Partial identification is, in the traditional setting of inductive inference, a learn-
ing criterion where the learner outputs on every text of an r.e. language infinitely
many (not necessarily distinct) hypotheses such that exactly one hypothesis oc-
curs infinitely often and that hypothesis is correct. There is a recursive learner
succeeding on all r.e. sets, hence this concept is omniscient in the traditional
setting [13]. Also in our model, every automatic class is partially identifiable.

Theorem 6.1. Every automatic class with any given automatic indexing is
Part-learnable.

25

Proof. Consider an automatic indexing {Lα}α∈I for a class L. Let M be an
automaton recognizing the relation ‘x ∈ Lα’, and let ≡M,α and ≡M,α,s be the
relations defined in the proof of Theorem 3.1. For every pair of strings (x, y)
with x <llex y, let Z(x,y) be an automaton that rejects all inputs. For every
k ≥ 1 and every tuple (x1, . . . , xk) with x1 <llex · · · <llex xk, let A(x1,...,xk) be
an automaton that accepts an ω-string α if and only if

∀y (y ∈ Lα ⇐⇒ y ≡M,α xi for some i ∈ {1, . . . , k}).

We assume that all the automata defined above are different from each other.
Extend the ordering ≤llex to pairs of strings as follows: (x′, y′) ≤llex (x, y) if
and only if one of the following conditions is satisfied:

1) max{|x′|, |y′|} < max{|x|, |y|},
2) max{|x′|, |y′|} = max{|x|, |y|} and x′ <llex x,
3) max{|x′|, |y′|} = max{|x|, |y|}, x = x′ and y′ ≤llex y.

Let M be a learner constructed to satisfy the following properties:
1) M outputs the automaton Z(x,y) on index α and text T at least n times if

and only if there exists s ≥ n such that
– x <llex y and x ≡M,α,s y,
– |{x, y} ∩ content(τs)| = 1, where τs is the initial segment of T of length s,
– there is no (x′, y′) <llex (x, y) for which the above two properties hold.

2) M outputs the automaton A(x1,...,xk) on index α and text T at least n times
if and only if there exists s ≥ n such that
– for every i ∈ {1, . . . , k} and every y <llex xi we have that y 6≡M,α,s xi,
– {x1, . . . , xk} ⊆ content(τs),
– for every z /∈ {x1, . . . , xk} with |z| ≤ n, if ∀y <llex z (y 6≡M,α,s z) then

z /∈ content(τs),
– for every x, y such that max{|x|, |y|} ≤ n, if x <llex y and x ≡M,α,s y

then |{x, y} ∩ content(τs)| 6= 1.
It is not hard to verify that if the learner M satisfies the above properties, then
for any α and T :

a) M outputs Z(x,y) infinitely often on α, T if and only if (x, y) is the ≤llex

least pair such that x <llex y, x ≡M,α y and |{x, y} ∩ content(T)| = 1.
b) M outputs A(x1,...,xk) infinitely often on α, T if and only if x1, . . . , xk are

exactly those ≤llex least representatives of equivalence classes of ≡M,α which
belong to content(T), and there is no (x, y) such that x <llex y, x ≡M,α y
and |{x, y} ∩ content(T)| = 1.

Now, if content(T) is not equal to the union of equivalence classes of ≡M,α, then
M outputs only Z(x,y) infinitely often for some (x, y), and it rejects the index α.
Otherwise, M outputs only A(x1,...,xk) infinitely often, where x1, . . . , xk are the
≤llex least representatives of the equivalence classes belonging to content(T).
By definition, A(x1,...,xk) accepts index α if and only if Lα is the union of the
equivalence classes of x1, . . . , xk. The latter is equivalent to Lα = content(T)
by the property b) above.

26

Theorem 6.2. A class L = {Lα}α∈I is in BlindPart if and only if it is at
most countable.

Proof. First, we show that if L ∈ BlindPart, then it is at most countable. Let
M be a BlindPart-learner for L. Fix a set L ∈ L and some text T for L.
The learner M outputs exactly one automata infinitely often when processing
the text T . Let A be such an automaton. Since M is blind, A must accept
only those α for which Lα = L. Since there are only countably many different
automata, the class L is at most countable.

