
Learnability of Automatic Classes

Sanjay Jaina,1, Qinglong Luob, Frank Stephanc,1

aDepartment of Computer Science, National University of Singapore, Singapore 117417
bDSO National Laboratories, 20 Science Park Drive, Singapore 118230

cDepartment of Mathematics and Department of Computer Science,
National University of Singapore, Singapore 119076

Abstract

The present work initiates the study of the learnability of automatic index-
able classes which are classes of regular languages of a certain form. Angluin’s
tell-tale condition characterises when these classes are explanatorily learnable.
Therefore, the more interesting question is when learnability holds for learn-
ers with complexity bounds, formulated in the automata-theoretic setting. The
learners in question work iteratively, in some cases with an additional long-term
memory, where the update function of the learner mapping old hypothesis, old
memory and current datum to new hypothesis and new memory is automatic.
Furthermore, the dependence of the learnability on the indexing is also investi-
gated. This work brings together the fields of inductive inference and automatic
structures.

Keywords: Inductive Inference, Automatic Structures

1. Introduction

The present work studies inductive inference [17] within the framework of au-
tomata theory and, in particular, automatic structures. The basic scenario of
inductive inference is that a learner is receiving, one piece at a time, data about
a target concept. As the learner is receiving the data, it conjectures a hypothesis
about what the target concept might be. The hypothesis may be modified or
changed as more data is received. One can consider the learner to be successful
if the sequence of hypotheses converges to a correct hypothesis which explains
the target concept.

The concept classes of interest to us in this paper are classes of regular lan-
guages. (A regular language is a subset of Σ∗, for some finite alphabet Σ, which
is recognised by a finite automaton.) The data provided to the learner then

Email addresses: sanjay@comp.nus.edu.sg (Sanjay Jain), lqinglon@dso.org.sg
(Qinglong Luo), fstephan@comp.nus.edu.sg (Frank Stephan)

1Sanjay Jain was supported in part by NUS grants R252-000-308-112 and C252-000-087-
001. Frank Stephan was supported in part by NUS grants R146-000-114-112 and R252-000-
308-112.

Preprint submitted to Elsevier October 17, 2011

becomes a sequential presentation of all the elements of the target language,
in arbitrary order, with repetition allowed. To deal with the empty language,
we also allow a special symbol � to be presented to the learner. This symbol
represents no data. Such a presentation of data is called a text for the language.
Note that a text presents only positive data to the learner, and not negative
data, that is, the learner is not explicitly told which elements do not belong to
the language. If both positive and negative data are presented to the learner,
then the mode of presentation is called informant. In this paper we will only be
concerned with learning from texts.

In many cases, one considers only recursive learners. The hypotheses pro-
duced by the learner describe the language to be learnt in some form. For
example, they might be grammars generating the language. The learner is said
to Ex-learn the target language iff the sequence of hypotheses converges to one
correct hypothesis describing the language to be learnt. Here “Ex-learn” stands
for explanatory learning. Learning of one language L is not interesting, as the
learner might ignore all inputs and always output a hypothesis which is correct
for L. Thus, what is considered is whether all languages from a class of lan-
guages are Ex-learnt by some learner. When such a learner exists for a class,
that class is said to be Ex-learnable.

Since [17], several other models of learning have been considered by the
researchers. For example, in behaviourally correct learning (BC-learning) [5]
the learner is not required to converge syntactically to one correct hypothesis;
rather, it is just required that all hypotheses are correct from some time on-
wards. In other words, one requires only semantic convergence in this case.
In vacillatory learning (FEx-learning) [10], the learner eventually vacillates be-
tween only finitely many hypothesis, all of which are correct.

Besides the mode of convergence, researchers have also considered several
properties of learners such as

• consistency, where the hypothesis of the learner is required to contain the
elements seen in the input so far (see [6, 7]),

• conservativeness, where the learner is not allowed to change a hypothesis
which is consistent with the data seen so far (see [1]) and

• iterativeness, where the new hypothesis of the learner depends only on the
previous hypothesis and the latest datum (see [36, 37]). Iterative learning
is often also called incremental learning.

The formal definitions of the above criteria are given in Section 2 below.
Besides considering models of learning, there has also been interest in con-

sidering learning of practical and concrete classes such as the pattern languages
[2, 14, 23, 27], elementary formal systems [35] and the regular languages [4].
As the class of all regular languages is not learnable from positive data [17],
Angluin [3] initiated the study of the learnability of certain subclasses of the
regular languages from positive data. In particular, she showed the learnabil-
ity of the class of k-reversible languages. These studies were later extended

2

[13, 15, 18]. The classes considered in these studies were all superclasses of the
class of all 0-reversible languages, which is not automatic; for example, every
language {0, 1}∗{2}n{0, 1}∗ is 0-reversible but the class of these languages is
not automatic. Also many other subclasses of the regular languages which have
been considered in the literature are not automatic. Furthermore, learnability of
regular languages from counterexamples and queries has also been studied (for
example by Angluin [4] and Ibarra and Jiang [21]) but we will not be concerned
with these learning models in this paper.

In this work, we consider those subclasses of the regular languages where
the membership problem is regular in the sense that one automaton accepts a
combination (called a convolution) of an index and a word iff the word is in the
language given by the index. This is formalised in the framework of automatic
structures [8, 9, 19, 20, 24, 32, 33]. Here are some examples of automatic classes:

• The class of sets with up to k elements for a constant k;

• The class of all finite and cofinite subsets of {0}∗;

• The class of all intervals of an automatic linear order on a regular set;

• Given an automatic presentation of (Z,+, <) and a first-order formula
Φ(x, a1, . . . , an) with parameters a1, . . . , an ∈ Z, the class consisting of all
sets {x ∈ Z : Φ(x, a1, . . . , an)} with a1, . . . , an ∈ Z.

It is known that the automatic relations are closed under first-order theory, as
proven by Khoussainov and Nerode [24]. This makes several properties of such
classes regular and thus decidable; it also makes it possible to define learners
using first-order definitions. Studies in automatic structures have connections
to model checking and Boolean algebra [9, 24].

A tell-tale set for a language L in a class L is a finite subset D of L such
that, for every L′ ∈ L, D ⊆ L′ ⊆ L implies L′ = L. A class L satisfies Angluin’s
tell-tale condition iff every language L in L has a tell-tale set (with respect to
L). Angluin [1] showed that any class of languages which is learnable (even
by a non-recursive learner, for which Ex-, BC- and FEx-learning are all the
same) must satisfy Angluin’s tell-tale condition. We show in Theorem 9 that
every automatic class that satisfies Angluin’s tell-tale condition is Ex-learnable
by a recursive learner which is additionally consistent and conservative. Addi-
tionally, it is decidable whether an automatic class satisfies Angluin’s tell-tale
condition and thus whether it is Ex-learnable (see Corollary 10).

As we are considering learning of automatic classes, it is natural to also
consider learners which are simpler than just being recursive. A natural idea
would be to consider learners which are themselves described via automatic
structures. This would put both, the learners and the classes to be learnt into
a unified framework. Furthermore, the automatic learners are linear time com-
putable [11] and additional constraints on the memory can be satisfied.2 This

2Note that the constant in this linear time computation is proportional to the size of the
automata representing the automatic learner. Furthermore, the memory of such automatic

3

approach is justified by the observation that a learner might observe much more
data than it can remember and therefore it is not realistic to assume that the
whole learning history can be remembered. To model the above, we consider
variants of iterative learners [36, 37] and learners with bounded long-term mem-
ory [16, 25]. The basic idea is that the learner reads in each round a datum
and updates the long term memory and the hypothesis based on this datum;
for automatic learners, this update function is then required to be automatic.

As automatic structures are relatively simple to implement and analyse, it is
interesting to explore the capabilities of such learners. In Section 3 we formally
define automatic learners: iterative learners as well as iterative learners with
long-term memory. Specifically we consider the following bounds on memory:
memory bounded by a constant, memory bounded by the size of the hypothesis,
memory bounded by the size of the largest word seen in the input so far, besides
the default cases of no memory (iterative learning) and the case where we do
not put any specific bounds on memory except as implicit from the definition of
automatic learners. Theorem 16 shows that there are automatic classes which
are Ex-learnable (even iteratively) but not learnable by any automatic learners.

In Section 3 we show the relationship between various iterative automatic
learners and iterative automatic learners with long-term memory. For example,
if long-term memory is not explicitly bounded, then automatic Ex-learning is
the same as automatic BC-learning, in contrast to the situation in learning of
recursively enumerable languages by recursive learners, where there is a differ-
ence [5]. Additionally, for BC-learning, different bounds on long-term memory
do not make a difference, as all automatically BC-learnable classes (with no
explicit long-term memory bound) are iteratively automatically BC-learnable
(see Theorem 17). Similarly, for FEx-learning, all automatically FEx-learnable
classes with long-term memory bounded by size of the hypothesis are iteratively
FEx-learnable. However, for both explanatory learning and vacillatory learning,
there is a difference if one considers long-term memory bounded by hypothesis
size, or whether long-term memory is bounded by the size of the largest word
seen in the input so far (see Theorem 18). For both Ex and FEx-learning, it is
open at this point whether bounding the size of the long-term memory by the
size of the longest word seen so far is equivalent to there being no explicit bound
on the size of the long-term memory. For explanatory learning, it is addition-
ally open whether constant size memory is equivalent to having hypothesis size
memory and whether maximum word size memory can simulate hypothesis size
memory.

In Section 4 we consider consistent learning by automatic learners. Un-
like Theorem 9, where we show that general learners for automatic classes can
be made consistent, automatic learners cannot in general be made consistent.
Theorem 22 shows that there is an automatic class L which is Ex-learnable by
an automatic iterative learner but not Ex-learnable by a consistent automatic
learner with no constraints on long-term memory, except those implicit due to

learners cannot grow too fast, even for the most general case (see Proposition 15).

4

the learner being automatic. Theorem 23 shows that there is an automatic class
L, which is Ex-learnable by a consistent automatic learner or an iterative au-
tomatic learner, but not by a consistent iterative learner. Theorem 25 shows
the existence of an automatic class L which is Ex-learnable by a consistent
and iterative automatic learner using a class comprising hypothesis space (i.e.,
using hypotheses from an automatic class which is a superset of the class L),
but not Ex-learnable by a consistent automatic learner (with no constraints on
long-term memory, except those implicit due to the learner being automatic)
using a class preserving hypothesis space, i.e., using a hypothesis space which
contains languages only from L.

One of the reasons for the difficulty of learning by iterative learners is that
they forget past data. An attempt to overcome this is to require that every
datum appears infinitely often in the text — such a text is called a fat text [31].
Fat texts are quite frequently studied in learning theory. In Section 5 we investi-
gate the natural question of whether requiring fat texts permits the limitations
of iterative learning and related criteria to be overcome. In Theorem 28 we
show that every automatic class that satisfies Angluin’s tell-tale condition is
Ex-learnable (using the automatic class itself as the hypothesis space) from fat
texts by an automatic learner with long-term memory bounded by the size of
the largest word seen so far. If one allows an arbitrary class preserving hypo-
thesis space, then one can even do Ex-learning in the above case by iterative
automatic learners and no additional long-term memory is needed.

In Theorem 31, we show the existence of automatic classes which are auto-
matically iteratively learnable (even from normal texts) using a class preserving
hypothesis space, but not conservatively iteratively learnable using a one-one
class preserving hypothesis space (even by arbitrary recursive learners) on fat
texts.

