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Abstract

We introduce and explore a model for parallel learning of families of languages
computable by finite automata. In this model, an algorithmic or automatic
learner takes on n different input languages and identifies at least m of them
correctly. For finite parallel learning, for large enough families, we establish
a full characterization of learnability in terms of characteristic samples of lan-
guages. Based on this characterization, we show that it is the difference n−m,
the number of languages which are potentially not identified, which is crucial.
Similar results are obtained also for parallel learning in the limit. We consider
also parallel finite learnability by finite automata and obtain some partial re-
sults. A number of problems for automatic variant of parallel learning remain
open.
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1. Introduction

In this paper, we define and explore a model for learning automatic families of
languages in parallel. A family of languages is called automatic if it is an indexed
family, and there is a finite automaton that, given an index v of a language and
a string u can solve the membership problem for u in the language indexed
by v (study of learnability of automatic classes was initiated in [JLS12]). Our
aim is to establish if, under what circumstances, and on what expense, learning
several languages from an automatic family in parallel can be more powerful
than learning one language at a time. In the past, few approaches to learning in
parallel have been suggested. One of them, known as team inference, involves a
finite team of learning machines working in parallel on the same input function
or language (see, for example, [Smi82]). Our approach follows the one suggested
for parallel learning recursive functions in [KSVW95]: one learning machine
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is learning a finite collection of (pairwise distinct) languages (in some sense,
this model is a generalization of the model introduced in [AGS89]). A similar
approach has recently been utilized in a study of prediction of recursive function
values in [BKF11]: one algorithm predicts next values of several different input
functions.

We consider learning languages in two different, albeight related settings:
a) Finite learning [Gol67]: a learning machine, after seeing a finite amount

of input data, terminates and outputs conjectures for grammars of languages
being learnt.

b) Learning in the limit [Gol67]: a learning machine outputs a potentially
infinite sequence of conjectures, stabilizing on a correct grammar for the target
language.

For above type of learning, we also consider the case when the learner itself
is a finite automaton (see [JLS12]). The learners in our model use input texts
— potentially infinite sequences that contain full positive data in a target lan-
guage, intermittent with periods of “no data”. Both settings, under the name
of inductive inference, have a long history, see, for example, [JORS99].

A simple example of the family of three languages, {0}, {1}, {0, 1} (which
can be trivially made automatic), shows that finite learning of three languages
in parallel might be possible, whereas no learner can finitely learn languages
in the family one at a time: the desired parallel learner will just wait until the
three input texts contain 0, 1 and 0, 1 respectively and then output three correct
conjectures based on which texts contain which of the above elements; on the
other hand, if an individual learner gets on the input a text containing all 0-s
and settles on the conjecture {0}, it will be too late if 1 appears in the input.

However, interestingly, when families of languages are large, finite parallel
learning of all input languages has no advantage over finite learning of individual
languages: as it follows from one of our results (Theorem 9), if the number of
languages in an automatic family is at least 4, and the family is learnable in
parallel by a finite learner taking three different input texts, then the family
is finitely learnable, one language at a time. Therefore, we consider a more
general model of parallel learning, where the potential advantage of parallelism
may compensate for lack of precision — so-called (m,n) or frequency learning:
a learner gets input texts for n different languages and learns at least m of
them correctly. This model of learning was first suggested and explored for
algorithmic learning of recursive functions in [KSVW95]. The idea of frequency
learning stems from a more general idea of (m,n)-computation, which, in the
recursion-theoretic setting, means the following: to compute a function, an
algorithm takes on n different inputs at a time and outputs correct values on at
leastm inputs. This idea can be traced to the works by G. Rose [Ros60] and B.A.
Trakhtenbrot [Tra64] who suggested frequency computation as a deterministic
alternative to traditional probabilistic algorithms using randomization. Since
then, this idea has been applied to various settings, from computation by finite
automata ([Kin76, ADHP05]) to computation with a small number of bounded
queries ([BGK96]).

We explore and, whenever it has been possible, determine what makes au-
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tomatic classes of languages (m,n)-learnable for various numbers n and m ≤ n.
Whereas, in our general model, it is not possible to identify which m conjec-
tures among n are correct, we also consider the special case of finitely learning
automatic classes when the learner can identify m correct conjectures.

In the theory of language learning, a prominent role belongs to the so-called
characteristic samples ([LZ92, Muk92]), and tell-tale sets (see [Ang80]). A finite
subset D of a language L is called a characteristic sample of L (with respect
to the family of languages under consideration) if, for every language L′ in the
family, D ⊆ L′ implies L′ = L. A finite subset D of a language L is called a
tell-tale set of L (with respect to the family of languages under consideration)
if, for every language L′ in the family, D ⊆ L′ implies ¬[L′ ⊂ L].

A family of languages satisfies characteristic sample condition (tell-tale set
condition) if every language in it has a characteristic sample (has a tell-tale set)
with respect to the family. Several of our characterizations of (m,n)-learnability
are based on suitable variants of the characteristic sample or tell-tale set con-
dition. Since in all our settings (m,n)-learning (for m < n) turns out to be
more powerful than learning individual languages, we study and discover inter-
esting relationships between classes of languages (m,n)-learnable with different
parameters m and/or n. In particular, we are concerned with the following
questions:

a) does (m,n)-learnability imply (m+1, n+1)-learnability of a class? (thus,
increasing frequency of correct conjectures, while keeping the number of possibly
erroneous conjectures the same);

b) does (m+ 1, n+ 1)-learnability imply (m,n)-learnability? (thus, loosing
in terms of frequency of correct conjectures, but allowing a smaller number of
languages to be learnt in parallel, with the same number of possibly erroneous
conjectures);

c) does (m,n+1)-learnability imply (m,n)-learnability? (thus, reducing the
number of possibly erroneous conjectures and increasing frequency of correct
conjectures at the same time).

For each of our variants of learnability, we obtain either full or partial answers
to all the above questions, for large enough families.

The structure of our study of (m,n)-learning is as follows. In the next
section, we introduce necessary mathematical preliminaries and notation. In
Section 3 we formally define our learning models. In Section 4, we take on the
case of finite (m,n)-learning when a learner can specify at least m of the texts
which it learnt correctly — following [KSVW95], we call (m,n)-learning of this
kind superlearning. In Theorems 8 and 9, for the classes containing at least
2n+1−m languages, we give a full characterization for (m,n)-superlearnability
in terms of characteristic samples. For large classes of languages, this character-
ization provides us full positive answers to the above questions a), b), and the
negative answer to c). We also address the case when the number of languages
in a class to be learnt is smaller than 2n + 1 − m, providing, in particular, a
different characterization for (m,n)-superlearnability for this case.

In Section 5 we consider finite (m,n)-learning when a learner may not be
able to tell which of the m texts it learns. For large classes of languages, we
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again obtain a full characterization of (m,n)-learnability in terms of character-
istic samples — albeight somewhat different from the case of superlearnability.
This characterization, as in case of superlearnability, provides us answers to the
questions a), b), and c). The proofs in this section are quite involved — to ob-
tain necessary results, we developed a technique based on bipartite graphs. We
then also obtain a different characterization for finite (m,n)-learning of finite
automatic classes.

In Section 6 we obtain full positive answers for the questions a) and b)
and the negative answer to the question c) for (m,n)-learnability of automatic
classes in the limit. We also obtain characterizations of this kind of learning in
terms of presence of tell-tale sets [Ang80] for languages in the class being learnt.

In Section 7, we address finite (m,n)-learning by finite automata — auto-
matic learning. We have not been able to come up with a characterization of
this type of learnability, however, we answer positively to the question b) and
negatively to the question c). The question a) remains open. For finite super-
learning by finite automata, we give positive answers to questions a) and b)
for large enough classes, and negative answer to question c). In Section 8, we
address (m,n)-learning by finite automata in the limit.

2. Preliminaries

The set of natural numbers, {0, 1, 2, . . .}, is denoted by N . We let Σ denote
a finite alphabet. The set of all strings over the alphabet Σ is denoted by Σ∗.
A language is a subset of Σ∗. The length of a string x is denoted by |x|. We let
ε denote the empty string.

A string x = x(0)x(1) . . . x(n− 1) is identified with the corresponding func-
tion from {0, 1, . . . , n−1} to Σ. We assume some canonical ordering of members
of Σ. Lexicographic order is then the dictionary order over strings. A string w
is length-lexicographically before (or smaller than) string w′ (written w <ll w

′)
iff |w| < |w′| or |w| = |w′| and w is lexicographically before w′. Furthermore,
w ≤ll w′ denotes that either w = w′ or w <ll w

′. For any set of strings S,
let succS(w) denote the length-lexicographically least w′ such that w′ ∈ S and
w <ll w

′ — if there is no such string, then succS(w) is undefined.
We let ∅,⊆ and ⊂ respectively denote empty set, subset and proper subset.

The cardinality of a set S is denoted by card(S). A∆B denotes the symmetric
difference of A and B, that is, (A−B) ∪ (B −A).

We now define the convolution of two strings x = x(0)x(1) . . . x(n − 1)
and y = y(0)y(1) . . . y(m − 1), denoted conv(x, y). Let x′, y′ be strings of
length max({m,n}) such that x′(i) = x(i) for i < n, x′(i) = # for n ≤ i <
max({m,n}), y′(i) = y(i) for i < m, and y′(i) = # for m ≤ i < max({m,n}),
where # 6∈ Σ is a special padding symbol. Thus, x′, y′ are obtained from
x, y by padding the smaller string with #’s. Then, conv(x, y) = z, where
|z| = max({m,n}) and z(i) = (x′(i), y′(i)), for i < max({m,n}). Here, note
that z is a string over the alphabet (Σ ∪ {#}) × (Σ ∪ {#}). Intuitively, giv-
ing a convolution of two strings as input to a machine means giving the two
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strings in parallel, with the shorter string being padded with #s. The definition
of convolution of two strings can be easily generalized to convolution of more
than two strings. An n-ary relation R is automatic, if {conv(x1, x2, . . . , xn) :
(x1, x2, . . . , xn) ∈ R} is regular. Similarly, an n-ary function f is automatic if
{conv(x1, x2, . . . , xn, y) : f(x1, x2, . . . , xn) = y} is regular.

A family of languages, (Lα)α∈I , over some finite alphabet Σ, is called an
automatic family if (a) the index set I is regular and (b) the set {conv(α, x) :
α ∈ I, x ∈ Lα} is regular. We often identify an automatic family (Lα)α∈I with
the class L = {Lα : α ∈ I}, where the indexing is implicit. An automatic family
(Lα)α∈I is 1–1 (or the indexing is 1–1), if for all α, β ∈ I, Lα = Lβ implies
α = β.

It can be shown that any family, relation or function that is first-order de-
finable using other automatic relations or functions is itself automatic.

Lemma 1. [BG00, KN95] Any relation that is the first-order definable from
existing automatic relations is automatic.

We use the above lemma implicitly in our proofs, without explicitly stating so.
The example below gives some well-known automatic families.

Example 2. (a) For any fixed k, the class of all subsets of Σ∗ having at most
k elements is an automatic family.

(b) The class of all finite and cofinite subsets of {0}∗ is an automatic family.

(c) The class of closed intervals, consisting of languages Lconv(α,β) = {x ∈ Σ∗ :
α ≤lex x ≤lex β} where α, β ∈ Σ∗, over the alphabet Σ is an automatic
family.

3. Learning Automatic Families

A text T is a mapping from N to Σ∗ ∪ {#}. The content of a text T , denoted
content(T ), is {T (i) : i ∈ N}−{#}. A text T is for a language L iff content(T ) =
L. Intuitively, #’s denote pauses in the presentation of data. Furthermore, #∞

is the only text for ∅.
Let T [n] denote T (0)T (1) . . . T (n−1), the initial sequence of T of the length

n. We let σ and τ range over finite initial sequences of texts. The length of σ
is denoted by |σ|. For n ≤ |σ|, σ[n] denotes σ(0)σ(1) . . . σ(n − 1). The empty
sequence is denoted by Λ. Let content(σ) = {σ(i) : i < |σ|}.

We now consider learning machines. Since we are considering parallel learn-
ing, we directly define learners which take as input n texts. Furthermore, to
make it easier to define automatic learners, we define the learners as mapping
from the current memory and the new datum, to the new memory and con-
jecture (see [JLS12]). When one does not have any memory constraints (as
imposed, for example, by automatic learning requirement), these learners are
equivalent to those defined by Gold [Gol67]. The learner uses some hypothesis
space {Hα : α ∈ J} to interpret its hypothesis. We always require (without
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explicitly stating so) that {Hα : α ∈ J} is a uniformly r.e. class (that is,
{(x, α) : x ∈ Hα} is r.e.). Often the hypothesis space is even required to be an
automatic family, with the index set J being regular. For this paper, without
loss of generality, we assume that the learners are total.

