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Abstract. We introduce and study a model for learning in the limit by
finite automata from positive data and negative counterexamples. The
focus is on learning classes of languages with a membership problem
computable by finite automata (so-called automatic classes). We show
that, within the framework of our model, finite automata (automatic
learners) can learn all automatic classes when memory of a learner is
restricted by the size of the longest datum seen so far. We also study
capabilities of automatic learners in our model with other restrictions on
the memory and how the choice of negative counterexamples (arbitrary,
or least, or the ones whose size is bounded by the longest positive datum
seen so far) can impact automatic learnability.

1 Introduction

In the paper [JLS10], the authors introduced an “automatic” variant of the well-
known Gold’s model for learning in the limit from positive data: the family of
target languages is computable by a finite automaton (automatic family), and
a learner is a finite automaton itself (automatic learning). More specifically, a
family of target languages is defined by a regular index set, and the membership
problem in these languages is regular in the sense that one finite automaton
recognizes a combination (so called “convolution”) of an index and a word if and
only if the word is in the language defined by the index. They also considered
three different natural types of limits on the size of the (long-term) memory
available to the learner before outputting the next conjecture: (a) memory is
bounded by the size of the longest positive input datum seen so far (plus a
constant); (b) memory is bounded by the size of the current hypothesis (plus a
constant); (c) the learner can store in the memory the last hypothesis only.

The authors of [JLS10] established that automatic learners are much weaker
than unrestricted recursive learners — even when learning automatic classes.
In particular, not every automatic class is automatically learnable. Moreover,
they showed the following modification of D. Angluin’s result from [Ang80]:
An automatic class is learnable by a recursive learner iff it satisfies Angluin’s
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tell-tale condition. The authors of [JLS10] also obtained a number of interesting
results showing differences between automatic learners on automatic classes with
different limitations on the memory mentioned above, as well as impact on the
learners of the requirement of consistency — when every conjecture must be
consistent with the input seen so far.

Since automatic learners are not able to learn many automatic classes from
positive data alone, it is natural to ask: under which conditions all automatic
classes of languages are automatically learnable? In [JK08], the authors intro-
duced and motivated a notion of learning languages in the limit from full positive
data and a finite number of negative counterexamples provided to the learner
whenever it’s hypothesis contains data that is not a part of the target lan-
guage. This approach to learning in the limit arguably is more natural than
learning just from positive examples — for instance, children learning languages
get corrected when using wrong words [HPTS84] (yet, as is probably the case
in natural learning processes, in this model of learning, the learner does not
get all negative examples). In a sense, this model combines two different and
popular approaches to learning in the limit — learning languages from positive
data and learning concepts from subset queries and counterexamples ([Ang88]),
whereas none of these two approaches by itself adequately represents the process
of language acquisition. In [JK08], the authors considered three different types
of negative counterexamples provided to the learner: (a) arbitrary, (b) least, and
(c) bounded by the size of the largest positive datum seen so far (the latter
type is motivated by possible computational limitations on the “teacher” pro-
viding counterexamples). In this paper, we adapt the notion of learning with
negative counterexamples to automatic learning of automatic classes. Our ma-
jor result (Theorem 8) is that such automatic learners, even when required to
be iterative (that is, whose memory stores just the last hypothesis), can learn
every automatic class! On the other hand, interestingly, we have not been able
to make such learners consistent with data seen so far. Yet, Theorem 9 shows
that consistency can be achieved if the learners always receive the least negative
counterexamples. On the other hand, as it follows from a result in [JLS10], there
are automatic classes that cannot be learned even by non-automatic learners if
the size of counterexamples is bounded by the size of the longest positive input
datum seen so far (Theorem 11). Still, with this bound on the size of coun-
terexamples, automatic learners with memory limited by the size of the longest
positive input datum seen so far can learn automatic classes consisting only of
infinite languages (Theorem 10).

We also show that some automatic classes cannot be learned automatically
using bounded negative counterexamples with memory limited by the size of the
current hypothesis (and, thus, when only the last hypothesis can be stored in
the memory) — see Theorem 13, but can be learned automatically with memory
limited by size of the longest positive datum seen so far even without negative
counterexamples.

Theorem 14 shows the advantage of negative counterexamples, even for auto-
matic iterative learners, compared to not having negative counterexamples, even
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for unrestricted recursive learners. Our last result (Theorem 15) shows that not
every automatic class can be learned automatically and monotonically — that
is, when every next conjecture includes the positive data covered by the previous
one — even if the least negative counterexamples are provided.