Partial identification is a very general learning criterion, where one requires
that some fixed correct hypothesis is output infinitely often by the learner while
all other hypotheses are output only finitely often [31]. In Theorem 35 we
show that every automatic class is partially learnable by an automatic iterative
learner. This corresponds to the result by Osherson, Stob and Weinstein [31]
that the whole class of all recursively enumerable languages is partially learnable
by some recursive learner.

2. Preliminaries

Let N denote the set of natural numbers. Let Z denote the set of integers. The
symbol ∅ denotes the empty set. Symbols ⊆,⊇,⊂,⊃, respectively, denote sub-
set, superset, proper subset and proper superset. Furthermore, maxS, minS
and card S, respectively, denote the maximum, minimum and cardinality of a
set S, where max ∅ = 0 and min ∅ = ∞.

An alphabet Σ is any non-empty finite set and Σ∗ is the set of all strings
(words) over the alphabet Σ. The symbol ε denotes the empty string. A string
of length n over Σ will be treated as a function from the set {0, 1, 2, . . . , n− 1}
to Σ. Thus, string x of length n is the same as x(0)x(1)x(2) . . . x(n − 1). A

5

language is a subset of Σ∗ and a class is a set of languages.
The relation x <lex y denotes that x is lexicographically (that is, in dic-

tionary order) before y. The relation x <ll y denotes that x is length-lexico-
graphically before y, that is, either |x| < |y|, or |x| = |y| and x <lex y. Note
that, for any given alphabet, the reflexive closure of <ll is a linear order over
the strings of that alphabet. When we consider sets of strings, we take minS to
denote the length-lexicographically least string in S. Let succL(x) denote the
length-lexicographically least y, if any, in L such that x <ll y.

For a language L ⊆ Σ∗, we define the characteristic function CFL as an
infinite string as follows. Suppose z0, z1, . . . is the ordering of all strings over
Σ∗ in length-lexicographic order. Then, CFL(n) = 1, if zn ∈ L; CFL(n) = 0,
otherwise. For any language L, we let L[y] denote the set {x ∈ L : x ≤ll y}.

In the present work we will only consider classes of regular sets. Further-
more, Σ will always refer to the alphabet on which languages and language
classes are defined.

Definition 1. An indexing of a class L is a sequence of sets Lα with α ∈ I, for
some domain I, such that L = {Lα : α ∈ I}.

Often we will refer to both, the class and the indexing, as {Lα : α ∈ I}, where
the indexing is implicit. The I above is called the set of legal indices. We will
always assume that the indices in I are taken as words over an alphabet and we
usually denote this alphabet with the letter Γ.

Now we consider notions related to automatic structures. First, we consider
the definition of a convolution of a tuple of strings. Intuitively, a convolution
transforms rows of strings into a string of columns.

Definition 2 (Khoussainov, Nerode [24]). Let n > 0 and Σ1,Σ2, . . . ,Σn

be alphabets not containing #. Let x1 ∈ Σ∗
1, x2 ∈ Σ∗

2, . . . , xn ∈ Σ∗
n be given. Let

` = max{|x1| , |x2| , . . . , |xn|} and let yi = xi#`−|xi|. Define z to be a string of
length ` such that z(j) is the symbol made up of the j-th symbols of the strings
y1, y2, . . . , yn: z(j) = (y1(j) , y2(j) , . . . , yn(j)), where z(j) is a symbol in the
alphabet (Σ1 ∪ {#})×(Σ2 ∪ {#})× . . .×(Σn ∪ {#}) . We call z the convolution
of x1, x2, . . . , xn and denote it as conv(x1, x2, . . . , xn). Let R ⊆ Σ∗

1 × Σ∗
2 ×

. . .×Σ∗
n. We call the set S = {conv(x1, x2, . . . , xn) : (x1, x2, . . . , xn) ∈ R}, the

convolution of R. Furthermore, we say that R is automatic iff the convolution
of R is regular.

For ease of notation, we often write just (x1, x2, . . . , xn) instead of conv(x1, x2,
. . . , xn) and Lx1,...,xn or Hx1,...,xn in place of Lconv(x1,...,xn) or Hx1,...,xn respec-
tively. We next define the notion of an automatic indexing.

Definition 3. An indexing {Lα : α ∈ I} is automatic iff I is regular and
E = {(α, x) : x ∈ Lα, α ∈ I} is automatic. A class is automatic iff it has an
automatic indexing.

Khoussainov and Nerode [24] found the following fundamental result on auto-
matic structures which is useful to define automatic learners and to decide the
learnability of automatic classes.

6

Fact 4 (Blumensath, Grädel [9], Khoussainov, Nerode [24]). Any rela-
tion that is first-order definable from existing automatic relations is automatic.

Next, we recall a few learning relevant definitions, followed by a result from
Angluin [1] that characterises learnable classes. For any alphabet Σ, Γ, we let

• � be a special character not in Σ∗ which is called the pause symbol ;

• ? be a special character not in Γ∗ which is called the no-conjecture symbol.

Let Σ be the alphabet over which languages are being considered. We use σ, τ
to denote finite sequences over Σ∗ ∪ {�} and T to denote infinite sequences
over Σ∗ ∪ {�}. Furthermore, λ denotes the empty sequence. The length of a
sequence σ is denoted by |σ|. T [m] denotes the initial segment of T of length
m. We let σ � τ (respectively, σ � T) denote the concatenation of σ and τ (re-
spectively, σ and T). For a sequence σ and string x, we often use σ � x to
denote the concatenation of sequence σ with the sequence of length 1 consist-
ing of string x. For ease of notation, when it is clear from the context that
concatenation of sequences is meant, we sometimes drop the symbol �. Thus,
στ means σ � τ . For a finite sequence σ over Σ∗ ∪ {�}, content of σ, denoted
by cnt(σ), is defined as cnt(σ) = {x ∈ Σ∗ : ∃ n < |σ| (σ(n) = x)}. Similarly,
for every infinite sequence T over Σ∗ ∪ {�}, content of T , denoted by cnt(T),
is defined as cnt(T) = {x ∈ Σ∗ : ∃ n ∈ N (T (n) = x)}. For every set L and
every infinite sequence T over Σ∗ ∪ {�} with L = cnt(T), we call T a text
for L. For every L ⊆ Σ∗, let txt(L) = {T ∈ (Σ∗ ∪ {�})ω : cnt(T) = L} and
seq(L) =

{
σ ∈ (Σ∗ ∪ {�})∗ : cnt(σ) ⊆ L

}
.

Given a class L, a hypothesis space for L is an indexing {Hα : α ∈ J} ⊇ L,
where J is the set of indices for the hypothesis space. We will only consider au-
tomatic hypothesis spaces. A hypothesis space is class preserving with respect
to L iff L = {Hα : α ∈ J}. A hypothesis space is class comprising with respect
to L iff L ⊆ {Hα : α ∈ J}. A hypothesis space is one-one class preserving with
respect to L iff it is class preserving and, for every L ∈ L, there is exactly one
α ∈ J with L = Hα. In use of the above definitions, we often drop “with respect
to L”, if the class L is clear from context.

A learner is a function F : (Σ∗ ∪ {�})∗ → J ∪ {?}. We use M and N for
recursive learners, and F for learners which may not be recursive. We use P for
iterative learners and Q for iterative learners with additional long-term memory.
The learners P and Q are usually automatic. Iterative and automatic learners
are defined in Section 3 below.

Definition 5. Fix a class L and a hypothesis space {Hα : α ∈ J} with J being
the set of indices. Let F be a learner.
(a) [17] We say that F Ex-learns L iff for every L ∈ L and every T ∈ txt(L),
there exists an n ∈ N and an α ∈ J with Hα = L such that, for every m ≥ n,
F(T [m]) = α.
(b) [5] We say that F BC-learns L iff for every L ∈ L and every T ∈ txt(L),
there exists an n ∈ N such that, for every m ≥ n, HF(T[m]) = L.

7

(c) [10] We say that F FEx-learns L iff F BC-learns L and for every L ∈ L
and every T ∈ txt(L), the set {F(T [n]) : n ∈ N} is finite.
(d) [31] We say that F Part-learns L iff for every L ∈ L and every T ∈ txt(L),
there exists an α ∈ J such that (i) Lα = L, (ii) for every n ∈ N, there exists a
k ≥ n such that F(T [k]) = α and (iii) for every β ∈ J with β 6= α, there exists
an n ∈ N such that, for every k ≥ n, F(T [k]) 6= β.

For Ex, FEx, BC and Part learning, one can assume without loss of generality
that the learner never outputs ?. However, for some other criteria of learning,
this is not necessarily the case.

Definition 6. Let Σ and Γ be alphabets. Let {Hα : α ∈ J} be a hypothesis
space with some J ⊆ Γ∗ being the set of indices. Let F be a learner.
(a) [6] We say that F is consistent on L ⊆ Σ∗ iff for every σ ∈ seq(L), if F(σ) ∈ J ,
then cnt(σ) ⊆ HF(σ). We say that F is consistent on L ⊆ powerset(Σ∗) iff it is
consistent on each L ∈ L.
(b) [1] We say that F is conservative on L ⊆ Σ∗ iff for every σ, σ′ ∈ seq(L), if
F(σ) ∈ J and cnt(σ � σ′) ⊆ HF(σ), then F(σ � σ′) = F(σ). We say that F is
conservative on L ⊆ powerset(Σ∗) iff it is conservative on each L ∈ L.
(c) [30, 34] We say that F is set-driven iff for every σ1, σ2 ∈ (Σ∗ ∪ {�})∗, if
cnt(σ1) = cnt(σ2), then F(σ1) = F(σ2).

When we are considering learning consistently (conservatively, set-drivenly) a
class L, we mean learning of the class by a learner which is consistent (conser-
vative, set-driven) on L.

For each learning criterion LC such as Ex, FEx, BC and Part, we let LC
also denote the collection of all classes which are LC-learned by a recursive
learner using some class comprising hypothesis space.

Blum and Blum [7] introduced the notion of a locking sequence for a learner
F on a set L learnt by F: a locking sequence for a learner F on L is any sequence
σ ∈ seq(L) such that, for some fixed index e for L, F(στ) = e for all τ ∈ seq(L).
Blum and Blum showed that a locking sequence always exists for languages Ex-
learnt by F and this notion can be adapted for most learning criteria considered
in this paper.

Using locking sequences, techniques of Angluin [1] can be used to characterise
classes that are Ex-learnable by a, not necessarily recursive, learner. First, let
us recall the definition of a tell-tale set, while introducing the definition of a
tell-tale cut-off word.

Definition 7 (Angluin’s Tell-Tale Condition [1]). Suppose L is a class of
languages.
(a) For every L ∈ L, we say that D is a tell-tale set of L (in L) iff D is a finite
subset of L and for every L′ ∈ L with D ⊆ L′ ⊆ L we have L′ = L.
(b) For every L ∈ L and x ∈ Σ∗, we say that x is a tell-tale cut-off word of L
(in L) iff {y ∈ L : y ≤ll x} is a tell-tale set of L (in L).
(c) We say that L satisfies Angluin’s tell-tale condition iff every L ∈ L has a
tell-tale set (in L), or equivalently, a tell-tale cut-off word (in L).

8

Fact 8 (Based on Angluin [1]). Let Σ be an alphabet. A class L of re-
cursively enumerable languages is Ex-learnable (by a not necessarily recursive
learner) iff L satisfies Angluin’s tell-tale condition.

Note that for non-recursive learners, Ex, FEx and BC learning are equivalent.
Given a uniformly recursive class {Lα : α ∈ J}, Angluin [1] proved that the
learner can be chosen to be recursive iff there is a uniformly recursively enu-
merable class of sets, {Eα : α ∈ J}, such that each Eα is a tell-tale set for Lα.
Note that in general such recursive learners may not be consistent, conservative
or set-driven. In particular it can be shown that there are classes of languages
which can be recursively learnt, but cannot be consistently, conservatively or
set-drivenly learnt (see respectively [6], [1] and [30, 34]).