Definition 3. (Based on [Gol67, JLS12]) Suppose Σ and ∆ are finite alphabets
used for languages and memory of learners respectively, where # 6∈ Σ. Suppose
J is the index set (over some finite alphabet) for the hypothesis space used by
the learner. Let ? be a special symbol not in J . Suppose 0 < n.

(a) A learner (from n-texts) is a recursive mapping from ∆∗ × (Σ∗ ∪ {#})n to
∆∗ × (J ∪ {?})n.

A learner has an initial memory mem0 ∈ ∆∗, and an initial hypotheses
(hyp01, hyp

0
2, . . . , hyp

0
n) ∈ (J ∪ {?})n.

(b) Suppose a learner M with the initial memory mem0 and the initial hy-
potheses hyp01, hyp

0
2, . . . , hyp

0
n is given. Suppose T1, T2, . . . , Tn are n texts.

Then the definition of M is extended to sequences as follows.

M(Λ,Λ, . . . ,Λ) = (mem0, hyp
0
1, hyp

0
2, . . . , hyp

0
n);

M(T1[s + 1], T2[s + 1], . . . , Tn[s + 1]) = M(mem, T1(s), T2(s), . . . , Tn(s)),
where M(T1[s], T2[s], . . . , Tn[s]) = (mem, hyp1, hyp2, . . . , hypn), for some
(hyp1, hyp2, . . . , hypn) ∈ (J ∪ {?})n and mem ∈ ∆∗.

(c) We say that M converges on T1, T2, . . . , Tn to hypotheses (β1, β2, . . . , βn) ∈
(J ∪ {?})n (written: M(T1, T2, . . . , Tn)↓hyp = (β1, β2, . . . , βn)) iff there
exists a t such that, for all t′ ≥ t,
M(T1[t′], T2[t′], . . . , Tn[t′]) ∈ ∆∗ × {(β1, β2, . . . , βn)}.

Intuitively, M(T1[s], T2[s], . . . , T2[s]) = (mem, hyp1, hyp2, . . . , hypn) means that
the memory and the hypotheses of the learner M after having seen the initial
parts T1[s], T2[s], . . . , Tn[s] of the n texts are mem and hyp1, hyp2, . . . , hypn,
respectively. We call hypi above the hypothesis of the learner on the text Ti.

We call a learner automatic if the corresponding graph of the learner is auto-
matic. That is, {conv(mem, x1, x2, . . . , xn, newmem, β1, β2, . . . , βn) : M(mem,
x1, x2, . . . , xn) = (newmem, β1, β2, . . . , βn)} is regular.

We can think of a learner as receiving the texts T1, T2, . . . , Tn one element at
a time, from each of the texts. At each input, the learner updates its previous
memory, and outputs a new conjecture (hypothesis) for each of the texts. If the
sequence of hypotheses converges to a grammar for content(T ), then we say that
the learner TxtEx-learns the corresponding text ([Gol67]). Here Ex denotes
“explains”, and Txt denotes learning from text. For parallel (m,n)-learnability,
we require that the learner converges to a correct grammar for at least m out
of the n input texts. Now we define learnability formally.

Definition 4. (Based on [Gol67, KSVW95] )
Suppose L = {Lα : α ∈ I} is a target class, and H = {Hβ : β ∈ J} is a

hypothesis space. Suppose 0 < m ≤ n.
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(a) We say that M (m,n)-TxtEx-learns the class L (using H as the hypothesis
space) iff for all n-texts T1, T2, . . . , Tn for pairwise distinct languages in L,
M(T1, T2, . . . , Tn)↓hyp = (β1, β2, . . . , βn) such that for at least m different
i ∈ {1, 2, . . . , n}, βi ∈ J and Hβi

= content(Ti).

(b) (m,n)-TxtEx = {L : (∃ learner M)[M (m,n)-TxtEx-learns L using some
H as the hypothesis space]}.

(c) We say that M (m,n)-TxtFin-learns the class L (usingH as the hypothesis
space) iff for all n-texts T1, T2, . . . , Tn for pairwise distinct languages in L,
there exists an s and β1, . . . , βn ∈ J , such that, for all s′ < s and s′′ ≥ s:
(i) M(T1[s′], T2[s′], . . . , Tn[s′]) ∈ ∆∗ × (?, ?, . . . , ?) (where there are n ? in
the above);

(ii) M(T1[s′′], T2[s′′], . . . , Tn[s′′]) ∈ ∆∗ × {(β1, β2, . . . , βn)};
(iii) for at least m pairwise distinct i ∈ {1, 2, . . . , n}; Hβi

= content(Ti).

(d) (m,n)-TxtFin = {L : (∃ learner M)[M (m,n)-TxtFin-learns L using
some H as the hypothesis space]}.

Intuitively, for (m,n)-TxtFin-learning the first conjecture of M, different
from (?, ?, . . . , ?), is such that at least m of the conjectures are correct for the
corresponding texts. Thus, we often say that the finite learner stops after out-
putting the first non (?, ?, . . . , ?) hypothesis and alternatively, say and assume
that it just repeats its hypothesis after that.

We use the terms “learning” and “identifying” as synonyms. We often refer
to (1, 1)-TxtFin-learning as just TxtFin-learning. Similar convention applies
to other criteria of learning considered in this paper.

We drop the reference to “using the hypothesis space H”, when the hypoth-
esis space is clear from the context.

For (m,n)-superTxtEx or (m,n)-superTxtFin-learnability, we require a
learner (called superlearner in this case) to also specify/mark texts which it
has learnt (at least m of them). In some sense, the learner guarantees that
the marked texts have been learnt correctly, where it marks at least m of the
texts. This can be done as follows. The learner, along with its n conjectures
(β1, β2, . . . , βn), outputs an indicator (i1, i2, . . . , in), where ij ∈ {0, 1}, 1 ≤ j ≤
n. Suppose the conjecture/indicator of the learner after having seen the input
T1[s], T2[s], . . . , Tn[s] are (βs1, β

s
2, . . . , β

s
n) and (is1, i

s
2, . . . , i

s
n), respectively. Then,

for (m,n)-superTxtEx-learning, if the n texts T1, T2, . . . , Tn given as input
are for distinct languages in the class L being learnt, we require that lims i

s
j as

well as lims β
s
j converge for each j ∈ {1, 2, . . . , n}, where for at least m different

values of j, lims i
s
j converges to 1. Furthermore, whenever lims i

s
j converges to

1, lims β
s
j converges to some βj such that Hβj

equals content(Tj). Requirements
for (m,n)-superTxtFin learning can be stated similarly, demanding that the
learner does not change its indicators/conjectures after the first time it outputs
a non (?, ?, . . . , ?) conjecture.

7



In the sequal, we do not mention indicators explicitly. Rather, we often
simply say which texts (at least m) have been specified or marked as having
been learnt correctly (or simply learnt).

When we are considering automatic learners (that is, learners, whose graphs
are regular [JLS12]), we prefix the learning criterion TxtEx or TxtFin by
Auto. For this we also require the hypothesis space used to be an automatic
family.

Trivially, (n, n)-TxtFin is the same as (n, n)-superTxtFin and (n, n)-
TxtEx is the same as (n, n)-superTxtEx. Similar results hold for learning
by automatic learners. Furthermore, every class containing < n languages is
trivially (m,n)-superTxtFin learnable (as there are no texts T1, T2, . . . , Tn for
pairwise different languages in L). Thus, in the results and discussion below,
for (m,n)-learnability, we often implicitly or explicitly only consider the cases
when L has at least n elements.

Except for automatic learners considered in Section 7 and Section 8, all
learners considered in this paper can memorize the whole input. Thus, for
such learners, for ease of notation, we usually ignore mem in the output of
M(T1[s], T2[s], . . . , T2[s]) and just consider (hyp1, hyp2, . . . , hypn) as the output
of the learner. Furthermore, for ease of notation, rather than giving the learner
as a mapping from memory and n-input elements to new memory and conjec-
ture, we often just give an informal description of the learner, where for finite
learning the learner will output only one conjecture different from (?, ?, . . . , ?).
It will be clear from the context how the formal learners can be obtained from
the description.

We now consider some useful concepts from the literature.

Definition 5. [LZ92, Muk92] We say that S is a characteristic sample for L
with respect to L iff (a) S is a finite subset of L and (b) for all L′ ∈ L, S ⊆ L′

implies L = L′.

Definition 6. [Ang80] We say that S is a tell-tale set for L with respect to L
iff (a) S is a finite subset of L and (b) for all L′ ∈ L, S ⊆ L′ implies ¬[L′ ⊂ L].

Note that L having characteristic sample with respect to L implies that L
has tell-tale set with respect to L. Also, if L ∈ L does not have a tell-tale
with respect to L, then for each finite subset S of L, there exist infinitely many
L′ ∈ L which contain S. To see this, suppose L ∈ L, S is a finite subset of L
and there are only finitely many L′ ∈ L which contain S. Then, let S′ be the
set of minimal elements in L − L′, for each of these L′. Now S ∪ S′ will be a
tell-tale set for L with respect to L.

For a given automatic family L, using Lemma 1, it is easy to see that testing
whether or not a finite set S is a characteristic sample (or a tell-tale set) of L ∈ L
with respect to the automatic family L is decidable effectively in S and index
for L. This holds, as we can express the characteristic sample (or a tell-tale set)
property as a first order formula. For example, for characteristic sample: S is
a characteristic sample for Lβ with respect to L (with index set I) iff S ⊆ Lβ
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and (∀α ∈ I)[S ⊆ Lα ⇒ (∀x ∈ Σ∗)[x ∈ Lβ ⇔ x ∈ Lα]], where it is easy to see
that subset property can be expressed as a first order formula for a fixed finite
set S.

The following lemma is used implicitly in several proofs, without explicitly
referring to it.

Lemma 7. Suppose L and a language L ∈ L are given such that L does not
have a characteristic sample with respect to L. Then, either (a) there exists
L′ ∈ L such that L ⊂ L′ or (b) for all n, there are Xn ∈ L, such that Xn are
pairwise distinct and L ∩ {x : x ≤ n} ⊆ Xn ∩ {x : x ≤ n}.

Proof. If L does not have a characteristic sample with respect to L then, for all
n, there exists a Yn ∈ L, Yn 6= L, such that L ∩ {x : x ≤ n} ⊆ Yn ∩ {x : x ≤ n}.
Fix such Yn. If some Y equals Yn for infinitely many n, then clearly this L′ = Y
satisfies (a). Otherwise, there exists a subsequence X1 = Yi1 , X2 = Yi2 , . . . of
pairwise different sets, where i1 < i2 < . . ., such that Xn’s satisfy (b).

4. (m,n)-superTxtFin-learnability

The next two theorems give a full characterization of (m,n)-superTxtFin-
learnability for large automatic classes.

Theorem 8. Suppose 0 < m ≤ n. Suppose L is an automatic family, and for
all except at most n−m L ∈ L, there exists a characteristic sample for L with
respect to L. Then L is (m,n)-superTxtFin-learnable.

Proof. Suppose L = {Lα : α ∈ I} is an automatic family, where I is a regular
index set. As L is automatic, by Lemma 1, given a finite set S and an index
α ∈ I, one can effectively check if S is a characteristic sample for Lα with
respect to L.

The desired learner M, on any input texts T1, . . . , Tn, searches for an r, a
subset X ⊆ {1, 2, . . . , n} of size m, and αi for i ∈ X such that for each i ∈ X,
content(Ti[r]), is a characteristic sample for Lαi

with respect to L (before finding
such an r, M conjectures ? for all the texts). When M finds such an r, X and
corresponding αi, i ∈ X, M conjectures hypothesis αi on Ti, i ∈ X, and specifies
them as having been learnt (the conjectures on remaining texts Ti for i 6∈ X are
irrelevant, thus these texts are specified as not learnt). It is easy to verify that
M (m,n)-superTxtFin-learns L.

The following result shows that the above result is optimal for large enough
classes of languages. For small finite classes, as illustrated by Remark 15 below,
such characterization does not hold.

Theorem 9. Suppose 0 < m ≤ n. If an automatic class L has at least 2n+1−m
languages, then (m,n)-superTxtFin-learnability of L implies there are at most
n−m languages in L which do not have a characteristic sample with respect to
L.
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Proof. Suppose, by way of contradiction, otherwise. Pick at least n −m + 1
languages in the class L which do not have a characteristic sample with respect
to L. Let these languages be A1, A1, . . . , An−m+1.