A number of related problems remain open. In particular, we do not know
whether every automatic family can be consistently learnt using arbitrary neg-
ative counterexamples. We also do not know whether iterative automatic learn-
ers or automatic learners with memory bounded by hypothesis size, receiving
bounded negative counterexamples, can learn all automatic classes having only
infinite languages. Some relations between various memory bounds on automatic
learners using bounded negative counterexamples are also open.

2 Preliminaries

The set of natural numbers is denoted by N . Let Σ denote a finite alphabet.
The set of all strings over the alphabet Σ is denoted by Σ∗. The empty string is
denoted by ε. A string of length n is treated as a function from {0, 1, . . . , n−1} to
Σ. Thus, x = x(0)x(1), . . . , x(n− 1), where x is a string of length n. The length
of a string x is denoted by |x|. We say that a string w is length-lexicographically
smaller than string w′ (written w <ll w

′) iff |w| < |w′| or |w| = |w′| and w is
lexicographically below w′ (where we assume some canonical ordering of elements
of Σ). We let w ≤ll w′ denote that either w = w′ or w <ll w

′. We let succS(w)
denote the least w′ such that w <ll w

′, and w′ ∈ S (if there is no such string,
then we let succS(w) to be undefined).

We let ∅,⊆ and ⊂ respectively denote emptyset, subset and proper subset.
We let card(S) denote the cardinality of set S. When considering sets of natural
numbers, we let max(S),min(S) respectively denote the maximum and minimum
of a set S, where max(∅) = 0 and min(∅) = ∞. When we are considering sets
of strings S, we let max(S) and min(S) be the length-lexicographically largest
and smallest string in S respectively, where if S = ∅, then we take max(S) = #
(where # is a special pause symbol, see below).

Convolution of two strings x = x(0)x(1) . . . x(n−1) and y = y(0)y(1) . . . y(m−
1), denoted conv(x, y), is defined as follows. Let x′, y′ be strings such that
x′(i) = x(i) for i < n, x′(i) = # for n ≤ i < max({m,n}), y′(i) = y(i) for i < m,
and y′(i) = # for m ≤ i < max({m,n}), where # 6∈ Σ∗ is a special padding
symbol. Thus, x′, y′ are obtained from x, y by padding the smaller string with
#’s. Then, conv(x, y) = z, where |z| = max({m,n}) and z(i) = (x′(i), y′(i)), for
i < max({m,n}). Note that z is a string over the alphabet (Σ∪{#})×(Σ∪{#}).
Similarly, one can define convolution of more than two strings. Intuitively, giving
a convolution of two strings to a machine means giving two strings in parallel,
with the shorter string being padded with #s.

We say that an n-ary relation R is automatic, if {conv(x1, x2, . . . , xn) :
(x1, x2, . . . , xn) ∈ R} is regular. Similarly, an n-ary function f is automatic
if {conv(x1, x2, . . . , xn, y) : f(x1, x2, . . . , xn) = y} is regular.
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A family of languages, (Lα)α∈I is said to be an automatic family if the index
set I is regular and the set {conv(α, x) : α ∈ I, x ∈ Lα} is regular. Here the sets
Lα are sets of strings over some finite alphabet. We often identify an automatic
family (Lα)α∈I with the class L = {Lα : α ∈ I}, where the indexing is implicit.
We say that the automatic family (Lα)α∈I is 1–1 (or the indexing is 1–1), if for
all α, β ∈ I, Lα = Lβ implies α = β.

It can be shown that any family, relation or function that is first order de-
finable using other automatic relations or functions is itself automatic.

Lemma 1 ([BG00], [KN95]) Any relation that is first-order definable from
existing automatic relations is automatic.

We often implicitly use the above fact in our proofs. The present work con-
siders learnability of automatic families in the presence of counterexamples. For
this, let us consider a definition of a learner. This definition is given in a form
slightly different from the one traditional in inductive inference. When there are
no memory restrictions, this definition turns out to be essentially the same as
the traditional definition. We use a different form to make it easier to consider
automatic learners.