To prove the other implication, assume that L is at most countable. In this
case we can construct a new automatic indexing {Hw}w∈G for L by finite strings
as shown in the proof of Theorem 5.2. Moreover, we can choose this indexing
to be one-to-one. For every w ∈ G, let Aw be an automaton that recognizes the
set {α ∈ I : Lα = Hw}.

The BlindPart-learner M works as follows. At every step s, M reads the first
s inputs x1, . . . , xs from the input text T , and for every w ∈ G with |w| ≤ s, it
computes the coincidence between {x1, . . . , xs} and Hw at step s, that is,

C(w, s) = max {n : n ≤ s and for every string x with |x| ≤ n

(x ∈ {x1, . . . , xs} ⇐⇒ x ∈ Hw)}.

If there exists a w ∈ G with |w| ≤ s and C(w, s) > C(w, s−1), then M outputs
Aw for the ≤llex least such w. Otherwise, M does not produce an output at
step s.

To verify that the algorithm is correct, let T be a text for a set L ∈ L and let w0

be an index such that Hw0 = L. Since the indexing {Hw}w∈G is one-to-one, we
have that lims C(w0, s) = ∞, but for every w′ 6= w0, lims C(w′, s) < ∞. Thus,
every Aw′ with w′ 6= w0 will be output only finitely often. Let s0 be a step by
which all C(w′, s) with w′ <llex w0 have reached their limit. Then at every step
s ≥ s0 such that C(w0, s) > C(w0, s − 1), M outputs Aw0 . Therefore, Aw0 is
output infinitely often and by definition L(Aw0) = {α ∈ I : Lα = Hw0 = L}.

References

[1] Dana Angluin. Inductive inference of formal languages from positive data.
Information and Control, 45(2):117–135, 1980.

[2] Vince Bárány, Lukas Kaiser and Sasha Rubin. Cardinality and counting
quantifiers on omega-automatic structures. In Proceedings of the 25th Inter-
national Symposium on Theoretical Aspects of Computer Science, STACS
2008, pages 385–396, 2008.

[3] Janis Bārzdiņš. Two theorems on the limiting synthesis of functions. The-
ory of Algorithms and Programs, 1:82–88, Latvian State University, Riga,
Latvia, 1974.

27

[4] Achim Blumensath and Erich Grädel. Automatic structures. In 15th An-
nual IEEE Symposium on Logic in Computer Science (Santa Barbara, CA,
2000), pages 51–62. IEEE Computer Society Press, Los Alamitos, CA,
2000.

[5] Achim Blumensath and Erich Grädel. Finite presentations of infinite
structures: automata and interpretations. Theory of Computing Systems,
37(6):641–674, 2004.

[6] J. Richard Büchi. Weak second-order arithmetic and finite automata.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 6:66–
92, 1960.

[7] J. Richard Büchi. On a decision method in restricted second order arith-
metic. In Logic, Methodology and Philosophy of Science (Proceedings 1960
International Congress), pages 1–11. Stanford University Press, Stanford,
California, 1962.

[8] John Case. The power of vacillation in language learning. SIAM Journal
on Computing, 28(6):1941–1969, 1999.

[9] E. Mark Gold. Language identification in the limit. Information and Con-
trol, 10:447–474, 1967.

[10] Sanjay Jain, Qinglong Luo and Frank Stephan. Learnability of automatic
classes. Technical Report TRA1/09, School of Computing, National Univer-
sity of Singapore, 2009. Preliminary version to appear in 4th International
Conference on Language and Automata Theory and Applications (LATA
2010).

[11] Bakhadyr Khoussainov and Anil Nerode. Automata theory and its appli-
cations. Birkhäuser Boston, Inc., Boston, MA, 2001.

[12] Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of struc-
tures. In Logic and Computational Complexity (Indianapolis, IN, 1994),
volume 960 of Lecture Notes in Computer Science, pages 367–392. Springer,
Berlin, 1995.

[13] Daniel N. Osherson, Micheal Stob and Scott Weinstein. Systems that learn.
An introduction to learning theory for cognitive and computer scientists.
Bradford Book—MIT Press, Cambridge, MA, 1986.

[14] Moshe Y. Vardi. The Büchi complementation saga. In Proceedings of
the International Symposium on Theoretical Aspects of Computer Science,
STACS 2007, volume 4393 of Lecture Notes in Computer Science, pages
12–22. Springer, Berlin, 2007.

28