Using the Fundamental Theorem for automatic structures, the following the-
orem shows that any automatic class satisfying Angluin’s tell-tale condition is
Ex-learnable and the learner can be made to be recursive, consistent, conserva-
tive and set-driven.

Theorem 9. Suppose L is automatic. Then, there is a learner which recursi-
vely, consistently, conservatively and set-drivenly Ex-learns L iff L satisfies
Angluin’s tell-tale condition.

Proof. (⇐) This follows from Fact 8.

(⇒) Suppose L is automatic and satisfies Angluin’s tell-tale condition. Let
{Lα : α ∈ I}, be an indexing of L. Now consider the learner M (which uses
{Lα : α ∈ I} as the hypothesis space) such that M(σ) is defined as follows.

• If there exists an α ∈ I such that, for some w ∈ Σ∗,

(a) cnt(σ) ⊆ Lα,
(b) {x : x ≤ll w, x ∈ Lα} ⊆ cnt(σ),
(c) for all β ∈ I, [{x : x ≤ll w, x ∈ Lα} ⊆ Lβ ⇒ ¬[Lβ ⊂ Lα]],
(d) for all β ∈ I, [β ≤ll α ∧ cnt(σ) ⊆ Lβ ⇒ Lα ⊆ Lβ],

• Then M(σ) is the length-lexicographically least such α

• Else M(σ) = ?.

It is easy to verify that M is consistent, recursive and set driven. Also, if
M(σ) = α and cnt(τ) ⊆ Lα, then M(σ � τ) = α also (as the conditions (a)–(d)
above will be satisfied for σ � τ also) and thus M is conservative.

Consider now any text T for a language L ∈ L and let α be its minimal index.
If n is sufficiently large, then it follows from Angluin’s tell-tale condition that
(i) cnt(T [n]) is a tell-tale set for L and (ii) for all β <ll α, either cnt(T [n]) 6⊆ Lβ

or Lα ⊆ Lβ . So all large enough n satisfy M(T [n]) = α. It follows that M
Ex-learns L.

As the tell-tale cut-off word version of Angluin’s tell-tale condition is first-order
definable, we have the following corollary.

9

Corollary 10. It is decidable whether an automatic family L = {Lα : α ∈ I} is
Ex-learnable, where the input given to the decision-procedure are descriptions of
Σ, Γ (where, Lα ⊆ Σ∗ and I ⊆ Γ∗) and finite automata recognising the regular
languages I and {(α, x) : x ∈ Lα, α ∈ I}.

Remark 11. One can obtain similar characterisations for other fundamental
notions of learning.

(a) Recall that a class is finitely learnable [17] iff there is an Ex-learner
which on every text T of a language in the class outputs exactly one index (plus
perhaps the symbol ?) and this index is correct. For automatic classes L, finite
learnability can be characterised as follows.

L is finitely learnable iff for every L ∈ L there is a finite set DL such that
DL ⊆ L and DL 6⊆ L′ for all L′ ∈ L − {L}.

The implication (⇒) follows directly from the work of Mukouchi [29]. For
(⇐), suppose the right hand side holds. Let {Lα : α ∈ I}, be an automatic
indexing of L. Now the following learner M finitely learns L. On input σ,
M(σ) conjectures the length-lexicographically least α ∈ I such that

• cnt(σ) ⊆ Lα and

• for all β ∈ I, cnt(σ) ⊆ Lβ implies Lα = Lβ .

If such an α does not exist then M(σ) =?. It is easy to verify that M finitely
learns L.

(b) A class is strong monotonically learnable [22] iff there exists an Ex-learner
M for the class such that for any two subsequent hypotheses α, β of M on a
text, with α 6=? and β 6=?, it holds that Lα ⊆ Lβ . Given an automatic class L,
one can again characterise whether L is strong monotonically learnable:

L is strong monotonically learnable iff for all L ∈ L, there exists a finite set
DL such that DL ⊆ L and for all L′ ∈ L, if DL ⊆ L′ then L ⊆ L′.

Lange, Zeugmann and Kapur [28] showed the direction (⇒). For the di-
rection (⇐), assume that the right hand side holds. Let {Lα : α ∈ I}, be
an automatic indexing of L. Now the following learner M strong monotonically
learns L. On input σ, M(σ) conjectures the length-lexicographically least α such
that, cnt(σ) ⊆ Lα and for all β ∈ I, if cnt(σ) ⊆ Lβ then cnt(σ) ⊆ Lα ⊆ Lβ .
In the case that there is no such α then M(σ) =?. It is easy to verify that M
strong monotonically learns L.

3. Automatic Learning of Automatic Classes

It was shown above that all automatic classes that satisfy Angluin’s tell-tale
condition, can be learnt using a recursive learner. However, there are practical
limitations to recursive learners. Learners that are able to memorise all past data
are not practical. Rather, most learners in the setting of artificial intelligence
are iterative, in the sense that these learners conjecture incrementally as they
are fed the input, one word at a time [36, 37]. An iterative learner bases its
new conjecture only on its previous conjecture and the new datum. In other

10

words, such a learner does not remember its past data, except as coded in the
hypothesis.

In the realm of automatic structures, it is natural to consider automatic
learners, where the learning function is in some way automatic. In the case of
general recursive learners, there does not seem to be any natural correspondence
which would lead to an interesting model. However, for iterative learners, there
is a natural corresponding definition for automatic learners where the update
function is automatic. Below we formally define automatic iterative learning
and its variant, iterative learning with long-term memory.

Definition 12 (Wexler and Culicover [36], Wiehagen [37]). Let the al-
phabets Σ, Γ and ∆ be given. Let L be a class (defined over alphabet Σ)
and {Hα : α ∈ J} be a hypothesis space with J ⊆ Γ∗. An iterative learner is
any function

P : (J ∪ {?})× (Σ∗ ∪ {�}) → J ∪ {?} .

An iterative learner with long-term memory is any function

Q : ((J ∪ {?})×∆∗)× (Σ∗ ∪ {�}) → (J ∪ {?})×∆∗,

where the strings in ∆∗ represent the memory of the learner.

Given an iterative learner P, we now write P(w0w1 . . . wn) as a short hand
for the expression P(. . .P(P(?, w0), w1), . . . , wn). Similarly, for an iterative
learner Q with long term memory, we write Q(w0w1 . . . wn) as a short hand
for the expression Q(. . .Q(Q((?, ε), w0), w1), . . . , wn). Here, for Q(σ) = (α, µ),
we consider α as the conjecture and µ implicitly as its memory and not as
its output. With these modifications, P and Q are seen as learners and the
definitions of all the learning criteria carry over. Note that convergence of a
learner Q is defined only with respect to the hypothesis and not the memory.
For example, Q Ex-learns L on a text T iff the sequence of hypotheses converges
syntactically to a correct one while there are no convergence constraints on the
memory. Similarly one defines the other learning criteria only with respect to
the sequence of hypotheses. Parts (b)–(d) of the following definition are based
on [16, 25].

Definition 13. Suppose L is defined over alphabet Σ, and {Hα : α ∈ J},
J ⊆ Γ∗, is a hypothesis space. Suppose P is an iterative learner and Q is an
iterative learner with long-term memory over some alphabet ∆.
(a) We say that P is automatic iff the relation

{(α, w, β) : α, β ∈ J ∪ {?} , w ∈ Σ∗ ∪ {�} and P(α, w) = β}

is automatic. We say that Q is automatic iff the relation

{(α, µ, w, β, ν) : α, β ∈ J ∪ {?} , µ, ν ∈ ∆∗, w ∈ Σ∗ ∪ {�} and
Q((α, µ), w) = (β, ν)}

11

is automatic.
(b) We say that the long-term memory of Q is bounded by the longest datum
seen so far iff there exists a constant c ∈ N such that, for every σ ∈ (Σ∗ ∪ {�})∗,
if Q(σ) = (α, µ), then max{|α| , |µ|} ≤ max {|x| : x ∈ cnt(σ)}+ c.
(c) We say that the long-term memory of Q is bounded by the hypothesis size iff
there exists a constant c ∈ N such that, for every σ ∈ (Σ∗ ∪ {�})∗, if Q(σ) =
(α, µ), then |µ| ≤ |α|+ c.
(d) We say that the long-term memory of Q is bounded by a constant iff there
exists a constant c ∈ N such that, for every σ ∈ (Σ∗ ∪ {�})∗, if Q(σ) = (α, µ),
then |µ| ≤ c. 3

Automatic iterative learners with long-term memory are called automatic learn-
ers from here on.

Definition 14. For the following, the hypothesis space is allowed to be any
class comprising automatic family. Let LC be one of Ex, FEx, BC and Part.
We let
(a) AutoLC be the set of all classes of languages that are LC-learned by some
automatic learner with arbitrary long-term memory,
(b) AutoWordLC be the set of all classes of languages that are LC-learned by
some automatic learner with long-term memory that is bounded by the longest
datum seen so far,
(c) AutoIndexLC be the set of all classes of languages that are LC-learned
by some automatic learner with long-term memory that is bounded by the
hypothesis size,
(d) AutoConstLC be the set of all classes of languages that are LC-learned by
some automatic learner with long-term memory that is bounded by a constant
and
(e) AutoItLC be the set of all classes of languages that are LC-learned by
some automatic iterative learner.

We first show that automatic learners are not as powerful as general learners,
even for learning automatic classes. The following proposition is useful:

Proposition 15. Suppose Q is an automatic iterative learner with long-term
memory. Then, for some constant c, for all σ ∈ (Σ∗ ∪ {�})∗, if Q(σ) = (α, µ),
then |µ| ≤ c ∗ |σ|+ max {|w| : w ∈ cnt(σ)}.

Proof. The proposition follows using the fact that, for some constant c, if
Q((α, µ′), x) = (α′, µ′′), then max {|µ′′|, |α′|} ≤ max {|µ′|, |α|, |x|}+ c.

3Note that in subsequent work [12], a more restrictive version of constant memory was
considered. Therein, the learner Q only memorises µ and forms each hypothesis as a function
of µ and the current datum. To address the issue of a learner wishing to repeat its previous
hypothesis (which is not stored), a slight modification of the learning definition is done: the
learner is said to be successful iff eventually it conjectures a correct hypothesis α, and from
then onwards always outputs either ? or α. This restrictive learnability notion is not implied
by iterative learnability as the class of all finite subsets of {0}∗ is iteratively learnable but not
with constant memory in the just described setting.

12

We will implicitly use the above proposition in several of our proofs.

Theorem 16. There exists an automatic L that is Ex learnable by some re-
cursive iterative learner, but which is not AutoEx-learnable.

Proof. Any class of finite sets is easily seen to be learnable by a recursive
iterative learner. However, the class L given by the indexing Lα = {x : |x| = |α|,
x 6= α}, α ∈ {0, 1}∗, is an automatic class but not in AutoEx. To see this,
suppose Q AutoEx learns L. Then, for large enough m, there exist σ, σ′

such that (i) each of σ, σ′ is of length m and contains m distinct strings from
{0, 1}m, (ii) cnt(σ) 6= cnt(σ′) and (iii) Q(σ) = Q(σ′). Note that there exist
such σ, σ′ for large enough m as there are

(
2m

m

)
possibilities for the sequences of

length m (with distinct content) containing exactly m elements from {0, 1}m,
but the size of the hypothesis and memory of Q after seeing such sequences can
be of length at most cm, for some constant c (see Proposition 15). Let y, y′

respectively be in cnt(σ) − cnt(σ′) and cnt(σ′) − cnt(σ). Let T be a text for
{z : |z| = |y|, z 6= y, z 6= y′}. Then, Q on σT and σ′T converges to the same
index or diverges on both. Thus, Q does not AutoEx learn L.