For 1 ≤ r ≤ n −m + 1, let Br ∈ L − {A1, A2, . . . , An−m+1} be a language
in L which is a superset of Ar. If there is no such language, then Br is taken
to be an arbitrary member of L−{A1, A2, . . . , An−m+1}. The Br’s may not be
different from each other.

Note that ifBr is not a superset of Ar, then by Lemma 7, there exist infinitely
many pairwise distinct languages Swr ∈ L, w ∈ Σ∗, such that each Swr contains
Ar ∩ {x : x ≤ll w}.

Now consider the behaviour of a superlearner on the texts T1, T2, . . . , Tn
for languages A1, A2, . . . , An−m+1, Cn−m+2, . . . , Cn, where Cn−m+2, . . . , Cn are
pairwise distinct members of L which are different from Ar, Br, 1 ≤ r ≤ n−m+
1. Suppose the superlearner outputs its conjecture (different from (?, ?, . . . , ?))
after seeing input T1[s], T2[s], . . . , Tn[s]. As the superlearner identifies (and spec-
ifies as identified) at least m languages, it has to specify and identify at least
one T1, T2, . . . , Tn−m+1, say Tr. Suppose content(Tr[s]) ⊆ {x : x ≤ll w} Then
one can replace Ar by Br or by an appropriate one of Sw

′

r , w′ ≥ll w, which is
not among A1, A2, . . . , An−m+1, Cn−m+2, . . . , Cn, thus making the superlearner
fail.

The following corollaries easily follow from the above two theorems.

Corollary 10. Suppose 0 < n. If an automatic class L contains at least n+ 1
languages and is (n, n)-superTxtFin-learnable, then every language in L has a
characteristic sample with respect to L and, thus, the class is TxtFin-learnable.

Corollary 11. Consider an automatic class L. L is TxtFin-learnable iff every
language in L has a characteristic sample with respect to L.

The next corollary shows that superlearnability for large enough classes can
be preserved if the number n increases or decreases, as long as the number of
errors n−m is required to remain the same.

Corollary 12. Suppose 0 < m ≤ n. Suppose L is a large enough automatic
class (that is, it contains at least 2n − m + 1 languages). Then, L is (m,n)-
superTxtFin-learnable iff it is (m+ 1, n+ 1)-superTxtFin-learnable.

On the other hand, decreasing the number n of superlearned languages while
preserving the number m of learnt languages is not always possible, as the fol-
lowing Corollary shows (it follows from Corollary 31 shown in Section 5 below).

Corollary 13. Suppose 0 < m < n. There exists an automatic class L that is
(m,n)-superTxtFin-learnable, but not (m,n− 1)-superTxtFin-learnable.

For m = 1, Theorem 9 can be strengthened to

Theorem 14. Suppose 0 < n. Suppose an automatic class L contains at least
n languages L which do not have a characteristic sample with respect to L. Then
L is not (1, n)-superTxtFin-learnable.
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Proof. Suppose A1, A2, . . . , An are n languages in L which do not have char-
acteristic samples with respect to L. Let B1, B2, . . . , Bn 6∈ {A1, A2, . . . , An}
be such that Ai ⊆ Bi — if there is no such i, then we take Bi to be arbitrary
member of L−{A1, A2, . . . , An}. Note that if Bi is not a superset of Ai, then by
Lemma 7, there exist infinitely many pairwise distinct Swi ∈ L, (where w ∈ Σ∗)
such that Swi ⊇ Ai ∩ {x : x ≤ll w}.

Now consider the behaviour of a superlearner on the texts T1, T2, . . . , Tn for
the languages A1, A2, . . . , An. Suppose the superlearner outputs its conjecture
after seeing input T1[s], T2[s], . . . , Tn[s]. Suppose the superlearner identifies (and
specifies as identified) Tr. Now suppose content(Tr[s]) ⊆ {x : x ≤ll w}. Then,
one can replace Ar by Br or by an appropriate one of Sw

′

r , w′ ≥ll w, which is
not among A1, A2, . . . , An, thus making the superlearner fail.

Note that the requirement of the class size being at least 2n−m+1 is needed
in some cases for the results above. This can be seen from the remark below.

Remark 15. Let 2 ≤ m ≤ n.
Let L2r = {a2r}, L2r+1 = {a2r, a2r+1}, for r ≤ n−m.
Let Li = {ai}, for 2n− 2m+ 2 ≤ i < 2n−m.
Let L = {Li : i < 2n−m}.
Now, L contains n−m+1 languages (L2r, for r ≤ n−m) which do not have

a characteristic sample with respect to L. However, L is (m,n)-superTxtFin-
learnable. To see (m,n)-superTxtFin-learnability, note that in any collection
of n languages from L, there can be at most n − m different s ≤ n − m such
that the collection contains L2s but not L2s+1. Note that if the collection con-
tains both L2s and L2s+1, then we can identify both of them, from texts, as
the languages given as input to (m,n)-superTxtFin-learner are supposed to be
different. Thus, one can easily (m,n)-superTxtFin-learn the class L.

Thus, now we consider finite classes (which covers also the case of classes of
size at most 2n−m) below. For these classes, we obtain a different characteri-
zation of (m,n)-TxtFin-superlearnability.

Theorem 16. Suppose 0 < m < n. Consider any finite automatic class L
of cardinality at least n. Then L is (m,n)-superTxtFin-learnable iff, for all
S ⊆ L of cardinality n, there are at most n −m languages in S which have a
superset in L − S.

Proof. Suppose there exists S ⊆ L of cardinality n such that there are n−m+1
languages in S which have a superset in L−S. Then if the learner is given texts
for the n languages in S, it must fail to super-TxtFin learn at least n−m+1 of
them (as all the languages which have supersets in L−S cannot be learnt (along
with being specified as learnt)). Thus the learner cannot (m,n)-superTxtFin-
learn L.

On the other hand, if all S ⊆ L of cardinality n have at most n−m languages
which are contained in some language in L − S, then consider the following
learner which (m,n)-superTxtFin-learns L.

11



Let S = {min(L− L′) : L,L′ ∈ L, L− L′ 6= ∅}. For L ∈ L, let SL = S ∩ L.
Note that SL is different for different L ∈ L.

On input text T1, T2, . . . , Tn, the learner keeps track of Si = S∩content(Ti),
based on the input seen so far (let Ssi denote the value of Si after having
seen the input T1[s], T2[s], . . . , Tn[s]). If and when the learner finds, for some
s, that there are n pairwise distinct languages L1, L2, . . . , Ln in L such that
Ssi = SLi , the learner outputs conjectures for Li on Ti. Moreover, it outputs
indicator 1 for exactly those texts Ti for which Li is not contained in any lan-
guage in L − {L1, L2, . . . , Ln}. It is now easy to verify that the above learner
(m,n)-superTxtFin-learns L, as there can be at most n − m languages in
{L1, L2, . . . , Ln} which have a superset in L − {L1, L2, . . . , Ln}.

Corollary 17. Suppose L has at least n+1 languages. Then, for 0 < m ≤ n, L
is (m,n)-superTxtFin learnable implies that L is (m+1, n+1)-superTxtFin-
learnable.

Proof. For infinite language classes L, Theorems 8 and 9 imply that L is (m,n)-
superTxtFin-learnable iff it is (m + 1, n + 1)-superTxtFin-learnable. For a
finite class L, suppose L is not (m + 1, n + 1)-superTxtFin-learnable. Then,
by Theorem 16 there exists a S ⊆ L of size n+ 1 which has n−m+ 1 languages
that have a superset in L − S. Let L be a language in S which is not among
these n −m + 1 languages. Note that there exists such a language as m ≥ 1.
Then S −{L} has n−m+ 1 languages which have a superset in L− (S −{L}).
This, by Theorem 16, implies that L is not (m,n)-superTxtFin-learnable.

Now we are concerned with a possibility of preserving superlearnability when
the number of errors n′ −m′ is smaller than n−m.

Corollary 18. Suppose 0 < m ≤ n and 0 < m′ ≤ n′, where n−m > n′ −m′.
Suppose r ≥ max(n, n′ + 1) (where r can be infinity). Then, there exists an
automatic class L having r languages such that it can be (m,n)-superTxtFin-
learnt but not (m′, n′)-superTxtFin-learnt.

Proof. Let L consist of languages
Lε = {ai : i ∈ N},
Lai = {ai}, for 1 ≤ i ≤ n−m, and
Lbi = {bi}, for n−m < i < r.
Then, clearly L is (m,n)-superTxtFin-learnable (as only the languages

Li, 1 ≤ i ≤ n − m do not have a characteristic sample with respect to L).
However, L is not (m′, n′)-superTxtFin-learnable as given input texts for
La1 , La2 , . . . , Lan′ , a learner must fail to TxtFin-learn (along with specifying
them as having been learnt) at least the texts corresponding to the languages
La1 , . . . , Lamin(n−m,n′) .

Note that for r = n′, the classes of size r are easily (m′, n′)-superTxtFin-
learnable. To see this, let L1, L2, . . . , Lr be the distinct languages in the class,
S = {min(Li − Lj) : 1 ≤ i, j ≤ r, Li − Lj 6= ∅}, Si = S ∩ Li. Note that
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Si is different for different values of i. Then a learner just waits until it has
seen T1[s], T2[s], . . . , Tr[s] such that there exists a permutation j1, j2, . . . , jr of
1, 2, . . . , r satisfying content(Ti[s]) ∩ S = Sji (note that the learner can eas-
ily remember the intersection of the content of each text with S). At which
point, for each i ∈ {1, 2, . . . , r}, the learner can output index for Lji on the
text Ti. Furthermore, for classes of size smaller than n, (m,n)-superTxtFin-
learnability is trivial. Thus, the above corollary handles all interesting cases
when n − m > n′ − m′. Now, the only remaining case where the separation
problem “(m,n)-superTxtFin− (m′, n′)-superTxtFin = ∅?” is not solved by
the above results is when n −m ≤ n′ −m′, and n > n′. We consider this case
now.

Proposition 19. Suppose we distribute k balls in s boxes. Suppose t ≤ s. Here
we assume k, t are finite. Let F (k, s, t) = bks c ∗ t+ max({0, t− s+ k− s ∗ bks c})
(where, F (k, s, t) = 0, for s =∞).

(a) One can select t boxes such that they contain at most F (k, s, t) balls.
(b) If one distributes the balls almost equally (that is each box gets bks c or

dks e balls, where dks e is taken to be 1 for s = ∞), then any way of selecting t
boxes contains at least F (k, s, t) balls.

Proof. The claim of the proposition is easy to see for s = ∞. So assume s is
finite. For part (a), the t boxes selected would be the ones which contain the least
number of balls. Thus the worst case happens when the balls are distributed
nearly equally. This, is done by placing bks c balls in each of the boxes, and then

placing k−s∗bks c balls in k−s∗bks c boxes. Let w = k−s∗bks c. Hence w boxes

get bks c + 1 balls and s − w boxes get bks c balls. Thus, when selecting t boxes
with the least number of balls, the number of balls we get equals F (k, s, t) =
t ∗ bks c+ max({0, t− (s−w)}), which equals t ∗ bks c+ max({0, t− s+w}).

Here, note that F (k, s, t) is monotonically non-increasing in s.
The next corollary shows that (m,n)-superlearners on automatic classes may

be stronger than (m′, n′)-superlearners if n−m ≤ n′−m′ and n > n′, and gives
conditions for the cases when such separation can be established.

Corollary 20. Suppose 0 < m ≤ n and 0 < m′ ≤ n′. Suppose, further, that
n > n′, n−m ≤ n′ −m′ and r ≥ n. Let F be as defined in Proposition 19.

(a) If n′ −m′ + 1− F (n′ −m′ + 1, r− n′, n− n′) ≤ n−m, then there exists
an automatic class L of the size r which is (m,n)-superTxtFin-learnable but
not (m′, n′)-superTxtFin-learnable.

(b) If n′−m′+1−F (n′−m′+1, r−n′, n−n′) > n−m, then every automatic
(m,n)-superTxtFin-learnable class L of the size r is (m′, n′)-superTxtFin-
learnable.

Proof. (a) Suppose n′ −m′ + 1− F (n′ −m′ + 1, r− n′, n− n′) ≤ n−m. Note
that this implies r is finite.