We now consider the relationship between various long-term memory limitations
for the main criteria of learning: Ex, BC and FEx. Interestingly, if the memory
is not explicitly constrained, then every automatic class which is BC-learnable
can be Ex-learnt. For BC-learning, long-term memory is not useful (for auto-
matic learners), as such memory can be coded into the hypothesis itself, as long
as one is allowed padding of the hypothesis.

Theorem 17. The following equivalences and containments hold.
(a) AutoBC = AutoWordBC = AutoIndexBC = AutoConstBC =
AutoItBC.
(b) AutoEx = AutoFEx = AutoBC.
(c) AutoIndexFEx = AutoConstFEx = AutoItFEx.
(d) AutoWordEx = AutoWordFEx.
(e) AutoIndexEx = AutoIndexFEx.
(f) AutoConstEx = AutoItEx.

Proof. For the simulations below, we assume without loss of generality that
the simulated learner does not output ?.

(a) It follows from the definitions that AutoItBC ⊆ AutoConstBC ⊆
AutoWordBC ⊆ AutoBC and AutoItBC ⊆ AutoIndexBC ⊆ AutoBC.
Thus it suffices to show that AutoBC ⊆ AutoItBC. Suppose Q AutoBC-
learns L, where the hypothesis space is {Hα : α ∈ I}, and the memory is over
the alphabet ∆. Let H ′

α,µ = Hα, for α ∈ I, µ ∈ ∆∗. If Q((α, µ), x) = (α′, µ′),
then let P((α, µ), x) = (α′, µ′). It can easily be verified that P AutoItBC-
learns L using the hypothesis space {H ′

α,µ : α ∈ I, µ ∈ ∆∗}.
(b) It suffices to show that AutoBC ⊆ AutoEx. Suppose Q AutoBC-

learns L, where the hypothesis space is {Hα : α ∈ I}, I ⊆ Γ∗, and the memory

13

is over the alphabet ∆. Then consider the following Q′. Q′ uses the same hy-
pothesis space Hα, but the memory is an element of Γ∗ ×∆∗.

Suppose Q((β, µ), x) = (β′, µ′). Then Q′((α, (β, µ)), x) = (α′, (β′, µ′)),
where α′ is the length-lexicographically least member of I such that Lα′ = Lβ′ .
It is easy to verify that above Q′ AutoEx-learns L.

(c) It suffices to show AutoIndexFEx ⊆ AutoItFEx. Suppose that Q
AutoIndexFEx-learns L. Then the construction of part (a) witnesses that P
AutoItFEx-learns L, as the number of distinct (α, µ) which are output by Q
on a given text for a language learnt by Q will be finite.

(d) The direction AutoWordEx ⊆ AutoWordFEx follows from the def-
inition. For the converse direction, one can use the same proof as under (b);
but one has to note explicitly that the sizes of β and µ are always bounded by
a constant plus the size of the longest datum seen so far; as α is the length-
lexicographically first index with Lα = Lβ , (hypothesis, memory) of the new
learner Q′ given as (α, (β, µ)) satisfies the same length-bound.

(e) It suffices to show that AutoIndexFEx ⊆ AutoIndexEx. This can be
proved similarly to part (b), except that instead of simply choosing the length-
lexicographically least equivalent index, one additionally pads the index so that
its length is at least the length of the largest hypothesis output by Q so far.
(This is to make sure that the memory length is bounded by the size of the
hypothesis plus a constant.)

(f) It suffices to show that AutoConstEx ⊆ AutoItEx. Suppose Q
AutoConstEx-learns L using the hypothesis space {Hα : α ∈ I} and con-
stant memory over alphabet ∆. Without loss of generality assume that memory
size is always 1. Define H ′

α,w,S = Hα, where w ∈ ∆, S ⊆ ∆×∆.
Define Q′, using the hypothesis space given by {H ′

α,w,S : α ∈ I, w ∈
∆, S ⊆ ∆ × ∆} as follows. Suppose Q((α, w), x) = (β, y). If α 6= β, then
Q′((α, w, S), x) = (β, y, ∅), else if α = β and (y, w) is in the reflexive and transi-
tive closure of S viewed as a relation, then Q′((α, w, S), x) = (α, w, S∪{(w, y)}),
else Q′((α, w, S), x) = (α, y, S ∪ {(w, y)}).

Note that, for any σ, if Q′(σ) = (α, w, S), then for all (y, y′) ∈ S, there
exists an x ∈ cnt(σ) ∪ {�} such that Q((α, y), x) = (α, y′). Thus, if (y, w) is
in the reflexive and transitive closure of S, then there exists a sequence τ , with
cnt(τ) ⊆ cnt(σ), such that Q((α, y), τ) = (α, w). In other words, for every σ,
there is a σ′, which is obtained by replacing each symbol x in the sequence
σ by a sequence x � τx such that, if Q′(x0 � x1 � . . . � xn) = (α, w, S), then
Q(x0 � τx0 �x1 � τx1 � . . . xn � τxn) = (α, w). Now fix a text T for L ∈ L. Suppose
Q′(T [n]) = (αn, wn, Sn). Then, there exists an n0 and an index α with Hα = L
such that, for all n ≥ n0, αn = α. This holds because, by the previous analysis,
there exists a suitably modified text for L on which Q converges to an index
α for L. Further note that, if Q′((α, w, S), x) = (α, w′, S′), then S ⊆ S′ and
(w,w′) is in the reflexive and transitive closure of S′. It follows that limn→∞ Sn

converges and limn→∞ wn converges, as all but finitely many wn belong to the
same equivalence class (with respect to the relation defined by S = limn→∞ Sn).
It follows that Q′ Ex-learns L.

14

Note that the above theorem (along with its proof) also holds if we require class
preserving learning in all the cases, that is, if the hypothesis space used by the
learners is class preserving.

The next theorem shows that, for Ex and FEx learning, there are classes
which can be learnt by automatic learners having long-term memory bounded
by longest word size seen so far while they cannot be learnt by automatic
learners having long-term memory bounded by hypothesis size. Note that
AutoIndexEx = AutoIndexFEx, by Theorem 17.

The following theorem holds even when one considers class preserving hy-
pothesis spaces. The diagonalisation in part (c) can be done by using the given
indexing as the hypothesis space on the positive side, and any class comprising
hypothesis space on the negative side.

Theorem 18. (a) AutoItEx ⊆ AutoWordEx ⊆ AutoEx.
(b) AutoItEx ⊆ AutoIndexEx ⊆ AutoEx.
(c) AutoWordEx 6⊆ AutoIndexEx.

Proof. The statements (a) and (b) follow from the definitions.
For statement (c), consider the class L = {Lα : α ∈ {0, 1}∗} with Lε = 0+

and Lα = {0i+1 : α(i) = 1} ∪ {ε} for all α ∈ {0, 1}+.
To AutoWordEx learn L, one uses memory over the alphabet {0, 1}∗ and

memorises all strings in Lε seen so far. The memory of the learner (on any
input σ) is a word z = z(0)z(1) . . . z(n) such that z(i) = 1 iff 0i+1 ∈ cnt(σ),
where n = max ({i : 0i+1 ∈ cnt(σ)} ∪ {0}). Now the learner outputs index ε
(with memory z as computed above) as long as it has not seen ε. Once it has
seen ε, it outputs z as its conjecture and has z also as its memory. It is easy to
verify that the above learner witnesses that L ∈ AutoWordEx.

On the other hand, suppose by way of contradiction that Q AutoIndexEx-
learns L. Then, let σ be such that (i) cnt(σ) ⊆ Lε and (ii) for all σ′ ⊇ σ such
that cnt(σ′) ⊆ Lε, if Q(σ′) = (α, µ) and Q(σ) = (α′, µ′), then α = α′. Such
a σ is called the locking sequence for Q on Lε. Note that there exists such a
sequence σ, as Q Ex-learns L. Now there exist τ, τ ′ with cnt(τ) ∪ cnt(τ ′) ⊆ Lε

such that cnt(στ) 6= cnt(στ ′), and Q(στ) = Q(στ ′). The existence of such τ
and τ ′ follows from the fact that the memory of Q(στ) has only finitely many
possibilities, even though cnt(στ) takes infinitely many possibilities.

Let T1 = στ � ε∞ and T2 = στ ′ � ε∞. It follows that Q would fail to
AutoIndexEx-learn at least one of cnt(T1) and cnt(T2) respectively from the
texts T1 and T2.

Note that the class L used in Theorem 18(c) is also not iteratively learnable by
a recursive learner. Essentially the same proof as used above shows this. The
following lists some of the open problems for automatic learners.

Open Problem 19. The following problems are currently open:
(a) Is AutoEx = AutoWordEx?
(b) Is AutoIndexEx ⊆ AutoWordEx?
(c) Is AutoIndexEx ⊆ AutoItEx?

15

If the alphabet is unary, then every AutoEx-learner can be replaced by an
AutoWordEx-learner which answers (a) and (b) above in the affirmative for
this special case. Also, note that the separation in Theorem 18 (c) is witnessed
by a family of languages defined over unary alphabet.

Theorem 20. Suppose that Σ = {0} and L ⊆ powerset(Σ∗) is an automatic
class. Then L is in AutoWordEx as witnessed by a conservative, consistent
and set-driven learner iff L satisfies Angluin’s tell-tale condition.

Proof. (⇐) This follows from Fact 8.

(⇒) This proof is similar to the proof of Theorem 9. Suppose L is {Lα : α ∈ I},
where I is the set of indices. The learner codes into memory, using alphabet
{0, 1}, all the strings seen so far. The memory of the learner after having seen
input σ is a word z = z(0)z(1) . . . z(n) such that z(i) = 1 iff 0i ∈ cnt(σ), where
n = max ({|w|+ 1 : w ∈ cnt(σ)} ∪ {0}). Then, on any input σ, the learner
searches for an α such that, for some w ∈ Σ∗,

(a) cnt(σ) ⊆ Lα,
(b) {x : x ≤ll w, x ∈ Lα} ⊆ cnt(σ),
(c) for all β ∈ I, [{x : x ≤ll w, x ∈ Lα} ⊆ Lβ ⇒ ¬[Lβ ⊂ Lα]],
(d) for all β ∈ I, [β ≤ll α ∧ cnt(σ) ⊆ Lβ ⇒ Lα ⊆ Lβ].

The learner then outputs length-lexicographically least such α, if any; otherwise,
the learner outputs ?. Note that the above learner is automatic, as cnt(σ) can
be obtained using the memory and the new input element. Furthermore, the
size of α as above is bounded by the size of the largest element in σ plus a
constant: the reason is that the memory is not longer than the longest word
seen so far and that the hypothesis is computed by an automatic function from
the memory and the current datum. Now, similarly to the proof of Theorem 9,
it can be shown that the above learner AutoWordEx-learns L. The theorem
follows.

Hence, for language classes over a unary alphabet, AutoWordEx and AutoEx
coincide and properly contain AutoIndexEx.

Remark 21. If one were to consider not an automatic class, but just a subclass
L of an automatic class K, then one could solve some of the open problems
mentioned above.

For example, there is a class L ⊆ powerset({0}∗) which is a subclass of an
automatic class and which has an automatic but neither a conservative nor a
set-driven learner. Furthermore, there is no learnable automatic class H with
L ⊆ H. Also, no automatic learner of L can be an AutoWordEx-learner.

Here is a proof-sketch of this fact. Let k(0), k(1), . . . be a recursive one-one
enumeration of K, the halting problem. The class consists of all sets Ln = {0m :
m ≥ n} for all n and all sets Ln,r = {0m : n ≤ m ≤ n+r} for which there exists
a number s > r with k(s) = n. Note that the set Ln,r is added to the class iff
n ∈ K − {k(0), k(1), . . . , k(r)}.

It can be shown that L is automatically learnable using an automatic class

16

comprising hypothesis space, given by Hn,0 = Ln and Hn,r+1 = Ln,r. It can
also be shown that the class is neither conservatively nor set-driven learnable
nor AutoWordEx-learnable.

Furthermore, assume by way of contradiction that a learnable automatic
class H ⊇ L exists. Then no infinite set in H is the ascending union of finite
sets in H, see [17]. Hence there exists, for every n, a number h(n) ≥ n such
that {0m : n ≤ m ≤ h(n)} /∈ H. As 0n 7→ 0h(n) is first-order definable from H,
h is recursive and n ∈ K iff n ∈ {k(0), k(1), . . . , k(h(n)− n)}, a contradiction.

4. Consistent Learning

Note that for general recursive learners, all learnable automatic classes have a
consistent, conservative and set-driven recursive learner (see Theorem 9 above).
Thus, on one hand, consistency, conservativeness and set-drivenness are not
restrictive for learning automatic classes by recursive learners. On the other
hand, in this section, we will show that consistency is a restriction when learning
automatic classes by automatic learners. It will be interesting to explore similar
questions for conservativeness and set-drivenness.

The following theorem gives an automatic class which can be Ex-learnt by
an iterative automatic learner but which cannot be Ex-learnt by any consistent
automatic learner.

Theorem 22. There exists an automatic L such that
(a) L is AutoItEx learnable using a class preserving hypothesis space;
(b) L is not consistently AutoEx learnable even using a class comprising hy-
pothesis space.

Proof. Let Σ = {0, 1, 2}. Let L = {Ly : y ∈ {0, 1}∗ ∪ {2}} where

• Lε = {0, 1}∗;

• Ly = {2|y|} ∪ {x ∈ {0, 1}∗ : y is not a prefix of x}, for all y ∈ {0, 1}+;

• L2 = {0, 1, 2}∗.

We first show that L can be AutoItEx-learnt. We use the following hypothesis
space:

• Hε,ε = Lε,

• H2,2 = {0, 1, 2}∗,

• for y, z ∈ {0, 1}+ with |y| = |z| and y ≤ll z, Hy,z = {0, 1, 2}∗ and

• for y ∈ {0, 1}+, Hy,2 = Ly.

Thus, the hypothesis space used is {Hα : α ∈ J}, where J = {(ε, ε), (2, 2)} ∪
{(y, 2), (y, z) : y, z ∈ {0, 1}+, y ≤ll z, |y| = |z|}. Below, let succ(w) denote
succ{0,1}∗(w), the length-lexicographic least string w′ in {0, 1}∗ such that w <ll

17

w′. We now define the iterative learner P. If the learner ever sees the input 02
then it outputs (2, 2) and never changes its mind thereafter. Besides the above
case, the learner starts with the conjecture (ε, ε). If it ever sees 2i, for some
i > 0, in the input, then it continues with conjectures of the form (y, z), where
|y| = |z| = i and initially y = z = 0i. Intuitively, a conjecture of the form (y, z)
(with |y| = |z| > 0) means that the learner has seen extensions (in {0, 1}∗) for
all y′ ≤ll z, with y′ 6= y and |y′| = i. If the learner later sees an extension
of y, then it updates both y, z to succ(z). If the learner sees an extension of
succ(z), then it will update z to succ(z). This continues, until the learner has
seen extensions of all strings of length i, except for the one currently denoted
by y. At this point, the learner can conclude that the input language must be
Ly (unless it sees 02 in the input). Formally,

• P(λ) = (ε, ε).

• P((ε, ε), 02) = P((y, 2), 02) = P((y, z), 02) = P((2, 2), w) = (2, 2), for all
w ∈ {0, 1, 2}∗, y, z ∈ {0, 1}+, |y| = |z| and y ≤ll z.

• P((ε, ε), w) = (ε, ε), if w 6∈ {2i : i > 0} ∪ {02}.

• For i > 0, P((ε, ε), 2i) = (0i, 0i).

• For y, z ∈ {0, 1}+, |y| = |z|, P((y, z), w) = (succ(z) , succ(z)), if w ∈
{0, 1}∗ and w is an extension of y and succ(z) is not the length-lexicogra-
phically maximal string of length |z|.

• For y, z ∈ {0, 1}+, |y| = |z|, P((y, z), w) = (succ(z) , 2), if w ∈ {0, 1}∗ and
w is an extension of y and succ(z) is the length-lexicographically maximal
string of length |z|.

• For y, z ∈ {0, 1}+, |y| = |z|, P((y, z), w) = (y, succ(z)), if w ∈ {0, 1}∗ and
w is an extension of succ(z) and succ(z) is not the length-lexicographically
maximal string of length |z|.

• For y, z ∈ {0, 1}+, |y| = |z|, P((y, z), w) = (y, 2), if w ∈ {0, 1}∗ and w is an
extension of succ(z) and succ(z) is the length-lexicographically maximal
string of length |z|.

• For y, z ∈ {0, 1}+, |y| = |z|, P((y, z), w) = (y, z), if w 6= 02 and (w 6∈
{0, 1}∗ or w is not an extension of either y or succ(z)).

• P((y, 2), w) = (y, 2), for w 6= 02.

It is easy to verify that the above P AutoItEx-learns L.
To see that L is not consistently AutoEx-learnable, suppose by way of

contradiction otherwise as witnessed by Q using the hypothesis space {Hα :
α ∈ J}.

Consider a locking sequence σ (conjecture wise) for Q on Lε — that is, for
some α such that Hα = Lε: σ ∈ seq(Lε), Q(σ) = (α, µ) and, for all τ ∈ seq(Lε),
Q(σ � τ) = (α′, µ′) implies α = α′. Let τ ′, τ ′′ and m be such that

18

(i) m is greater than the length of any string in cnt(σ);
(ii) each of τ ′ and τ ′′ is of length m and contains m distinct strings from

{0, 1}m,
(iii) cnt(τ ′) 6= cnt(τ ′′) and
(iv) Q(στ ′) = Q(στ ′′).

Note that there exist such τ ′, τ ′′ for large enough m as there are
(
2m

m

)
possibilities

for the sequences of length m from {0, 1}m with distinct content, but only c2m+s

possibilities for Q(στ ′′′′), for some constant c where τ ′′′′ is a sequence of length
m from {0, 1}m and s = |σ| (see Proposition 15). Suppose y, y′ ∈ {0, 1}m are
such that y ∈ cnt(τ ′)− cnt(τ ′′) and y′ ∈ cnt(τ ′′)− cnt(τ ′). Let T be a text for
Ly. Then, Q(στ ′′T) must converge to an index for Ly. Let σ′′′ be a prefix of
T such that Q(στ ′′σ′′′) = (α, µ) where Hα = Ly. But, then Q is not consistent
on the text στ ′σ′′′T ′, where T ′ is a text for L2.

The following theorem gives an automatic class L which can be Ex-learnt by a
consistent automatic learner or Ex-learnt by an iterative automatic learner but
which cannot be Ex-learnt by a consistent iterative automatic learner. Thus,
requiring both consistency and iterativeness is more restrictive than requiring
only one of them.

Theorem 23. There exists an automatic L such that
(a) L is consistently AutoEx learnable using L as the hypothesis space;
(b) L is AutoItEx learnable using L as the hypothesis space;
(c) L is not consistently AutoItEx learnable.

Proof. Let Σ = {0, 1, 2}. Let L = {Lα : α ∈ {ε}∪{0, 1}∗1} where Lε = {0, 1}∗
and Lα = {2} ∪ {x : x ≤lex α0∞} for α ∈ {0, 1}∗1.

It is easy to verify that L is AutoItEx learnable, as one can initially output
ε as the conjecture, and once 2 appears in the input, search for lexicographically
largest α ending in a 1 such that some extension of α is in the remaining text
(such extensions will appear infinitely often, for each α which has an extension
in the input language).

To see that L is consistently AutoEx-learnable, note that one can memorise
the lexicographically largest possible α ending in a 1 which is a prefix of some
input string. Thus, we could essentially use the above algorithm to consistently
AutoEx-learn L.

To see that L cannot be consistently AutoItEx-learned, suppose by way of
contradiction that P witnesses such learning.

Let σ be a locking sequence for P on Lε. Then, let α be the lexicographically
largest string ending in 1 which is a prefix of some string in σ; if there is no
such string, then we take α to be 1. Then, P on text σ � T , where T is a text
for Lα, must converge to an index for Lα. Thus, P(στ) is an index for Lα, for
some τ ∈ seq(Lα). But, then P is not consistent on σ � α1 � τ , as α1 /∈ Lα.

Remark 24. Note that the class from Theorem 23 is also not set-driven iter-
atively learnable: given an iterative learner P, let σ be a locking sequence for

19

Lε and α = P(σ � 2). There is now a sequence τ of strings in Lε such that
P(σ � 2 � τ) 6= P(σ � 2). But from the locking sequence property of σ, it follows
that P(σ � τ � 2) = α and P is not set-driven.

One can extend this result and also show that an AutoIndexEx-learner Q
of this class cannot be set-driven. The long-term memory of such a learner after
having seen σ is bounded by a constant plus the hypothesis size and there are
only finitely many different values which the long term memory can take after
input of the form σ � τ , with τ being a sequence of data from Lε. But there are
infinitely many languages in L which contain cnt(σ � 2). Hence there are two
sequences τ, τ ′ over Lε such that Q(σ � 2 � τ) and Q(σ � 2 � τ ′) output different
conjectures while the long term memory after σ � τ and σ � τ ′ is the same. It
follows that the hypotheses issued by Q(σ � τ � 2) and Q(σ � τ ′ � 2) are the same
while those issued by Q(σ � 2 � τ) and Q(σ � 2 � τ ′) are different; hence Q is not
set-driven.

The following theorem shows the existence of an automatic class which can be
Ex-learnt by a consistent automatic iterative learner using a class comprising
hypothesis space, but cannot be Ex-learnt by a consistent automatic learner
using a class preserving hypothesis space. Thus, in some cases having a larger
hypothesis space makes the consistency problem easier to handle. Similar phe-
nomenon for monotonic learning (for recursive learners) has been observed by
Lange and Zeugmann [26].

Theorem 25. There exists an automatic class L such that
(a) L is AutoItEx-learnable using a class preserving hypothesis space;
(b) L is consistently AutoItEx-learnable using some class comprising hypothe-
sis space for L;
(c) L is not consistently AutoEx-learnable using any class preserving hypothesis
space for L.

Proof. Let Σ = {0, 1, 2}. Let L = {Lε} ∪ {Ly : y ∈ {0, 1}+} where

• Lε = {0, 1}∗;

• Ly = {2|y|} ∪ {x ∈ {0, 1}∗ : y is not a prefix of x}, for all y ∈ {0, 1}+.

One can verify that the learner P given in the proof of Theorem 22 AutoItEx-
learns L using a class comprising hypothesis space. This learner is consistent
on L.

To see AutoItEx learnability using a class preserving hypothesis space, one
can use the learner P in the proof of Theorem 22, but for y, z ∈ {0, 1}∗, |y| = |z|,
we define H2,2 and Hy,z to be Lε instead of {0, 1, 2}∗ (in particular, we do not
need to use H2,2).