Let Xi, n
′ < i ≤ r be a partition of {m′,m′ + 1, . . . , n′} such that Xi’s are

of size either bn
′−m′+1
r−n′ c or dn

′−m′+1
r−n′ e.
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Let Li = {ai}, for 1 ≤ i ≤ n′.
Let Li = {bi} ∪

⋃
j∈Xi

Lj , for n′ < i ≤ r.
Let L = {Li : 1 ≤ i ≤ r}.
Intuitively, think of languages Lm′ , Lm′+1, . . . , Ln′ as balls which are placed

into the r − n′ boxes Li, n
′ < i ≤ r. The balls are distributed nearly equally

in this analogy. The bi are added just to make sure that these languages are
different from Li, 1 ≤ i ≤ n′, in case some Xi is of size 1.

Clearly, L is not (m′, n′)-superTxtFin-learnable, since, when given texts
for Li, 1 ≤ i ≤ n′ as input, the learner cannot learn (along with specifying that
they are learnt) the texts for Lm′ , Lm′+1, . . . , Ln′ .

To see that L is (m,n)-superTxtFin-learnable we proceed as follows.
Note that, if texts for any subset S of L of size n are given as input to

the learner, the worst case for learning would be when languages in L − S are
supersets of as many as possible languages in S. For this worst case, languages
in L − S would contain only languages of type Li, n

′ < i ≤ r. Thus, in this
worst case, languages in S are all the languages Li, 1 ≤ i ≤ n′ plus (n− n′) of
the languages among Li, n

′ < i ≤ r.
Now, no matter which n − n′ languages Li, n

′ < i ≤ r, are in S, using the
aforementioned balls/boxes analogy and applying Proposition 19 (b), we can
conclude that these n− n′ languages/boxes contain at least F (n′ −m′ + 1, r −
n′, n − n′) languages/balls in S. Thus, as the total number of languages/balls
contained in some other languages in L is n′ − m′ + 1, there can be at most
n′ −m′ + 1 − F (n′ −m′ + 1, r − n′, n − n′) languages in S which are properly
contained in some language in L − S. Therefore, by Theorem 16, L is (m,n)-
superTxtFin-learnable.

(b) Suppose n′−m′+ 1−F (n′−m′+ 1, r−n′, n−n′) > n−m. Suppose L
of size r is not (m′, n′)-superTxtFin-learnable. Then, by Theorem 16, there
exists a subset S of L of size n′ such that at least n′−m′+1 languages in S have
a superset in L − S. Consider the languages in S which are contained in some
language in L − S as balls, and the languages in L − S as boxes. But then, by
Proposition 19(a) one can select n−n′ languages A1, A2, . . . , An−n′ in L−S such
that they together contain at most F (n′−m′+ 1, r−n′, n−n′) languages/balls
from S. Thus, at least n′−m′+ 1−F (n′−m′+ 1, r−n′, n−n′) > n−m many
languages in S have a superset in L − S − {A1, A2, . . . , An−n′}. This would
imply by Theorem 16 that L is not (m,n)-superTxtFin-learnable.

5. (m,n)-TxtFin-learnability

Our first goal is to find a necessary condition for finite (m,n)-learnability of
large automatic classes in terms of characteristic samples. For this, we intro-
duce the concept of a cut and matching in a bipartite graph and an important
Lemma 23.

Definition 21. Suppose G = (V,E) is a bipartite graph, where V1, V2 are the
two partitions of the vertices. Then,

14



(a) Suppose V ′1 ⊆ V1 and V ′2 ⊆ V2. (V ′1 , V
′
2) is called a cut of G if G does not

contain any edges between V1 − V ′1 and V2 − V ′2 . (V ′1 , V
′
2) is called a minimum

cut, if it is a cut which minimizes card(V ′1 ∪ V ′2).
(b) E′ ⊆ E is called a matching if for all pairwise distinct edges (v, w), (v′, w′)

in E′, v 6= v′ and w 6= w′. E′ is called a maximum matching if E′ is a matching
with maximum cardinality.

Note that cuts are usually defined using edges rather than vertices, however for
our purposes it is convenient to define cut sets using vertices. We often write
a bipartite graph (V,E) as (V1, V2, E), where V1, V2 are the two partitions. For
example, consider the graph with vertices V = {a, b, c1, c2, . . . , cr, d1, d2, . . . , dk}
and edges E = {(a, d1), (a, d2), . . . , (a, dk), (c1, b), (c2, b), . . . , (cr, b)}. The min-
imum cut in the graph would be ({a}, {b}). Note also that {(a, d1), (c1, b)}
forms a maximum matching in the graph. Both minimum cut and maximum
matching have same cardinality. This is not an accident, and Lemma 23 can be
proven using the Max-Flow-Min-Cut Theorem (by adding a source node, with
edge to each vertex in V1, and a sink node, with edge from each vertex in V2).
For Max-Flow-Min-Cut Theorem and related concepts see, for example, [PS98].
We give a proof Lemma 23 for completeness. For this we need the following
technical lemma.

Lemma 22. Suppose G is a bipartite graph, where V1, V2 are two partitions of
the vertices of G. Suppose V ′1 ⊆ V1 is a finite set such that for every subset V ′′1
of V ′1 , the set of neighbours of V ′′1 is at least card(V ′′1 ). Then, there exists a
matching of size card(V ′1).

Proof. We prove this by induction on size of V ′1 , and on the number of neigh-
bours of V ′1 (for every possible graph). If card(V ′1) = 1, then the lemma is
obvious. So, for the following cases, assume card(V ′1) > 1.

Case 1: There exists V ′′1 ⊂ V ′1 such that the number of neighbours of V ′′1 is
exactly card(V ′′1 ).

In this case, clearly (a) for each subset V ′′′1 of V ′′1 , the number of neighbours
of V ′′′1 is at least card(V ′′′1 ), and (b) for each subset V ′′′1 of V ′1 − V ′′1 , there are
at least card(V ′′′1 ) neighbours of V ′′′1 which are different from the neighbours of
V ′′1 .

Thus, using induction for the two subgraphs (V ′′1 , neighbours(V
′′
1 ), E1) and

(V ′1 − V ′′1 , V2 − neighbours(V ′′1 ), E2) (where E1, E2 are the corresponding edges
for the restricted subgraphs) we can get two disjoint matchings of size card(V ′′1 )
and card(V ′1 − V ′′1 ) respectively, and thus we have a matching of size card(V ′1).

Case 2: Not Case 1.
Without loss of generality, assume that every vertex in V ′1 has a finite number

of neighbours (otherwise, we can just keep arbitrary first card(V ′1) neighbours
of any vertex in V ′1 , and ignore the rest).

Now consider any vertex v of V ′1 . Let w be a neighbour of v.
Case 2.1: Every subset V ′′1 of V ′1 has at least card(V ′′1 ) neighbours in V2,

without using the edge (v, w).
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In this case we are done by induction — by just deleting/ignoring the edge
(v, w).

Case 2.2: Not Case 2.1.
Thus, there exists a subset V ′′1 of V ′1 that has less than card(V ′′1 ) neighbours

when the edge (v, w) is not considered. This implies that v ∈ V ′′1 and V ′′1 −{v}
has exactly card(V ′′1 ) − 1 neighbours. But this violates the hypothesis of Case
2.

Lemma 23. For any bipartite graph, the size of the minimum cut is the same
as the size of the maximum matching.

Proof. Clearly, if k is the size of minimum cut, then the maximum matching
can be of size at most k, as, for a cut, one needs to pick at least one vertex
from each edge in the matching. Thus, we need to only show that there exists a
matching of size k. For this, let (V ′1 , V

′
2) be a minimum cut. We will construct

a matching of size card(V ′1 ∪ V ′2). For this, note that, for every subset V ′′1 of
V ′1 , the number of neighbours of V ′′1 in V2 − V ′2 is at least card(V ′′1 ) (otherwise,
we could replace V ′′1 by neighbours of V ′′1 in the cut, getting a cut of a smaller
size). Similarly, for every subset V ′′2 of V ′2 , the number of neighbours of V ′′2 in
V1−V ′1 is at least card(V ′′2 ). By Lemma 22, this is enough to get a matching of
size card(V ′1 ∪ V ′2).

Lemma 24. Fix some hypothesis space. Suppose pairwise distinct languages
X1, X2, . . . , Xr and pairwise distinct languages Y1, Y2, . . . , Yr are given (where
there may be some common languages between Xi’s and Yj’s) such that Xi ⊂ Yi,
for 1 ≤ i ≤ r. Furthermore suppose p1, . . . , pr are given. Then, one can define
pairwise distinct languages Ei, 1 ≤ i ≤ r such that

(a) Xi ⊆ Ei
(b) pi is not a grammar/index for Ei
(c) Ei ∈ {X1, X2, . . . , Xr, Y1, Y2, . . . , Yr}.

Proof. Without loss of generality assume that if i < j, then Xj 6⊆ Xi (otherwise
we can just reoder the Xi’s). We define Ej by induction from j = r to 1. We will
also maintain languages Y ′1 , Y

′
2 , . . ., which change over the construction. Initially,

let Y ′i = Yi for all i. We will have (by induction) the following invariants:
(i) Y ′1 , . . . , Y

′
j , Ej+1, . . . , Er are pairwise distinct and belong to {X1, X2, . . . ,

Xr, Y1, Y2, . . . , Yr},
(ii) X1, X2, . . . , Xj , Ej+1, . . . , Er are pairwise distinct,
(iii) Xi ⊂ Y ′i for 1 ≤ i ≤ j, and
(iv) pi is not a grammar/index for Ei, for j < i ≤ r.

Note that the above invariants imply that Y ′j 6= Xi, for 1 ≤ i ≤ j (as
Xi 6⊃ Xj , for 1 ≤ i ≤ j).

It is easy to verify that the induction hypotheses hold when j = r. Suppose
we have already defined Er, . . . , Ej+1; we then define Ej as follows.
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If pj is a grammar for Xj , then let Ej = Y ′j (and other values do
not change).
If pj is not a grammar for Xj , then let Ej = Xj . If one of Y ′i = Xj ,
for i < j, then replace Y ′i by Y ′j . Other variables do not change
value.

It is easy to verify that the above maintains the invariants. Now, the values of
E1, . . . , Er satisfy the requirements of the lemma.

Now we can show that the existence of characteristic samples for all the
languages in the class, except at most n− 1 ones, (where characteristic samples
are relative to the class excluding the n − 1 latter languages) is a necessary
condition for (1, n)-TxtFin-learnability. Note that this characteristic sample
condition is similar, but different from the one for (1, n)-superTxtFin-learning.

Theorem 25. Suppose L is (1, n)-TxtFin-learnable.
Then there exists a subset S of L of size at most n − 1 such that every

language in L − S has a characteristic sample with respect to L − S.

Proof. Suppose M (1, n)-TxtFin-learns L.
Let L′ = {L ∈ L : (∃ pairwise distinct SLw ∈ L for each w ∈ Σ∗)[L ∩ {x : x ≤ll
w} ⊆ SLw]}.
For each L in L′, w ∈ Σ∗, fix SLw as in the definition of L′.
Let L′′ = {L ∈ L−L′ : L does not have a characteristic sample with respect to
L − L′}.
Let L′′′ = {A ∈ L − L′ : (∃L ∈ L − L′)[L ⊂ A]}.

Claim 26. card(L′) < n.

To see the claim, suppose L′ has ≥ n languages. Then as input to M, we
can give texts T1, T2, . . . , Tn for C1, C2, . . . , Cn ∈ L′. Suppose M, after seeing
T1[m], T2[m], . . . , Tn[m], conjectures (p1, p2, . . . , pn) (different from (?, ?, . . . , ?)).
Then consider texts T ′i extending Ti[m], where T ′i is a text for Ei = SCi

ji
, for

some ji such that SCi
ji
⊇ content(Ti[m]) and (a) pi is not a grammar for SCi

ji

and (b) SCi
ji

are pairwise distinct for different i. Note that this can be easily
ensured. Then M fails on input texts being T ′1, T

′
2, . . . , T

′
n. This completes the

proof of the claim.
Suppose card(L′) = n− r.
Note that every language in L′′ has a proper superset in L′′′ and every lan-

guage in L′′′ has a proper subset in L′′. Consider the bipartite graph G formed
by having the vertex set V1 = L′′ and V2 = L′′′, and edge between (L′′, L′′′) iff
L′′ ⊂ L′′′. (If L ∈ L′′ ∩ L′′′, then for the purposes of the bipartite graph, we
consider corresponding vertex in V1 and V2 representing L as different).