To show that no learner using a class preserving hypothesis space can consis-
tently AutoEx-learn L we proceed as follows. Suppose by way of contradiction
that Q consistently AutoEx-learns L using a class preserving hypothesis space
{Hα : α ∈ J}.

Consider the locking sequence σ (conjecture wise) for Q on Lε (that is, for

20

some α such that Hα = Lε: σ ∈ seq(Lε), Q(σ) = (α, µ) and, for all τ ∈ seq(Lε),
Q(σ � τ) = (α′, µ′) implies α = α′).

Let τ ′, τ ′′ and m be such that (i) m is greater than the length of any string
in cnt(σ), (ii) each of τ ′, τ ′′ is of length m and contains m distinct strings
from {0, 1}m, (iii) cnt(τ ′) 6= cnt(τ ′′) and (iv) Q(στ ′) = Q(στ ′′). Note that
there exist such τ ′, τ ′′ for large enough m as there are

(
2m

m

)
possibilities for

the sequences of length m from {0, 1}m with distinct content, but only c2m+s

possibilities for Q(στ ′′′′), for some constant c where τ ′′′′ is a sequence of length
m from {0, 1}m and s = |σ| (see Proposition 15). Suppose y, y′ ∈ {0, 1}m are
such that y ∈ cnt(τ ′) − cnt(τ ′′) and y′ ∈ cnt(τ ′′) − cnt(τ ′). Let τ be a se-
quence which contains all elements of length m, except for y and y′. Then,
Q(στ ′τ � 2m) = Q(στ ′′τ � 2m), but Q cannot be consistent on both στ ′τ � 2m

and στ ′′τ � 2m.

5. Automatic Learning from Fat Text

One of the reasons why iterative learning and its variations are restrictive is
because the learners forget past data. So it is interesting to study the case
when each datum appears infinitely often. Such a text is called fat text. In
the case of learning recursively enumerable sets, it has been shown that every
explanatorily learnable class is also iteratively learnable from fat texts [31]. In
the following, it is investigated to which extent this result transfers to automatic
learners.

Definition 26. [31] Let Σ be an alphabet. Let T ∈ (Σ∗ ∪ {�})ω. We say that
T is fat iff for every x ∈ cnt(T) and n ∈ N, there exists a k ≥ n such that
T (k) = x. For L ⊆ Σ∗, we let ftxt(L) = {T ∈ txt(L) : T is fat}.

Definition 27. Let Σ be an alphabet. Let {Hα : α ∈ J} be a hypothesis space
with some J being the set of indices. Let P be an iterative learner. We say
that P Ex-learns L from fat texts iff for every L ∈ L and every T ∈ ftxt(L),
there exists an n ∈ N and an α ∈ J with Hα = L such that, for every m ≥ n,
P(T [m]) = α. The other learning criteria considered in this paper are similarly
adapted to fat texts.

Corollary 30 to the proof of the following theorem shows that fat texts allow
one to iteratively automatically learn any class which is potentially learnable,
that is, which satisfies Angluin’s tell-tale condition.

Theorem 28. Let L = {Lα : α ∈ I} be an automatic class. Then L is
AutoWordEx-learnable from fat texts using the given hypothesis space {Lα :
α ∈ I} iff L satisfies Angluin’s tell-tale condition.

Proof. (⇐) This follows from Fact 8, as for learning by recursive learners
without memory constraints, Ex-learnability from fat texts is the same as Ex-
learnability from normal texts.

21

(⇒) Let Σ be the alphabet used for L and I be the set of indices. We will
assume below that α, β range over I. Without loss of generality we assume that
if ∅ ∈ L, then ε ∈ I and Lε = ∅.

We will now construct the learner Q. We denote the conjecture/memory
of the learner Q by (α, x, cons), where α is the conjecture, and (x, cons) is the
memory. Here x ∈ Σ∗ and cons is just a consistency bit.

Suppose T is the input fat text for a language L ∈ L. Then we will have the
following four invariants, whenever α, α′ below are not ?:

(I) If Q(T [m]) = (α, x, cons), then Lα[x] ⊆ cnt(T [m]). Furthermore, for any
m′ < m, if Q(T [m′]) = (α′, x′, cons′), then Lα[x] ⊆ Lα′ [x′] ∪ {T (m′),
T (m′ + 1), . . . , T (m− 1)}.

(II) If Q(T [m]) = (α, x, cons) and Q(T [m+m′]) = (α′, x′, cons′) then CFLα[x]

≤lex CFLα′ [x
′] ≤lex CFL.

(III) If Q(T [m]) = (α, x, cons), then either Lα[x] = Lα and no β <ll α satisfies
Lα[x] = Lβ or Lα[x] 6∈ L and no β <ll α satisfies Lα[x] = Lβ [x].

(IV) If cons = 0, then L 6⊆ Lα.

If Lα is infinite, then let ttcow(α) denote the length-lexicographically least word
w in Lα such that w is a tell-tale cut off word for Lα and for all β <ll α such
that Lα 6= Lβ , Lβ [w] 6= Lα[w]. If Lα is finite, then let ttcow(α) denote maxLα.
Note that ttcow(α) is automatic. We now define our learner Q.

• If ∅ ∈ L, then Q(λ) = (ε, ε, 1).

• If ∅ 6∈ L, then Q(λ) = ?. In this case, Q continues to output ? until it
receives an input y such that, for some α, y is the length-lexicographically
least element of Lα — at which point it outputs (α, y, 1), for the length-
lexicographically least α such that Lα = {y}, if there is such an α; other-
wise it outputs (α, y, 1), for the length-lexicographically least α such that
y is the length-lexicographically least element of Lα.

• Q((α, x, cons),�) = (α, x, cons).

• To define Q((α, x, cons), y), for y 6= �, use the first case below which
applies.

– Case 1: If y ≤ll x and y ∈ Lα, then output (α, x, cons).

– Case 2: If y ≤ll x and y 6∈ Lα and there exists a β such that Lβ [y] =
Lα[y] ∪ {y}, then

if there exists a β such that Lβ = Lα[y] ∪ {y},
then output (β, y, 1) for the length-lexicographically least
such β,
else output (β, y, 1) for the length-lexicographically least β
with Lβ [y] = Lα[y] ∪ {y}.

22

– Case 3: If y >ll x and [y 6∈ Lα or x < ttcow(α) or cons = 0] and
there exists a β such that Lβ [y] = Lα[x] ∪ {y}, then

if there exists a β such that Lβ = Lα[x] ∪ {y},
then output (β, y, 1) for the length-lexicographically least
such β,
else output (β, y, 1) for the length-lexicographically least β
with Lβ [y] = Lα[x] ∪ {y}.

– Case 4: Otherwise, let cons′ = (cons ∧ y ∈ Lα) and output (α, x,
cons′).

Note that the size of new hypothesis β in Case 2 and Case 3 above, if any,
is bounded by the size of y plus a constant. Furthermore, it is easy to verify
that the four invariants are satisfied. Also, clearly if ∅ ∈ L, then Q learns ∅.
Now, suppose T is a fat text for a language L = Lβ ∈ L, where β is length-
lexicographically minimised and L 6= ∅. Let (αn, xn, consn) denote Q(T [n]).
Note that by construction, except for an initial period where Q conjectures ∅
or ?, xn always belongs to L. Furthermore, ttcow(β) ∈ L.

Claim 29. (a) For y ∈ L, if L[y] = Lαn [y] and y ≤ xn, then for all n′ ≥ n,
L[y] = Lαn′ [y] and y ≤ xn′ .
(b) For y = minL, for all but finitely many n, L[y] = Lαn [y] and y ≤ xn.
(c) Suppose y < ttcow(β), and for all n ≥ n0, L[y] = Lαn [y] and y ≤ xn. Then,
there exists an n3 ≥ n0 such that xn3 ≥ succL(y).
(d) For all y ∈ L with y ≤ ttcow(β), for all but finitely many n, L[y] = Lαn [y]
and y ≤ xn.

Proof of Claim: (a) This follows from the invariants (I) and (II).
(b) Let n be least such that T (n − 1) = minL. By using invariant (I) and

either by the first non ? hypothesis of Q or by the usage of Case 2 or 3 in the
definition of Q when it receives T (n− 1), we have that L[minL] = Lαn [minL]
and minL ≤ xn. Part (b) now follows from part (a).

(c) Suppose by way of contradiction that such an n3 does not exist. Then,
for all n > n0, we have that xn = y, and αn = αn0 , as Case 2 would not apply
and an application of Case 3 would make xn > y. Now, if y < ttcow(αn0), then
for the least n1 > n0 such that T (n1 − 1) = succL(y), we would have that xn1

is made to be succL(y) by Case 3. On the other hand, if y ≥ ttcow(αn0), then
L 6⊆ Lαn0

, by Angluin’s tell-tale condition. Thus, for some n2 > n0, we have that
cons = 0. It follows that, for the least n3 > n2 such that T (n3 − 1) = succL(y),
we would have that xn3 = succL(y), by Case 3.

(d) We show the statement by induction on length-lexicographic ordering
of y ∈ L with y ≤ ttcow(β). By part (b), the statement holds for y = minL.
Suppose, the statement holds for some y < ttcow(β), y ∈ L. Then, we show it
for succL(y). Let n0 be such that, for all n ≥ n0, L[y] = Lαn [y] and y ≤ xn. By
part (c), there exists an n3 such that xn3 ≥ succL(y). Now, if succL(y) ∈ Lαn3

,
then we are done by part (a), invariants (I), (II) and induction. Otherwise,
for the least n4 > n3, such that T (n4 − 1) = succL(y), we will have that

23

xn4 = succL(y) and succL(y) ∈ Lαn4
, by Case 2 (all the intermediate steps

between n3 and n4 will not reduce x to below succL(y), as succL(y) does not
appear in between T (n3 − 1) and T (n4 − 1), and Case 2 is the only case which
can reduce xn). This proves the statement for succL(y) and completes the proof
of the claim.

It follows from part (d) of the claim that for some number n5, for all n ≥ n5,
CFL[ttcow(β)] ≤lex CFLαn [xn] ≤lex CFL. If αn = β, for one such n, then the
learner Q will not change its mind later, by the construction of Q. We show that
such an n must exist. So suppose αn5 6= β. This means that L[xn5] 6= Lαn5

[xn5]
(by invariant (III), definition of ttcow and the fact that Lαn5

cannot be equal
to L[xn5], by Angluin’s tell-tale condition). Thus using invariants (I) and (III)
we have that L − Lα[xn5] contains a length-lexicographically least element x
such that ttcow(β) < x ≤ xn5 . It follows (using part (a)) that, for the least
n′ > n5 such that T (n′ − 1) = x, Q(T [n′]) will be (β, xn′ , cons), by Case 2 and
the definition of ttcow.

It follows that Q AutoWordEx-learns L.

Suppose instead of using the given hypothesis space {Lα : α ∈ I} one uses the
hypothesis space {Hα,x,cons : α ∈ I, x ∈ Σ∗, cons ∈ {0, 1}}, where Hα,x,cons =
Lα. Then the above learning algorithm Q becomes an iterative learner using
this hypothesis space. It uses conjectures (α, x, cons) instead of conjecture α
and memory (x, cons). Note that the update rules guarantee that the learner Q
does not update its hypothesis if x ≥ ttcow(α), and Lα is the set to be learnt.
Hence the modified learner using the new hypothesis space does also converge
syntactically on texts for sets to be learnt. This yields the following corollary.

Corollary 30. Every automatic class satisfying Angluin’s tell-tale condition is
AutoItEx-learnable from fat texts using a class preserving hypothesis space.

The next result shows that one cannot learn every given class iteratively from
fat texts using a one-one class preserving hypothesis space. So “padding”, that
is, the usage of the hypothesis as an auxiliary memory, is necessary for iterative
learning from fat texts in the above theorem. Furthermore, the following also
shows constraints of iterative conservative automatic learners.

Theorem 31. Let Σ = {0, 1} and for every n ∈ Z and m ∈ {0, 1}, let g(m,n) =
4n+2m if n ≥ 0 and g(m,n) = −3−4n+2m if n < 0. Then the class L defined
by the indexing

L0g(m,n) = {0g(i,j)1k : i ∈ {0, 1} ∧ j ∈ Z ∧ k ∈ N ∧ (i = m ⇒ j ≤ n)}

is automatic. This class is class preservingly AutoItEx-learnable from normal
texts, class comprisingly conservatively AutoItEx learnable from normal texts,
but neither conservatively iteratively learnable from fat texts using a one-one
class preserving hypothesis space nor iteratively learnable from fat texts using a
one-one class preserving hypothesis space.

24

Proof. Intuitively, g(0, ·) and g(1, ·) are 1–1 computable functions such that
{g(0, n) : n ∈ Z} and {g(1, n) : n ∈ Z} partition the set of natural numbers.
Furthermore, from 0g(i,j) and 0g(i′,j′) one can automatically determine whether
i = 0 or i = 1, whether i′ = 0 or i′ = 1, whether j < j′ and whether j′ < j (this
later property is needed for P below to be automatic).

For conservative AutoItEx-learning using a class comprising hypothesis
space, the hypothesis space used is:

• Hh(0,n0,n1) = L0g(0,n0) , for n0, n1 ∈ Z;

• Hh(1,n0,n1) = L0g(1,n1) , for n0, n1 ∈ Z;

• Hh(ε,n0,n1) = ∅,

where, for n0, n1 ∈ {ε} ∪ Z, h(a, b, c) is the convolution of a, b′ and c′ with
b′ = 0g(0,b) if b 6= ε, b′ = 1 if b = ε; c′ = 0g(0,c) if c 6= ε and c′ = 1 if c = ε.
The learner P initially conjectures h(ε, ε, ε). We mention below the cases when
P modifies its conjecture. In all other cases, the conjectures are not modified.
Intuitively, conjectures of the form h(·, j, ·), (respectively h(·, ·, j)) imply that a
string of the form 0g(0,j)1k (respectively, a string of the form 0g(1,j)1k) has been
seen in the input.

• P(h(ε, ε, ε), 0g(0,j)1k) = h(ε, j, ε);

• P(h(ε, ε, ε), 0g(1,j)1k) = h(ε, ε, j);

• P(h(ε, j, ε), 0g(1,j′)1k) = h(0, j, j′);

• P(h(ε, ε, j), 0g(0,j′)1k) = h(0, j′, j);

• P(h(0, j, j′), 0g(0,r)1k) = h(1, r, j′), if r > j;

• P(h(1, j, j′), 0g(1,r)1k) = h(0, j, r), if r > j′.

One can verify that P conservatively AutoItEx-learns L.
For class preserving AutoItEx-learning, one just modifies the above hypo-

thesis space to have Hh(ε,n0,n1) = L0g(0,0) and the rest of the proof remains the
same. Note that the learner is no longer conservative.

To show that L is not conservatively learnable from fat texts using a one-one
class preserving hypothesis space nor iteratively learnable from fat texts using
a one-one class preserving hypothesis space, note the following: an iterative
learner that uses a one-one class preserving hypothesis space is conservative. So
it suffices to show that no conservative learner that uses a one-one class pre-
serving hypothesis space iteratively learns L from fat texts.

Let F be any conservative iterative learner that uses a one-one class preserv-
ing hypothesis space {Hα : α ∈ J}. Let x be such that F(?, x) 6=?. Without
loss of generality assume that F(?, x) conjectures a language of the form L0g(0,n) ,
for some n. (Case of the conjecture being of the form L0g(1,·) is symmetric.) If
x ∈ L0g(0,n−1) , then F has overgeneralised and thus does not conservatively learn

25

L. Otherwise, if there is no σ (where cnt(σ) ⊆ 0∗1∗) such that F(x � σ) con-
jectures a language of the form L0g(1,·) , then we have that F does not learn L.
Otherwise, let y1, y2, . . . , yk ∈ 0∗1∗ be such that HF(x�y1�y2�...�yk) = L0g(1,n′) ,
for some n′, where HF(x�y1�y2�...�yr) = L0g(0,sr) , for r < k and some sr, where
sr’s are distinct and different from n. Then, we have that y1, y2, . . . , yk must
be of the form 0g(0,·)1∗, since the learner is conservative and uses a one-one
class preserving hypothesis space. Also, note that x is of the form 0g(0,·)1∗ as
x 6∈ L0g(0,n−1) . Thus x, y1, . . . , yk belong to L0g(1,n′−1) and thus F overgeneralises
and cannot conservatively learn L.

Theorem 32. Suppose an automatic iterative learner Ex-identifies L using a
class preserving hypothesis space. Then, there is an automatic, conservative and
iterative learner M′ which identifies L from fat texts.

Proof. Suppose M is an automatic iterative learner which Ex-identifies {Lα :
α ∈ I} from fat texts using the hypothesis space {Lα : α ∈ I}. Without loss of
generality assume that the initial conjecture of M is ?.

Let S =
⋂

α∈I Lα. For α ∈ I ∪ {?}, let mc(α) = 1, if α =? or there exists an
x ∈ Lα such that M(α, x) 6= α; otherwise, let mc(α) = 0.

If S ∈ L, then let e0 = 0 and He0 = S; otherwise, let e0 =?.
For α ∈ I ∪ {?} and w ∈ Σ∗ − S, let Hα,w = Lα, if mc(α) = 0; otherwise,

let Hα,w = Lα′ , where α′ is length-lexicographically least such that w 6∈ Lα′ .
Define M′ as follows, where M′ uses hypothesis space {He : e ∈ J}, where

J = {(α, w) : α ∈ I ∪ {?}, w ∈ Σ∗ − S} ∪ {e0} − {?}.

Initially, M′(λ) = e0.
M′(e0, x) = e0, for x ∈ S ∪ {#}.
M′(e0, x) = (M(?, x), x), for x 6∈ S ∪ {#}.
M′((α, w), x) = (M(α, x), w).

Now, suppose T is the input fat text for a language L ∈ L. If L = S, then clearly,
M′ identifies L. Otherwise, let n be least such that T (n) 6∈ S. Let T ′ be obtained
from T by deleting T [n], that is T ′(m) = T (n + m). Let w = T ′(0) = T (n).
Then, it is easy to see that T ′ is still a fat text for L. Furthermore, for all
m ≥ 0, M′(T [n + m + 1]) = (M(T ′[m + 1]), w). Also, note that M converges
on T ′ to α such that mc(α) = 0 (otherwise, due to T ′ being a fat text, either
M does not identify L or makes a further mind change on T ′). Thus, M′

converges on T to (α, w) and Hα,w = Lα. Furthermore, M′ is conservative
as on previous conjecture (α′, w) and input x, if M′((α′, w), x) 6= (α′, w), then
either mc(α′) = 1 (and thus w 6∈ Hα′,w, but w belongs to the input seen so far)
or mc(α′) = 0 (and thus x 6∈ Lα′ = Hα′,w).

Remark 33. Suppose one uses the following modified definition of conserva-
tiveness: M is conservative if for any σ and x, if x ∈ HM(σ), then M(σx) =
M(σ). Then the class used in Theorem 31 cannot be learnt by any conservative
and iterative learner from fat texts using a class preserving hypothesis space; the
diagonalisation proof given for Theorem 31 works for this case also.

26

One might ask whether there are classes which can be learnt using some one-one
class preserving hypothesis space but cannot be learnt using some other hypo-
thesis space. The answer is “no”. That is, if a class is AutoItEx-learnable using
a one-one class preserving hypothesis space then it is also prescribed AutoItEx-
learnable, that is, it can be learnt using any class comprising automatic indexing
as hypothesis space. In the next result, the option “(from fat texts)” has to be
taken either at both places or at no place in the theorem.

Proposition 34. If {Lα : α ∈ I}, {Hβ : β ∈ J} are automatic indexings, the
mapping α 7→ Lα is one-one, every Lα is equal to some Hβ and {Lα : α ∈ I}
is AutoItEx-learnable (from fat texts) using the hypothesis space {Lα : α ∈
I}, then {Lα : α ∈ I} is also AutoItEx-learnable (from fat texts) using the
hypothesis space {Hβ : β ∈ J}.

Proof. The proof of this proposition can be given by the straight-forward
translation of the learner: Let f(α) = min{β : Hβ = Lα} and g be the (partial)
inverse with g(β) = min{α : Lα = Hβ}. Furthermore, let f(?) = ? and g(?) = ?.
The functions f, g are both first-order definable and hence automatic. Further-
more, g is defined on the range of f . Now one can replace the learner Q using
the hypothesis space {Lα : α ∈ I} by a new learner Q′ mapping a hypothesis β
and an input x to f(Q(g(β), x)); note that, under the assumption that the ini-
tial value of the learner is ?, one can easily see by induction that all hypotheses
output by Q′ are in the range of f and hence in the domain of g. Thus Q′ is
well-defined on valid inputs for the class being learnt. As automatic functions
are closed under composition, the learner Q′ is automatic. Furthermore, Q′

converges to f(α) whenever Q converges to α. Hence the learner Q′ is correct
and uses the hypothesis space {Hβ : β ∈ J}. Note that the type of text used
(normal text or fat text) is for both learners the same.

The next theorem shows that every automatic class (even those that may not
satisfy Angluin’s tell-tale condition) is partially learnable from fat texts by an
automatic iterative learner. This corresponds to the result by [31] that the
whole class of all recursively enumerable languages is partially learnable by
some recursive learner.

Theorem 35. Every automatic L is AutoWordPart-learnable from fat texts.

Proof. This is a modification of the proof of Theorem 28. In this case we do
not need to keep track of cons and the memory x may grow unbounded.

Let Σ be the alphabet used for L and I be the set of indices. We will assume
below that α, β range over I. Without loss of generality we assume that if ∅ ∈ L,
then ε ∈ I and Lε = ∅.

We now construct the learner Q. We will denote the conjecture/memory of
the learner Q by (α, x), where α is the conjecture, and x is the memory. Here
x ∈ Σ∗.

Suppose T is the input fat text for a language L ∈ L. Then we will have the
following invariants, whenever α and α′ below are not ?:

27

(I) If Q(T [m]) = (α, x), then Lα[x] ⊆ cnt(T [m]). Furthermore, for any m′ <
m, if Q(T [m′]) = (α′, x′), then Lα[x] ⊆ Lα′ [x′] ∪ {T (m′), T (m′ + 1), . . . ,
T (m− 1)}.

(II) If Q(T [m]) = (α, x) and Q(T [m + m′]) = (α′, x′) then CFLα[x] ≤lex

CFLα′ [x
′] ≤lex CFL.

We now describe the learner Q.

• If ∅ ∈ L then Q(λ) = (ε, ε).

• If ∅ 6∈ L then Q(λ) = ?. In this case, Q continues to output ? until it
receives an input y such that, for some α, y = minLα — at which point
it outputs (α, y), for the length-lexicographically least such α.

• Q((α, x),�) = (α, x).

• To define Q((α, x), y), for y 6= �, use the first case below which applies.

– Case 1: If y >ll x and there exists a β such that Lα[x]∪{y} = Lβ [y],
then output (β, y), for the length-lexicographically least such β.

– Case 2: If y ≤ll x and y 6∈ Lα, and there exists a β such that, Lβ [y] =
Lα[y]∪ {y}, then output (β, y), for the length-lexicographically least
such β.