Claim 27. There exists a cut of G of size at most r − 1.
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Assume by way of contradiction otherwise. Then, by Lemma 23, there ex-
ists a matching of size at least r. Let this matching be (A1, B1), . . . , (Ar, Br).
Here, each Ai ∈ L′′ and each Bi ∈ L′′′. Ai’s are pairwise distinct, Bi’s are
pairwise distinct, but Ai’s and Bj ’s might coincide with each other. Assume,
without loss of generality, that if i < j, then Aj 6⊆ Ai. Now consider giving the
learner input texts T1, T2, . . . , Tn for A1, A2, . . . , Ar, Cr+1, Cr+2, . . . , Cn, where
Cr+1, Cr+2, . . . , Cn are pairwise distinct members of L′. Suppose M outputs
a conjecture (p1, p2, . . . , pn) (which is different from (?, ?, . . . , ?)) after seeing
input T1[m], T2[m], . . . , Tn[m].

Then, define E1, . . . , Er using Lemma 24, where we take X1, . . . , Xr to be
A1, . . . , Ar and Y1, . . . , Yr to be B1, . . . , Br. Definition of Er+1, . . . , En can be
done appropriately as done in the proof of Claim 26 above when L′ was at least
n. Then, by taking T ′i to be a text extending Ti[m] for Ei, we get that M fails
to identify each T ′i . This proves the claim.

Now, it is easy to verify that taking S as L′ unioned with the cut of G as in
the claim, satisfies the requirements of the Theorem.

Note that by appropriate modification of the above proof of Theorem 25,
one can show the following more general Theorem. This can be done by first
showing, as in the proof of Claim 26, that L′ is of size less than n−m+ 1 (say,
of size n −m + 1 − r), where in the proof of the claim, besides the n −m + 1
texts for C1, C2, . . . , Cn−m+1, we take texts for m−1 arbitrary pairwise distinct
members of L−{C1, C2, . . . , Cn−m+1}). Then, one can show, as in the proof of
Claim 27, that the cut of G is of size at most r− 1, (where, in addition to texts
for A1, A2, Ar, Cr+1, . . . , Cn−m+1, we take texts for m − 1 arbitrary languages
in L−{A1, A2, . . . , Ar, B1, B2, . . . , Br, Cr+1, . . . , Cn−m+1}). Here note that the
above construction needs the size of L to be at least 2n+m− 1, as the value of
r maybe upto n−m+ 1.

Theorem 28. Suppose L is (m,n)-TxtFin-learnable and L contains at least
2n−m+ 1 languages.

Then, there exists a subset S of L of size at most n − m such that every
language in L − S has a characteristic sample with respect to L − S.

Now we show that the necessary condition of the previous Theorem is suffi-
cient for (m,n)-TxtFin-learning.

Theorem 29. Suppose L is an automatic class. Suppose 0 < m ≤ n. Suppose
there exists a subset S of L of size at most n −m such that every language in
L − S has a characteristic sample with respect to L − S. Then, L is (m,n)-
TxtFin-learnable.

Proof. Let L′ = {L ∈ L : (∃ infinitely many pairwise distinct SLw ∈ L,
w ∈ Σ∗)[L ∩ {x : x ≤ll w} ⊆ SLw]}.

Note that L′ ⊆ S, as the languages in L′ cannot have a characteristic sample
with respect to L − S. Thus, card(L′) = n− r ≤ n−m, for some r.
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Furthermore, for all L ∈ L−L′, there exists a finite subset X of L such that
there exist at most finitely many L′ ∈ L satisfying X ⊆ L′. Furthermore, none
of the members of L − L′ are contained in any member of L′.

So the learner M behaves as follows on input texts T1, T2, . . . , Tn. It first
searches for an s such that, for at least r members j of {1, 2, . . . n},

(a) content(Tj [s]) is not contained in any L in L′, and

(b) content(Tj [s]) is contained in at most finitely many of L in L.

Note that there exists such an s, and using Lemma 1, it can be effectively
found, given an automatic indexing of L and indices for members of L′. Without
loss of generality, for ease of notation, from now on we assume that these r
members are {1, 2, . . . , r}.

This gives us that the corresponding r texts T1, T2, . . . , Tr can only be for
languages from L − L′. Up to card(S) − (n − r) of these may be from S − L′,
and thus at least n− card(S) are from L − S.

Let H = {L ∈ L : (∃i : 1 ≤ i ≤ r)[content(Ti[s]) ⊆ L]}. By (b) above, H is
finite. Moreover, using Lemma 1, an index (in the automatic indexing of L) for
each of the members in H can be found effectively. Furthermore, subset relation
among the members of H can be effectively determined. Arrange elements of
H in a directed graph G, where there is an edge from L to L′ iff L ⊂ L′ and
no other L′′ ∈ H satisfies L ⊂ L′′ ⊂ L′. Note that the graph is acyclic. Also,
note that there is no path from any L ∈ L − S to another L′ ∈ L − S (as this
would imply that L ⊂ L′, and thus no characteristic sample for L with respect
to L − S would exist).

Now let s′ > s be such that

(c) for each i, 1 ≤ i ≤ r, there exists a (necessarily unique) L ∈ H such that
content(Ti[s

′]) ⊆ L but content(Ti[s
′]) 6⊆ L′ for any other L′ ∈ H which

satisfies L′ 6⊇ L — we assign Ti to the node L in the graph G in this case,
and

(d) for each node L in G, at most one Ti is assigned to L.

Note that such s′ will eventually be found as the texts T1, T2, . . . , Tr are for
different languages from H. Once such s′ is found, the learner outputs grammar
for L on Ti iff Ti is assigned to the node L. We now claim that the above learner
(m,n)-TxtFin-learns L. For this, it suffices to show that the learner is correct
on at least m of the texts T1, T2, . . . , Tr.

We will only count the correctness of the learner for languages in L − S.
Let G′ be a graph just like G, except that the texts assigned to nodes may

change — Ti is assigned to a node L iff Ti is actually a text for L. Note that
each node in G and G′ is assigned at most one text.

Note that if Ti is assigned to a node L in G, but to a node L′ in G′, then
L ⊆ L′. Now consider the texts Ti on which the learner is wrong. These texts
can be divided up into maximal chains of the form Ti1 , Ti2 , Ti3 , . . . , Tij−1

, where
(i) Tis is assigned to Ais in G and Ais+1

(which represented content(Tis)) in
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G′, (ii) Ais ⊂ Ais+1 , for 1 ≤ s < j, (iii) no text is assigned to Ai1 in G′ and
no text is assigned to Aij in G, and (iv) the different maximal chains as above
do not have any texts/nodes in the graph in common. Thus, we can consider
such maximal chains independently for error computation: each of these chains
Ai1 ⊂ Ai2 ⊂ . . . ⊂ Aij has at most one member from L − S (since members
of L − S are pairwise not included in each other), and thus contain at least
j − 1 members from S − L′. Thus, the learner fails on at most card(S − L′)
texts among T1, T2, . . . , Tr. It follows that the learner is correct on at least
r − card(S − L′) many texts from T1, T2, . . . , Tr. As the size of S is at most
n −m and card(L′) = n − r, the learner must be correct on at least m input
texts.

The following corollaries, solving the questions of relationships between
(n,m)-TxtFin-learnability and (n′,m′)-TxtFin-learnability for the cases when
the difference n − m = n′ − m′ and n − m > n′ − m′, easily follow from the
above two theorems.

Corollary 30. Suppose 0 < m ≤ n. Suppose L is a large enough automatic
class (that is, it contains at least 2n + m − 1 languages). Then, L is (m,n)-
TxtFin-learnable iff it is (m+ 1, n+ 1)-TxtFin-learnable.

Corollary 31. Suppose 0 < m < n. There exists an automatic class L that is
(m,n)-superTxtFin-learnable, but not (m,n− 1)-TxtFin-learnable.

Proof. Let L consist of the languages
Lai = {ai}, for i > 0;
Lbi = {ai, bi}, for 1 ≤ i ≤ n−m.
Let S = {Lai : 1 ≤ i ≤ n − m}. Then every language in L − S has a

characteristic sample with respect to L. Thus, it follows from Theorem 8 that L
is (m,n)-superTxtFin-learnable. However, by Theorem 28, L is not (m,n−1)-
TxtFin-learnable. To see this, note that for any S ′, for every language in L−S ′
to have a characteristic sample with respect to L−S ′, S ′ must contain at least
one of Lai and Lbi , for each i with 1 ≤ i ≤ n−m, and, thus, cannot be of the
size at most n− 1−m.

The next corollary shows that the (m,n)-superTxtFin-learnability is weaker
than (m,n)-TxtFin-learnability, even if the TxtFin-learner is allowed to make
just one error.

Corollary 32. There exists a class L which is (n− 1, n)-TxtFin-learnable for
all n ≥ 2, but not (m,n)-superTxtFin-learnable for any m,n with 0 < m ≤ n.

Proof. Let Σ = {a}, and consider Lε = Σ∗, Lai+1 = {ai} and L = {Lai :
i ∈ N}. Then, by Theorem 29, for all n ≥ 2, L ∈ (n − 1, n)-TxtFin as each
Lai+1 has the characteristic sample {ai} with respect to L−{Lε}. On the other
hand, as none of Lai+1 have a characteristic sample with respect to L, L is not
(m,n)-superTxtFin-learnable, by Theorem 9.
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Note that Theorem 28 and thus Corollary 30 needed the classes to be large
enough (of size at least 2n−m+ 1). We now address the case when the classes
might be small.

The following theorem suggests certain characterization of small (m,n)-
TxtFin-learnable classes.

Theorem 33. Suppose 0 < m < n. Consider any finite automatic class L of
cardinality at least n. Then, L is (m,n)-TxtFin-learnable iff for every S ⊆ L
of size n, for every r ≥ n−m+1 and for every subset S ′ = {X1, X2, . . . , Xr} of
S of size r, there does not exist a subset S ′′ = {Y1, Y2, . . . , Yr} of ((L−S)∪S ′),
of size r such that Xi ⊂ Yi for 1 ≤ i ≤ r.

Proof. Suppose there exist S of size n, r ≥ n−m+1, S ′ = {X1, X2, . . . , Xr} ⊆
S and S ′′ = {Y1, Y2, . . . , Yr} ⊆ (L − S) ∪ S ′ such that Xi ⊂ Yi, where Xi’s are
pairwise different and Yi’s are pairwise different. Then, we show that L cannot
be (m,n)-TxtFin-learnt. Suppose any learner M is given. Suppose we give
texts T1, T2, . . . , Tn for X1, X2, . . . , Xr, Zr+1, . . . , Zn to M, where Zr+1, . . . , Zn
are the pairwise different members of S − S ′. Suppose the learner outputs
conjectures p1, p2, . . . , pn on the above texts after seeing T1[s], T2[s], . . . , Tn[s].

Without loss of generality assume that Lj 6⊆ Li, for 1 ≤ i < j ≤ r. Let
E1, E2, . . . , Er be as given by Lemma 24.

Now, for 1 ≤ i ≤ r, let T ′i be a text for Ei such that T ′i extends Ti[s]. Then,
M fails to learn the texts T ′1, T

′
2, . . . , T

′
r when given (T ′1, T

′
2, . . . , T

′
r, Tr+1, . . . , Tn)

as input. Thus, L cannot be (m,n)-TxtFin-learnt.
On the other hand, suppose for every S ⊆ L of size n, for every r ≥ n−m+1

and for every subset S ′ = {X1, X2, . . . , Xr} of S of size r, there does not exist
a subset S ′′ = {Y1, Y2, . . . , Yr} of ((L− S) ∪ S ′), of size r such that Xi ⊂ Yi for
1 ≤ i ≤ r. Then, we claim that L is (m,n)-TxtFin-learnable. For this consider
the following learner which (m,n)-TxtFin-learns L.

Let S = {min(L− L′) : L,L′ ∈ L, L− L′ 6= ∅}. For L ∈ L, let SL = S ∩ L.
On input texts T1, T2, . . . , Tn, the learner keeps track of Si = S∩content(Ti),

based on the input seen so far (let Ssi denote the value of Si after having seen
input T1[s], T2[s], . . . , Tn[s])). If and when the learner finds, for some s, that
there are n pairwise distinct languages L1, L2, . . . , Ln in L such that Ssi = SLi

,
the learner outputs conjectures for Li on Ti. Now, for M to make an error
in learning Ti, Ti should be a text for some superset of Li. Suppose S =
{L1, L2, . . . , Ln}, and S ′ is the subset of S on which the above learner made
errors. Then, if S ′ = {X1, X2, . . . , Xr} is of size r > n −m, then there must
exist some subset S ′′ = {Y1, Y2, . . . , Yr} of ((L−S)∪S ′), of size r, with Xi ⊂ Yi
for 1 ≤ i ≤ r. However, by the hypothesis, such an S ′ does not exist. Thus, the
learner (m,n)-TxtFin-learns L.