– Case 3: If there exists a β such that Lβ = Lα[x], then output (β, x),
for length-lexicographically least such β.

– Case 4: Otherwise output (α, x).

Note that the size of new hypothesis β in Cases 1 to 3 above, if any, is bounded
by the size of y plus a constant. Furthermore, it is easy to verify that the
invariants are satisfied. Clearly, if ∅ ∈ L, then Q learns ∅. So suppose L 6= ∅
and L = Lβ ∈ L, where β is length-lexicographically minimised. Suppose T is
a fat text for L. Let (αn, xn) denote Q(T [n]).

Claim 36. (a) For all n, if L[y] = Lαn [y] and y ≤ xn, then for all n′ ≥ n,
L[y] = Lαn′ [y] and y ≤ xn′ .

(b) For all y ∈ L, there exists an n such that L[y] = Lαn [y] and y ≤ xn.

Proof of claim. Part (a): This follows using invariants (I) and (II).
Part (b): Clearly, y = minL satisfies part (b), as for the least n such that

T (n − 1) = minL, we will have L[minL] = Lαn
[minL] and minL ≤ xn (using

invariant (I) and either by first hypothesis of Q or by the usage of Case 1 or 2
in definition of Q when it receives T (n− 1)).

Now suppose part (b) holds for some y ∈ L. Then we show that it holds for
succL(y). Let n0 be large enough such that for all n ≥ n0, L[y] = Lαn [y]
and xn ≥ll y. Let n′′ > n0 be such that T (n′′ − 1) = succL(y). Then,
Lαn′′ [succL(y)] = L[succL(y)] and xn′′ ≥ll succL(y) (Case 1 and 2 both will

28

AutoWordPart learners infer all automatic families from fat text
6

AutoWordEx learners infer those automatic families from fat text
which satisfy Angluin’s tell-tale condition

6

AutoEx from normal text

�
�
��

@
@

@I@?
@R

AutoIndexEx −?→ AutoWordEx

@?
@R@
@

@I

�
�
��

AutoItEx

Figure 1: Major results and open problems. Solid arrows denote inclusion. Arrows with a
question mark denote that the inclusion is open. If an inclusion does not follow by using
reflexive and transitive closure of any of these two types of arrows, then it does not hold.

ensure this, if it is not already true). This completes the proof of the claim.
It follows that CFLαn [xn] converges to CFL from below. If L is finite, then

let n1 be such that CFLαn1
= CFL and xn1 ≥ max L. Let n2 > n1 be such that

T (n2 − 1) 6= �. Then, by Case 3, it follows that, for all n ≥ n2, αn = β. Thus,
Q AutoItPart-learns all the finite sets in L.

Now suppose L is infinite. As CFLαn [xn] converges to CFL from below,
it follows that no α with Lα 6= L would be output infinitely often. Further-
more, no index which is not length-lexicographically minimal index for some
language, is ever output. So it suffices to show that β is output infinitely often.
Let x be large enough so that x ∈ L, L[x] 6= Lα[x], for any α <ll β. Now,
using the claim above and as CFLαn [xn] converges to CFL from below, for large
enough n, for all n′ ≥ n, xn′ ≥ll x and CFL[x] = CFLα

n′
[x]. Now consider any

n′ ≥ n. Note that either αn′ = β or L − Lαn′ 6= ∅, as either Lαn′ is finite or
L[x] = Lαn′ [x] ⊆ Lαn′ [xn′] ⊆ L and αn′ is the length-lexicographically least
index α which satisfied Lα[xn′] = Lαn′ [xn′] (by the definition of Q). Thus, by
Case 1, using invariant (I), for any n′′ > n′ such that T (n′′ − 1) is the length-
lexicographically least element in L−Lαn′ [x], we have αn′′ = β, unless αn′′′ = β

for some n′′′ with n′ ≤ n′′′ ≤ n′′. The theorem follows.

6. Conclusion

The present work initiates the investigations of the learnability of automatic
classes and also the notion of automatic learners. Such learners are restrictive
when they have to learn from all texts; only if they are fed with fat texts where

29

each data item-occurs infinitely often they can explanatorily learn all automatic
classes which satisfy Angluin’s tell-tale condition. Furthermore, partial auto-
matic learners can infer all automatic families from fat text. Figure 1 gives the
most important inclusions found — note that all notions except for the two
topmost ones learn from normal texts. Several implications linked to memory
are neither proven nor disproven. For example, is there a class which can be
learnt by an automatic learner using hypothesis sized memory which cannot be
learnt by an iterative automatic learner? Furthermore, is restricting the mem-
ory to the size of the longest word seen so far a real restriction in automatic
learning? Besides these fundamental questions, we also studied the amount of
restrictions given by consistency and conservativeness. While in standard in-
ductive inference, the undecidability of membership problem with respect to the
hypotheses is the main reason for inconsistent learners being more powerful, in
automatic learning, the main reason that inconsistent learners might be more
powerful than consistent ones are the implicit and explicit memory restrictions
during the learning process which make it impossible to keep track of all the
data observed so far.

Acknowledgments. We would like to thank John Case, Henning Fernau,
Pavel Semukhin, Trong Dao Le and Thomas Zeugmann for discussions about
the subject of learning classes with automatic indexings. We thank Trong Dao
Le for pointing out an error in an earlier version of Theorem 31. We also thank
the anonymous referees for several helpful comments.

References

[1] Dana Angluin. Inductive inference of formal languages from positive data.
Information and Control 45:117–135, 1980.

[2] Dana Angluin. Finding patterns common to a set of strings. Journal of
Computer and System Sciences, 21:46–62, 1980.

[3] Dana Angluin. Inference of reversible languages. Journal of the ACM,
29:741–765, 1982.

[4] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75:87–106, 1987.

[5] Janis Bārzdiņš. Two theorems on the limiting synthesis of functions. Theory
of Algorithms and Programs 1:82–88, 1974.

[6] Janis Bārzdiņš. Inductive inference of automata, functions and programs.
Twentieth International Congress of Mathematicians, pages 455–460, 1974.
In Russian. English translation in American Mathematical Society Trans-
lations: Series 2, 109:107–112, 1977.

[7] Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive
inference. Information and Control, 28:125–155, 1975.

30

[8] Achim Blumensath. Automatic structures. Diploma thesis, RWTH Aachen,
1999.

[9] Achim Blumensath and Erich Grädel. Automatic structures. Fifteenth
Annual IEEE Symposium on Logic in Computer Science (LICS), pages 51–
62, IEEE Computer Society, 2000.

[10] John Case. The power of vacillation in language learning. SIAM Journal
of Computing, 28:1941–1969, 1999.

[11] John Case, Sanjay Jain, Trong Dao Le, Yuh Shin Ong, Pavel Semukhin
and Frank Stephan. Automatic Learning of Subclasses of Pattern Lan-
guages. Fifth International Conference on Language and Automata Theory
and Applications (LATA), pages 192–203, Springer LNCS 6638, 2011.

[12] John Case, Sanjay Jain, Yuh Shin Ong, Pavel Semukhin and Frank
Stephan. Automatic learners with feedback queries. Models of Compu-
tation in Context, Seventh Conference on Computability in Europe (CiE),
pages 31–40, Springer LNCS 6735, 2011. To appear.

[13] François Denis, Aurélien Lemay and Alain Terlutte. Some classes of reg-
ular languages identifiable in the limit from positive data. Sixth Interna-
tional Colloquium on Grammatical Inference: Algorithms and Applications
(ICGI), pages 63–76, Springer LNCS 2484, 2002.

[14] Thomas Erlebach, Peter Rossmanith, Hans Stadtherr, Angelika Steger and
Thomas Zeugmann. Learning one-variable pattern languages very effi-
ciently on average, in parallel, and by asking queries. Theoretical Computer
Science, 261:119-156, 2001.

[15] Henning Fernau. Identification of function distinguishable languages. The-
oretical Computer Science, 290:1679–1711, 2003.

[16] Rusins Freivalds, Efim Kinber, Carl Smith. On the impact of forgetting on
learning machines. Journal of the ACM, 42:1146–1168, 1995.

[17] E. Mark Gold. Language identification in the limit. Information and Con-
trol 10:447–474, 1967.

[18] Tom Head, Satoshi Kobayashi and Takashi Yokomori. Locality, reversibil-
ity, and beyond: learning languages from positive data. Ninth Interna-
tional Conference on Algorithmic Learning Theory (ALT), pages 191–204,
Springer LNAI 1501, 1998.

[19] Bernard R. Hodgson. Théories décidables par automate fini. Ph.D. thesis,
University of Montréal, 1976.

[20] Bernard R. Hodgson. On direct products of automaton decidable theories.
Theoretical Computer Science, 19:331–335, 1982.

31

[21] Oscar H. Ibarra and Tao Jiang. Learning regular languages from coun-
terexamples. First annual workshop on Computational Learning Theory
(COLT), pages 371–385, Morgan Kaufmann Publishers, 1988.

[22] Klaus P. Jantke. Monotonic and non-monotonic inductive inference. New
Generation Computing, 8:349–360, 1991.

[23] Michael Kearns and Leonard Pitt. A polynomial-time algorithm for learn-
ing k-variable pattern languages from examples. Second Annual Workshop
on Computational Learning Theory (COLT), pages 57–71, Morgan Kauf-
mann Publishers, 1989.

[24] Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of struc-
tures. Logical and Computational Complexity (LCC), 1994. Springer LNCS
960:367–392, 1995.

[25] Efim Kinber and Frank Stephan. Language learning from texts: mind
changes, limited memory and monotonicity. Information and Computation
123:224–241, 1995.

[26] Steffen Lange and Thomas Zeugmann. Language learning in dependence
on the space of hypotheses. Sixth Annual Conference on Computational
Learning Theory (COLT), pages 127–136, ACM Press, 1993.

[27] Steffen Lange and Rolf Wiehagen. Polynomial time inference of arbitrary
pattern languages. New Generation Computing, 8:361–370, 1991.

[28] Steffen Lange, Thomas Zeugmann and Shyam Kapur. Characterizations of
monotonic and dual monotonic language learning. Information and Com-
putation, 120:155–173, 1995.

[29] Yasuhito Mukouchi. Characterization of finite identification. Third In-
ternational Workshop on Analogical and Inductive Inference (AII), pages
260–267, Springer LNAI 642, 1992.

[30] Daniel Osherson, Michael Stob and Scott Weinstein, Learning strategies.
Information and Control, 53:32–51, 1982.

[31] Daniel Osherson, Michael Stob and Scott Weinstein, Systems That Learn,
An Introduction to Learning Theory for Cognitive and Computer Scientists.
Bradford — The MIT Press, Cambridge, Massachusetts, 1986.

[32] Sasha Rubin. Automatic Structures. Ph.D. Thesis, University of Auckland,
2004.

[33] Sasha Rubin. Automata presenting structures: a survey of the finite string
case. The Bulletin of Symbolic Logic, 14:169–209, 2008.

[34] Gisela Schäfer-Richter. Uber Eingabeabhangigkeit und Komplexitat von In-
ferenzstrategien. PhD thesis, RWTH Aachen, 1984.

32

[35] Takeshi Shinohara. Rich Classes inferable from positive data: length–
bounded elementary formal systems. Information and Computation,
108:175–186, 1994.

[36] Kenneth Wexler and Peter W. Culicover. Formal Principles of Language
Acquisition. MIT Press, 1980.

[37] Rolf Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle
Strategien. Elektronische Informationsverarbeitung und Kybernetik (Jour-
nal of Information Processing and Cybernetics), 12:93–99, 1976.

33