Here note that the hypothesis in the statement of Theorem 33, implies that
each Xi is properly in some Yj which belongs to L − S. This can be seen by
considering any maximal subset chain among Xi’s: if Xi1 ⊂ Xi2 ⊂ . . . ⊂ Xir

is a maximal subset chain, then all these languages are contained in Yir which
is in L − S. In other words, we can consider X1, X2, . . . , Xr to be divided into

21



maximal subset chains (with no common language between different chains),
where each chain is properly contained in some member Y ∈ L − S (where the
Y ’s are pairwise different for different maximal chains).

The following corollaries give relationships between (m,n)-TxtFin-learners
for different parameters m and n when the learnable classes are small.

Corollary 34. Suppose L is a finite automatic class that has at least n + 1
languages. Then, for 0 < m ≤ n, L is (m,n)-TxtFin learnable implies that L
is (m+ 1, n+ 1)-TxtFin-learnable.

Proof. If L is not (m+ 1, n+ 1)-TxtFin-learnable, then by Theorem 33 there
exist S ⊆ L of size ≥ n + 1, S ′ = {X1, X2, . . .} ⊆ S of size at least n −m + 1
and S ′′ = {Y1, Y2, . . .} ⊆ (L − S) ∪ S ′ of the same size as S ′, where Xi ⊂ Yi,
for each i. Then, if S 6= S ′, by removing one member from S not belonging to
S ′, and using S ′,S ′′ as witnesses in Theorem 33, we get that L is not (m,n)-
TxtFin-learnable. In the case S = S ′, we could just remove some minimal
member (subset wise) from S,S ′ to get the result.

Corollary 35. Suppose 0 < m ≤ n and 0 < m′ ≤ n′, where n−m > n′ −m′.
Suppose r ≥ max(n, n′ + 1) (where r can be infinity). Then there exists an
automatic class L having r languages such that L can be (m,n)-superTxtFin-
learnt, but not (m′, n′)-TxtFin-learnt.

Proof. Let L consist of the languages
Lε = {ai : i ∈ N},
Lai = {aj : 1 ≤ j ≤ i}, for 1 ≤ i ≤ n−m, and
Lbi = {bi}, for n−m < i < r.
Then, clearly L is (m,n)-superTxtFin-learnable (as only the languages Li,

1 ≤ i ≤ n−m do not have a characteristic sample with respect to L). However,
L is not (m′, n′)-TxtFin-learnable as for S = {La1 , La2 , . . . , Lamin(n−m,n′)}, one
can choose Xi = Lai , for 1 ≤ i ≤ min(n − m,n′), Yi = Xi+1, for 1 ≤ i <
min(n−m,n′), and Ymin(n−m,n′) = Lε. Then, by Theorem 33, L is not (m′, n′)-

TxtFin-learnable.

As we already noted, for r = n′, the classes of size r are easily seen to be
(m′, n′)-superTxtFin-learnable, and for classes of size smaller than n, (m,n)-
superTxtFin-learnability is also trivial. Obviously, the same applies to (m,n)-
TxtFin-learnability. Thus, the above corollary handles all interesting cases
when n − m > n′ − m′. Now, the only remaining case where the separation
problem “(m,n)-TxtFin− (m′n′)-TxtFin = ∅?” is not solved by above results
is when n−m ≤ n′ −m′, and n > n′. We consider this case now.

Corollary 36. Suppose 0 < m ≤ n, 0 < m′ ≤ n′. Suppose, further, that
n > n′, n−m ≤ n′ −m′ and r ≥ n. Let F be as defined in Proposition 19.

(a) If n′ −m′ + 1− F (n′ −m′ + 1, r− n′, n− n′) ≤ n−m, then there exists
an automatic class of size r which is (m,n)-superTxtFin-learnable but not
(m′, n′)-TxtFin-learnable.
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(b) If n′−m′+1−F (n′−m′+1, r−n′, n−n′) > n−m, then every automatic
(m,n)-TxtFin-learnable class L of size r is (m′, n′)-TxtFin-learnable.

Proof. (a) Suppose n′−m′+1−F (n′−m′+1, r−n′, n−n′) ≤ n−m. Note that
this implies r is finite. Let Zi, n

′ < i ≤ r be a partition of {m′,m′ + 1, . . . , n′}
such that Zi’s are of size either bn

′−m′+1
r−n′ c or dn

′−m′+1
r−n′ e.

For 1 ≤ i < m′, let Li = {ai}.
For m′ ≤ i ≤ n′, let Li = {aj : j ≤ i and i, j belong to the same partition in
the above partitioning of {m′,m′ + 1, . . . , n′}}.
For n′ < i ≤ r, let Li = {bi} ∪

⋃
j∈Zi

Lj , Note that Li = {bi} ∪ {aj : j ∈ Zi},
for n′ < i ≤ r.

Intuitively, think of Li, i ∈ {m′,m′+1, . . . , n′} as balls and Li, n
′ < i ≤ r as

boxes. The languages with indices in Zi form a subset chain with Li, n
′ < i ≤ r,

containing all the languages Lj , j ∈ Zi.
Let L = {Li : 1 ≤ i ≤ r}.
Now, L is not (m′, n′)-TxtFin-learnable. To see this, choose S to be

{L1, L2, . . . , Ln′}, S ′ to be {Lm′ , Lm′+1, . . . , Ln′}, and Xk, Yk, for m′ ≤ k ≤ n′

as follows:
Xk = Lk, for m′ ≤ k ≤ n′;
Yk = Li, if k is the maximum element in the partition Zi;
Yk = Lj , if k ∈ Zi, and j is the least element in Zi which is larger than k.
Then, by Theorem 33 it follows that L 6∈ (m′, n′)-TxtFin.
To see that L is (m,n)-superTxtFin-learnable we proceed as follows. Sup-

pose S is a set of n languages whose texts are given to the learner as input. The
worst case for the learner would be when there are as many languages as possible,
X1, X2, . . . , Xp, such that for some Y1, Y2, . . . , Yp in L − S ∪ {X1, X2, . . . , Xp},
Xq ⊂ Yq. We could think of these Xi/Yi as forming disjoint subset chains, where
the last member of each subset chain is from L− S and the other members are
from X1, X2, . . . , Xp. Thus, we can think of this as balls being placed in boxes
based on the analogy above.

In the discussed worst case, for a subset S of L of size n, languages in S are
all the languages Li, 1 ≤ i ≤ n′ plus n−n′ of the languages among Li, n

′ < i ≤ r.
Now, using the above balls/boxes analogy, with n − n′ boxes in S, we can

apply Proposition 19(b). Thus, as the total number of balls is n′ − m′ + 1,
there can be at most n′ −m′ + 1 − F (n′ −m′ + 1, r − n′, n − n′) languages in
S which are contained in some language in L − S. Thus, by Theorem 16, L is
(m,n)-superTxtFin-learnable.

(b) Suppose n′−m′+ 1−F (n′−m′+ 1, r−n′, n−n′) > n−m. Suppose L
of size r is not (m′, n′)-TxtFin-learnable. Then, by Theorem 33, there exists
a subset S of L of size n′ such that at least n′ − m′ + 1 languages in S can
be arranged in pairwise disjoint maximal subset chains such that each chain
has a distinct superset in L − S. We can think of the members of these subset
chains as balls and the corresponding supersets in L−S as boxes. But then, by
Proposition 19(a) one can select n − n′ languages A1, A2, . . . , An−n′ in L − S
such that there are pairwise distinct languages in L − S − {A1, A2, . . . , An−n′}
which are supersets of pairwise distinct subset chains containing in total at least
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n′−m′+ 1−F (n′−m′+ 1, r−n′, n−n′) > n−m many languages in S (where
the different chains have pairwise different supersets). This would imply by,
Theorem 33, that L is not (m,n)-TxtFin-learnable.

6. (m,n)-TxtEx-learning

In this section we consider (m,n)-learning of automatic classes in the limit.
Note that any finite automatic class of languages can be easily TxtEx-learnt

and thus (m,n)-TxtEx-learnt. Thus, for the following we will assume that the
classes under consideration are infinite. For the rest of this section, we assume
that the hypothesis spaces are always automatic.

We will give a characterization of (m,n)-TxtEx-learning in terms of exis-
tence of tell-tale sets. We also show that the number of languages learnable in
parallel can be increased or decreased when n − m, the number of languages
which may be erroneously identified, remains the same. It will also follow from
our characterization that, for (m,n)-learnability in the limit, superlearnability
and learnability have the same power.

Definition 37. (Based on [BB75, Ful90]) (σ1, σ2, . . . , σn) (each of same length)
is called a stabilizing sequence for M on (L1, L2, . . . , Ln) iff

(a) for each i, content(σi) ⊆ Li.
(b) for all τ1, τ2, . . . , τn of same length such that σi ⊆ τi and content(τi) ⊆

Li, and hypotheses output by M(σ1, σ2, . . . , σn) is same as the corresonding
hypotheses output by M(τ1, τ2, . . . , τn).

Suppose M(σ1, σ2, . . . , σn)↓hyp = (g1, g2, . . . , gn). If, additionally, for at
least m different i ∈ {1, 2, . . . , n}, gi is an index for Li (in the hypothesis
space used by M), then (σ1, σ2, . . . , σn) is called a locking sequence for M on
(L1, L2, . . . , Ln).

Lemma 38. (Based on [BB75]) If M (m,n)-TxtEx-identifies L, and L1, L2,
. . . , Ln are pairwise distinct members of L, then there exists a (m,n)-TxtEx-
locking sequence for M on each (L1, L2, . . . , Ln).

The following two theorems represent a generalization of the result of [JLS12]
that an automatic class L is TxtEx-learnable iff every language in L has a tell-
tale set with respect to L (see also Angluin [Ang80]).

Theorem 39. Suppose 0 < m ≤ n. Suppose L is an automatic class. If L has
at most n−m languages which do not have a tell-tale set with respect to L then
L is (m,n)-superTxtEx-learnable.

Proof. Suppose L = {Lα : α ∈ I}, where I is a regular index set and the
alphabet set is Σ. For α ∈ I, if Lα has a tell-tale set with respect to L, then let
bα be length-lexicographically least element in Σ∗ such that Lα ∩ {x : x ≤ll bα}
is a tell-tale set for Lα; otherwise bα is a special symbol #. Note that, by
Lemma 1, such bα can be obtained effectively from α for automatic families.
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Now the learner M on input texts T1, T2, . . . , Tn behaves as follows. It
searches for an r, a subset X of {1, 2, . . . , n} of cardinality m, and αi for each
i ∈ X such that

(a) bαi
6= # and

(b) for each i ∈ X, content(Ti) ⊆ Lαi
and content(Ti[r]) contains Lαi

∩ {x :
x ≤ll bαi}.

In this case M outputs (in the limit) αi on Ti and indicates it as being
learnt. Conjectures on other texts are irrelevant and they are specified as not
being learnt.

Note that if the texts T1, T2, . . . , Tn are indeed for n pairwise distinct lan-
guages in L, then r, X and αi, i ∈ X as above will exist and can be found in
the limit. Thus, the above learner will succeed to (m,n)-superTxtEx-learn
L.

Theorem 40. Suppose 0 < m ≤ n. Suppose L is an automatic class. If L has
at least n−m+ 1 languages which do not have a tell-tale set with respect to L,
then L is not (m,n)-TxtEx-learnable.

Proof. Suppose, by way of contradiction, that M (m,n)-TxtEx-learns the
class L. Let L1, L2, . . . , Ln−m+1 be n − m + 1 languages in L which do not
have a tell-tale set with respect to L. Let Ln−m+2, . . . , Ln be pairwise distinct
languages in L − {L1, L2, . . . , Ln−m+1}.

As M (m,n)-TxtEx-learns L, there must be a stabilizing sequence for M
on L1, L2, . . . , Ln. Suppose the stabilizing sequence was (σ1, σ2, . . . , σn) (each
should be of same length). Let g1, g2, . . . , gn be the grammar output by M on
input (σ1, σ2, . . . , σn) Then, for 1 ≤ i ≤ n −m + 1, let Ti be texts extending
σi for pairwise distinct languages L′i in L − {L1, L2, . . . , Ln−m+1, . . . , Ln} such
that gi is not a grammar for L′i. Note that there exist such pairwise distinct
languages in L as L1, L2, . . . , Ln−m+1 do not have a tell-tale set with respect to
L. Thus, we have that M fails on all of Ti, 1 ≤ i ≤ n −m + 1. Thus, M does
not (m,n)-TxtEx-learn L.

The following corollaries follow from the above Theorems 39 and 40.

Corollary 41. Suppose 0 < m ≤ n. If L is an automatic class which is (m,n)-
TxtEx-learnable then L is (m,n)-superTxtEx-learnable.

Corollary 42. Suppose 0 < m ≤ n. Suppose L is an automatic class. Then,
L is (m,n)-TxtEx-learnable iff it is (m+ 1, n+ 1)-TxtEx-learnable.

Corollary 43. Suppose 0 < n. (n, n)-TxtEx = (1, 1)-TxtEx = TxtEx.

Theorem 44. Suppose 0 < n. There exists an automatic class L which can be
(1, n+ 1)-superTxtEx-learnt but not (1, n)-TxtEx-learnt.

Proof. Suppose x, z ∈ Σ∗. Let Lx,ε = {conv(x, y) : y ∈ Σ∗}. Let Lx,z =
{conv(x, y) : y ≤ll z}, for z 6= ε.
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Let S ⊆ Σ∗ be a set of cardinality n. Let L = {Lx,z : z ∈ Σ∗, x ∈ S}. Then,
it is easy to verify that L can be (1, n+ 1)-TxtEx-learnt. To see this, note that
for n+ 1 texts T1, T2, . . . , Tn+1, for different languages from L, at least one text
must be for Lx,z, for some x ∈ S, z ∈ Σ∗ − {ε}. Then the TxtEx-learner can
algorithmically search for one such x, z and in the limit identify that text (along
with specifying that text as having been identified) and output arbitrary fixed
conjectures on the other texts in the limit.

Using an argument from Gold [Gol67] we show that L cannot be (1, n)-
TxtEx-learnt by a learner M: Otherwise, there will be some locking sequence
(σx1

, σx2
, . . . , σxn

), for M on languages (Lx1,ε, Lx2,ε, . . . , Lxn,ε) (here x1, x2, . . . ,
xn are the different members of S). Suppose the grammars to which M con-
verges on (σx1 , . . . , σxn) is gx1 , . . . , gxn . Then, let w be length-lexicographically
largest element such that conv(x,w) appears in σx, for some x. Let w′ ≥ll w
be such that none of the grammars gxi

are for Lxi,w′ . Then the learner fails if
the input texts are for Lxi,w′ , which extend σxi

.

Corollary 45. For 0 < m ≤ n, there exists an automatic class L such that L
can be (m,n+ 1)-TxtEx-learnt but not (m,n)-TxtEx-learnt.

Theorem 46. Suppose L is an automatic class and S is a finite subset of L
such that for all L ∈ L−S, L has a characteristic sample with respect to L−S.
Then L is TxtEx-learnable.

Proof. We show that each L ∈ S has a tell-tale set with respect to L. This
would imply that every language in L has a tell-tale set with respect to L and
thus, by [JLS12], L is TxtEx-learnable.

To see this, consider any L ∈ S. Let A be a finite subset of L such that for
all L′ ∈ S − {L}, A ⊆ L′ implies L ⊆ L′. Note that there exists such an A as S
is finite. If there is no L′′ ∈ L−S such that L′′ ⊂ L, then clearly A is a tell-tale
set for L with respect to L. So suppose there exists an L′′ ∈ L − S such that
L′′ ⊆ L. Let A′′ be characteristic subset of L′′ with respect to L− S. Let x be
a member of L − L′′, if any (otherwise, x can be an arbitrary member of L).
Then A ∪ A′′ ∪ {x} is a tell-tale set for L with respect to L, as no language in
L − S − {L′′}, by the definition of characteristic sample, contains A′′.

Corollary 47. Suppose L is an automatic class and S is a finite subset of L
such that for all L ∈ L−S, L has a characteristic sample with respect to L−S.
Suppose 0 < n. Then L is (n, n)-superTxtEx-learnable.

Corollary 48. (1, n)-TxtFin ⊆ TxtEx.

7. Automatic (m,n)-Finite Learning

In this section, we consider finite (m,n)-learning by finite automata. For
finite automatic classes, (m,n)-superAutoTxtFin and (m,n)-AutoTxtFin
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are same as (m,n)-superTxtFin and (m,n)-TxtFin, respectively. This follows
from the proofs of Theorem 16 and 33, as the positive side in those results can
be easily implemented using automatic learners.

Theorem 49. Suppose L is an automatic finite class. Then,
(a) L is (m,n)-TxtFin-learnable implies L is (m,n)-AutoTxtFin-learnable.
(b) L is (m,n)-superTxtFin-learnable implies L is (m,n)-superAutoTxtFin-
learnable.

Note that, for automatic learnability, the characterization results (in terms
of characteristic samples) of Sections 4 and 5 do not hold. This is illustrated by
the following result, based on techniques from [JLS12].

Theorem 50. [JLS12] Let Σ = {a, b}. L = {L : (∃n)(∃x ∈ Σn)[L = Σn −
{x}]}. Then L is not AutoTxtEx-learnable.

Note that every language in the class L above has a characteristic sample
(the language itself) with respect to L. The proof for the above theorem can
be generalized to show that L is not (1, k)-AutoTxtEx-learnable. To see this,
suppose, by way of contradiction, that M (1, k)-AutoTxtEx-learns L. Let n
be large enough. Partition Σn into k + 1 groups S1, S2, . . . , Sk+1 of roughly
equal size (their sizes being either b 2

n

k c or d 2
n

k e). Now, we claim that there

exist σji , τ
j
i , for 1 ≤ i ≤ k, 1 ≤ j ≤ k such that

(a) σji = τ ji = #n for i 6= j;
(b) |σii | = |τ ii | = n and content(σii) 6= content(τ ii ) and each contain n ele-

ments from Si;
(c) Let γji = σ1

i σ
2
i . . . σ

j
i , for 1 ≤ i, j ≤ n. Then, M(γi1, γ

i
2, . . . , γ

i
i−1, γ

i−1
i σii ,

γii+1, . . . , γ
i
k) = M(γi1, γ

i
2, . . . , γ

i
i−1, γ

i−1
i τ ii , γ

i
i+1, . . . , γ

i
k), for 1 ≤ i ≤ k.

Note that there exist such σii , τ
i
i as needed in parts (b), (c). The claim is

true, as the memory of the automatic learner after having seen such σii , τ
i
i can

be of at most O(n) bits (as an automatic learner, after seeing O(n) data items
of length ≤ n, can have memory of the length at most O(n)) though the number

of possibilities for such σii/τ
i
i is approximately

(
2n/k
n

)
. Now, let xi, yi be such

that xi ∈ content(σii) − content(τ ii ) and yi ∈ content(τ ii ) − content(σii). Let Ti
be a text for Σn − {xi, yi}. Then M can be made to fail by considering M’s
behaviour on the k texts: T ′i = γki Ti, where its limiting behaviour does not
change if one replaces, for some i’s, σii by τ ii in T ′i . Thus, we can make M fail
on each of the k-inputs T ′i by appropriately replacing or not replacing σii by τ ii .

In the sequel, without loss of generality, assume that all languages have at
most one grammar in the hypothesis space (which is automatic). So below
equality of languages is equivalent to grammars being the same.

Our next goal is to show that, for large enough automatic classes, automatic
finite (m+ 1, n+ 1)-learnability implies automatic finite (m,n)-learnability. We
begin with a technical lemma.

Lemma 51. Given k, n > 0, there exists a number rk,n such that the following
holds.
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Suppose we are given conjectures (pi1, p
i
2, . . . , p

i
n), for 1 ≤ i ≤ rk,n.

Then, for some S ⊆ {1, 2, . . . , rk,n} of size at least k, and for some p1, p2, . . . ,
pn, we have, for all j ∈ {1, 2, . . . , n}, either

(a) for all i ∈ S, pij = pj, or

(b) for all distinct i, i′ ∈ S, pij 6= pi
′

j ,

where pj’s can be computed automatically from the different pir’s. (Note that
pj for j satisfying (b) above can be arbitrary).

Proof. We will define rk,n by induction on n.
Case 1: n = 1.
For this, we can take rk,1 = (k − 1)2 + 1.
If {pi1 : 1 ≤ i ≤ rk,1} has at least k elements, then (b) can be satisfied.

Otherwise, by pigeonhole principle, there exists a p1 such that for k different
i’s, pi1 = p1.

Case 2: n > 1.
For this, we can take rk,n = (rk,n−1 − 1)2 + 1.
If {pi1 : 1 ≤ i ≤ rk,n} has at least rk,n−1 elements, then we can satisfy the

lemma by induction. Otherwise, by pigeonhole principle, there exists a p1 such
that for rk,n−1 different i’s in {1, 2, . . . , rk,n}, pi1 = p1. Then, again, we can
satisfy the lemma by induction.

Theorem 52. Let 0 < m ≤ n. Suppose L is an infinite automatic class which
is (m + 1, n + 1)-AutoTxtFin-learnable. Then L is (m,n)-AutoTxtFin-
learnable.

Proof. Suppose M (m + 1, n + 1)-AutoTxtFin-learns L. Consider a learner
M′ (which will (m,n)-AutoTxtFin-learn L) defined as follows. Suppose input
texts for M′ are T1, T2, . . . , Tn, for pairwise different languages in L. Let k =
n(n+2). Let X1, X2, . . . , Xrk,n+n, be rk,n+n pairwise different languages from
L. Let Tn+i be a text for Xi. (Note: We need some automaticity here. So we
assume Tn+i(t) = xt if xt ∈ Xi; otherwise Tn+i(t) = #, where x0, x1, . . . is a
length-lexicographic ordering of elements of Σ∗. Furthermore, we assume that
the learner, after having seen Tn+i[t+1], remembers xt, in addition to any other
items, in its memory so that it can compute xt+1.)

Run M on (T1, T2, . . . , Tn, Tn+i), for 1 ≤ i ≤ rk,n+n. Note that, for at most
n of these values of i, hypothesis of M may converge to (?, ?, . . . , ?) (since one
of the texts T1, T2, . . . , Tn may be a text for an Xi). So consider the first rk,n
of the i’s in {1, 2, . . . , rk,n + n} on which the learner M outputs a hypothesis
different from (?, ?, . . . , ?). Without loss of generality, assume that these i’s
are 1, 2, . . . , rk,n. Let the corresponding grammars/indices being output on the
texts Tj , 1 ≤ j ≤ n, be pij . Now using Lemma 51, we can automatically
obtain grammar/index pj , 1 ≤ j ≤ n satisfying (a) or (b) in the statement of
Lemma 51, for some S ⊆ {i : 1 ≤ i ≤ rk,n} of size k. The (final) output of M′

on T1, T2, . . . , Tn, will then be (p1, p2, . . . , pn) (before M′ determines these pi’s,
its output will be (?, ?, . . . , ?)). Thus, there exists an i ∈ S such that:
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(1) for at leastmmany j ∈ {1, 2, . . . , n}, pij is a grammar/index for content(Tj),

(2) for none of the j satisfying (b) in the statement of Lemma 51, pij is a
grammar/index for content(Tj).

The above holds, as there are at most n many different i’s in S which do not
satisfy (1), and there are at most n many i’s in S, for which some j satisfying
(b) in the statement of Lemma 51 also satisfies that pij is a grammar/index for
Tj .

Fix an i satisfying (1) and (2) above. It follows that there are at least m
different j ∈ {1, 2, . . . , n}, for which the pij ’s are grammar/index for content(Tj).

As these j’s all satisfy (a) in the statement of Lemma 51, we have pij = pj .

Hence, M′ (m,n)-AutoTxtFin-learns L.

Remark 53. Suppose 0 < m ≤ n, L is finite and contains at least 2n+ 2−m
languages, and L is (m+ 1, n+ 1)-AutoTxtFin-learnable. Then, L is (m,n)-
AutoTxtFin-learnable. This holds, as by Theorem 28 and Theorem 29, L is
(m,n)-TxtFin-learnable and thus by Theorem 49, L is (m,n)-AutoTxtFin-
learnable.

We have not been able to prove that (m,n)-AutoTxtFin-learnability im-
plies (m + 1, n + 1)-AutoTxtFin-learnability (for infinite automatic classes).
Yet, we can show that (m,n)-AutoTxtFin-learnability does not imply (m,n−
1)-TxtFin-learnability.

Proposition 54. Suppose r ≥ 1. Let Lai = {ai}, Let Lbi = {bi}, and Lci =
{bi, ci}.

Let L = {Lai : i ≥ 1} ∪ {Lbi : 1 ≤ i ≤ r} ∪ {Lci : 1 ≤ i ≤ r}.
Then, for m ≥ 1, L is (m,m + r)-superAutoTxtFin-learnable, but not

(m,m+ r − 1)-TxtFin-learnable.

Proof. An automatic learner waits until it sees that at least m of the input
texts contain either a string in a+ or c+. Then, it can easily identify these input
texts (assuming they are for languages in L).
L 6∈ (m,m+ r − 1)-TxtFin follows from Theorem 28.

Corollary 55. For all m,n such that 0 < m ≤ n − 1, there exists an au-
tomatic family which can be (m,n)-AutoTxtFin-learnt but not (m,n − 1)-
AutoTxtFin-learnt.

As the following two theorems show, for superAutoTxtFin-learning of
large enough classes, (m,n)-learnability implies (m+ 1, n+ 1)-learnability, and
vice versa.

Theorem 56. Suppose 0 < m ≤ n. Suppose L is an automatic (m+ 1, n+ 1)-
superAutoTxtFin-learnable class containing at least 2n − m + 1 languages.
Then, L is (m,n)-superAutoTxtFin-learnable.
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Proof. If L is finite, then this follows from Corollary 12 and Theorem 49. If L is
infinite, then let L1, L2, . . . , Lr be r distinct languages in L, where r = n2+n+1.
Let Tn+i be an automatic text for Li

2.
Let M be an automatic learner which (m + 1, n + 1)-superAutoTxtFin-

learns L. Now consider a learner M′ which on input texts T1, T2, . . . , Tn simu-
lates M on input T1, T2, . . . , Tn, Tk, for n+ 1 ≤ k ≤ n+ r, memorizing the con-
jectures made, if any, for each of these k until it finds a subset X of {1, 2, . . . , n}
of size m along with pj for each j ∈ X such that

(a) for each j ∈ X, for at least n + 1 different values of k ∈ {n + 1, n +
2, . . . , n+ r}, M’s conjecture on input T1, T2, . . . , Tn, Tk is pj on Tj along with
Tj being specified as having been learnt.

If and when such X (and corresponding pj for j ∈ X) is found, M′ outputs
conjectures pj on Tj for j ∈ X, along with specifying it as being learnt. Con-
jectures of M′ on the remaining texts are irrelevant (with them being specified
as not having been learnt). Note that an automatic learner can memorize all
the conjectures as above, and can test for existence of appropriate X and pj as
above.

Note that if such X and corresponding pj are found, then clearly pj must be
a correct grammar for content(Tj), as at most n of the k ∈ {n+1, n+2, . . . , n+r}
can be spoiled due to Tk being a text for content(Ti), for some i ∈ {1, 2, . . . , n}.
Thus, it suffices to argue that there will exist such X and corresponding pj for
j ∈ X. For this, we argue as follows.

(b) There can be at most n values of k ∈ {n+ 1, n+ 2, . . . , n+ r}) such that
one of Ti, 1 ≤ i ≤ n is a text for Lk (thus spoiling the corresponding output
conjectures, if any, of M on input T1, T2, . . . , Tn, Tk); Let Z be the set of values
of such k ∈ {n+ 1, n+ 2, . . . , n+ r}.

(c) Let X ′ be the set of numbers j ∈ {1, 2, . . . , n} such that Tj is specified
as being learnt by M for at most n values of k ∈ {n+ 1, n+ 2, . . . , n+ r} − Z.

(d) Let Z ′ = {k ∈ {n + 1, n + 2, . . . , n + r} − Z : for some j ∈ X ′, Tj was
specified as being learnt by M on input T1, T2, . . . , Tn, Tk}. Note that cardinality
of Z ′ is at most n2.

(e) Then, for any k ∈ {n + 1, n + 2, . . . , n + r} − Z − Z ′, the texts Tj
which are specified as being learnt by M on T1, T2, . . . , Tn, Tk must have been
specified as learnt by M on input T1, T2, . . . , Tn, Tk for at least n + 1 different
k ∈ {n+ 1, n+ 2, . . . , n+ r} each time with the same conjecture (say qj) of M
on Tj .

As r > n + n2, it follows that there exists X and corresponding pj = qj as
needed in the construction above (since there exists only one grammar for each
language in the indexing used for hypothesis space).

2For example, we can have Tn+i(s) = ws, if ws ∈ Li and # otherwise, where ws is the
s-th string in length-lexicographic order. To obtain such a text, the learner remembers in its
memory ws after having seen s inputs from the texts. This memory is updated to ws+1 after
the next element is seen.
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Theorem 57. Suppose 0 < m ≤ n.
Suppose L is an automatic class which is (m,n)-superAutoTxtFin-learnable.
Then L is (m+ 1, n+ 1)-superAutoTxtFin-learnable.

Proof. Suppose M (m,n)-superAutoTxtFin-learns L. Then consider the fol-
lowing M′, which on input text T1, T2, . . . , Tn+1 simulates M on T1, T2, . . . , Ti−1,
Ti+1, . . . , Tn+1, for each possible value of i ∈ {1, 2, . . . , n+1}. Note that each of
these simulations must eventually output conjectures different from (?, ?, . . . , ?).
Then M′ outputs pj on Tj (and specifies it as having been learnt) if in one of
these simulations M outputs pj on Tj and specifies it as having been learnt.
Conjectures of M′ on the remaining texts are irrelevant and they are not being
identified. Suppose S ⊆ {1, 2, . . . , n + 1} is the set of j’s such that Tj was not
specified by M as having been learnt on input T1, T2, . . . , Ti−1, Ti+1, . . . , Tn+1

for any value i ∈ {1, 2, . . . , n + 1}. We claim that S is of cardinality at most
n−m: otherwise, taking i ∈ {1, 2, . . . , n+1}−S, we have that M failed to specify
at least m texts as being identified on input T1, T2, . . . , Ti−1, Ti+1, . . . , Tn+1.

Note that the learner M′ can be made automatic.
It follows that M′ (m+ 1, n+ 1)-superAutoTxtFin-learns L.

Corollary 58. Suppose 0 < m ≤ n. Suppose L is an automatic class con-
taining at least 2n−m+ 1 languages. Then, L is (m,n)-superAutoTxtFin-
learnable iff it is (m+ 1, n+ 1)-superAutoTxtFin-learnable.

The proof of Corollary 31 also shows:

Corollary 59. Suppose 0 < m < n. There exists an automatic class L that is
(m,n)-superAutoTxtFin-learnable, but not (m,n− 1)-TxtFin-learnable.

8. Automatic (m,n)-TxtEx-learning

We do not have a good characterization of (m,n)-AutoTxtEx-learnability.
Our main result in this section is that, for this type of learning, (m + 1, n +
1)-learnability implies (m,n)-learnability (same is true for superlearners). We
also show that, for superlearners, (m,n)-learnability implies (m + 1, n + 1)-
learnability.

But first we show that automatic learners in the limit from one text can
sometimes learn more than general finite (1, n)-learners.

Theorem 60. Suppose 0 < n. Then, AutoTxtEx− (1, n)-TxtFin 6= ∅.

Proof. Let Σ = {a} and Lai = {aj : j ≤ i}. Let L = {Lai : i ∈ N}. Then,
it is easy to see that L is an automatic family which can be AutoTxtEx-
learnt. However, L 6∈ (1, n)-TxtFin by Theorem 25, as no language in L has a
characteristic sample with respect to L − S for any finite subset S of L.
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Theorem 61. Suppose 0 < m ≤ n and L is an automatic class.
(a) Suppose L is (m+ 1, n+ 1)-AutoTxtEx-learnable. Then, L is (m,n)-

AutoTxtEx-learnable.
(b) Suppose L is (m + 1, n + 1)-superAutoTxtEx-learnable. Then, L is

(m,n)-superAutoTxtEx-learnable.

Proof. We only show part (a). Part (b) can be done similarly.
If L is finite, then clearly L is in AutoTxtEx and thus (m,n)-AutoTxtEx

and (m,n)-superAutoTxtEx-learnable. So assume that L is infinite. Let
L1, L2, . . . , Ln+1 be n+ 1 pairwise distinct languages in L. Let S = {min(Li −
Lj) : 1 ≤ i, j ≤ n+ 1, Li − Lj 6= ∅}. Note that Li ∩ S is different for different i,
1 ≤ i ≤ n+ 1.

Let Tn+i be a text for Li such that Tn+i(s) = ws, if ws ∈ Li; Tn+i(s) = #
otherwise. Here w0, w1, . . . , is a length lexicographic ordering of Σ∗.

Suppose M (m+ 1, n+ 1)-TxtEx-learns L. Now we define M′ as follows.
On any input texts (T1, T2, . . . , Tn) M′ simulates M on input (T1, T2, . . . , Tn,

Tn+i), for 1 ≤ i ≤ n+ 1, remembering, after having seen (T1[s], T2[s], . . . , Tn[s])
the memory of M on (T1[s], T2[s], . . . , Tn[s], Tn+i[s]), for each i ∈ {1, 2, . . . , n+
1}. Additionally, for i ∈ {1, 2, . . . , n}, M′ memorizes Csi = content(Ti[s]) ∩ S.

Now suppose the conjectures of M on input (T1[s], T2[s], . . . , Tn[s], Tn+i[s])
are (gs1,i, g

s
2,i, . . . , g

s
n,i, g

s
n+i,i). Then the conjectures of M′ after seeing input

T1[s], T2[s], . . . , Tn[s] are (gs1,j , g
s
2,j , . . . , g

s
n,j) where j is the least member of

{1, 2, . . . , n} such that none of Csi , i ∈ {1, 2, . . . , n}, equals Lj ∩ S.
Now suppose T1, T2, . . . , Tn are texts for pairwise distinct languages in L.

Then, in the limit j as computed above will be such that Lj is not equal to
content(Ti) for all i ∈ {1, 2, . . . , n}. Thus, (T1, T2, . . . , Tn, Tn+j) will be texts
for pairwise distinct languages in L, and thus M′ will correctly identify at least
m of the texts T1, T2, . . . , Tn (as M identifies at least m + 1 of the n + 1 texts
T1, T2, . . . , Tn, Tn+j).

Theorem 62. Suppose 0 < n.
(n, n)-superAutoTxtEx = (n, n)-AutoTxtEx = AutoTxtEx.

Proof. AutoTxtEx ⊆ (n, n)-superAutoTxtEx ⊆ (n, n)-AutoTxtEx fol-
lows by definition. On the other hand, by Theorem 61, (n, n)-AutoTxtEx ⊆
(1, 1)-AutoTxtEx = AutoTxtEx.

A proof similar to the one for Theorem 57 can show the following.

Theorem 63. Suppose 0 < m ≤ n. Suppose L is automatic and is (m,n)-
superAutoTxtEx-learnable. Then, L is (m + 1, n + 1)-superAutoTxtEx-
learnable.

It is open at present whether (m,n)-AutoTxtEx-learnability implies (m+
1, n+ 1)-AutoTxtEx-learnability.
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9. Conclusion

We defined and explored a model of parallel learning of n languages at a
time when at least m languages are required to be learnt correctly. Similarly
to (m,n)-computation being a deterministic alternative to probabilistic compu-
tation based on randomization, our model suggests a deterministic alternative
to traditional probablistic learnability of languages (explored, for example, in
[Pit89] and [WFK84]; as L. Pitt showed in [Pit89], learning using traditional
probability is strongly related to another type of parallel deterministic learning
— learning a language by a team). It turns out that, for the finite (m,n)-
learnability, the maximum number n−m of languages in the automatic family
that do not have characteristic samples, and, for (m,n)-learnability in the limit,
the maximum number of n −m of languages in the automatic family that do
not have tell-tale sets are the crucial factors defining learnability (and not the
frequency m out of n of correct conjectures — as it follows from our results,
increasing frequency not necessarily diminishes learnability of families of lan-
guages). Since a family of languages with a larger number of languages without
characteristic samples (or tell-tale sets) is more topologically complex, the num-
ber n−m can be interpreted as a measure of this complexity, and we have shown
that there are learnability hierarchies based on this complexity measure.

Several interesting problems remain open. The main problem is finding char-
acterizations, if any, for (m,n)-AutoTxtFin-learnability. It is open at present
whether (m,n)-AutoTxtFin-learnability implies (m+ 1, n+ 1)-AutoTxtFin-
learnability. Another potentially interesting area of research would be finding if
and how frequency learnability can help in terms of efficiency of learning.
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