A text T is a mapping from N to Σ∗∪{#}. Here # 6∈ Σ∗ denotes pauses in the
presentation of data. We let T [n] denote the initial sequence of T of length n, that
is, T [n] = T (0)T (1) . . . T (n−1). The content of a text T , denoted content(T ), is
{T (i) : i ∈ N} − {#}. Similarly, content(T [n]) = {T (i) : i < n} − {#}. We let σ
range over initial sequences of texts. We let Λ denote the empty sequence. We let
SEQ(S) denote the set of all finite sequences σ such that content(σ) ⊆ S. We
let σ�τ denote the concatenation of two sequences σ and τ . By abusing notation,
for x ∈ Σ∗∪{#}, we use σ�x to denote the concatenation of σ with the sequence
containing just one element x.

Definition 2 Suppose Σ, ∆ are finite alphabets used for languages and memory
of learners respectively, where # 6∈ Σ∗. Suppose J is a regular index set (over
some finite alphabet) for the hypothesis space used by the learner. Below ? is a
special symbol not in J , which stands for “repeat the previous conjecture.”

(a) A learner is a mapping from ∆∗ × (Σ∗ ∪ {#}) to ∆∗ × (J ∪ {?}). A learner
has an initial memory mem0 ∈ ∆∗, and initial hypothesis hyp0 ∈ J ∪ {?}.

(b) Suppose a learner M with initial memory mem0 and initial hypothesis hyp0
is given. Below, σ is a sequence over Σ∗∪{#} and x ∈ Σ∗∪{#}. We extend
the definition of M to sequences by inductively defining
M(Λ) = (mem0, hyp0);
M(σ�x) = M(mem, x), where M(σ) = (mem, hyp), for some hyp ∈ J ∪{?}.
Additionally, for |σ| ≥ 1, we inductively define M(mem, σ�x) = M(mem′, x),
where M(mem, σ) = (mem′, hyp′), for some hyp′ ∈ J ∪ {?}.

(c) We say that M converges on a text T to a hypothesis β (written: M(T )↓hyp =
β) iff there exists a t such that,
(i) M(T [t]) ∈ ∆∗ × {β}, and
(ii) for all t′ ≥ t, M(T [t]) ∈ ∆∗ × {β, ?}.
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Intuitively, M(σ) = (mem, hyp) means that the memory and hypothesis of the
learner M after having seen the sequence σ are mem and hyp respectively. We
can think of a learner as receiving a text T for the language L, one element at
a time. At each input, the learner updates its previous memory, and outputs a
new conjecture (hypothesis), where ? denotes repeating the previous hypothesis.
If the sequence of hypotheses converges to a grammar for L, then we say that
the learner TxtEx-learns the language L from the text T (here Ex denotes
“explains”, and Txt denotes learning from text). Now we define learnability
formally.

Definition 3 (Based on Gold [Gol67])
Suppose L = {Lα : α ∈ I} is a target class, and H = {Hβ : β ∈ J} is a

hypothesis space, where both L and H are automatic families of languages.

(a) We say that M TxtEx-learns the language L (using hypothesis space H)
from a text T iff M(T )↓hyp = β such that Hβ = L.

(b) We say that M TxtEx-learns a language L (using hypothesis space H) iff
M TxtEx-learns L from all texts for the language L (using hypothesis space
H).

(c) We say that M TxtEx-learns L (using hypothesis space H) iff M TxtEx-
learns all languages in L (using hypothesis space H).

(d) TxtEx = {L : (∃M)[M TxtEx-learns L using some hypothesis space]}.

We drop the reference to “using hypothesis space H”, when the hypothesis space
is clear from the context. A hypothesis space H is said to be class preserving
[LZ93] for learning a class L if L = H. A hypothesis space H is said to be class
comprising [LZ93] for learning a class L if L ⊆ H.

Definition 4 Suppose a learner M using an automatic family H = {Hβ : β ∈
J} as the hypothesis space is given.

(a) [JLS10] A learner M is called an automatic learner iff its graph is auto-
matic. That is, {conv(mem, x,mem′, hyp′) : M(mem, x) = (mem′, hyp′)} is
regular.

(b) [Wie76] M is said to be iterative iff, for all finite sequences σ, M(σ) =
(mem, hyp) implies mem = hyp.
M is said to be word-size memory bounded iff there exists a constant c
such that for all finite sequences σ, M(σ) = (mem, hyp) implies |mem| ≤
max({|w| : w ∈ content(σ)}) + c.
M is said to be hypothesis-size memory bounded iff there exists a constant
c such that for all finite sequences σ, M(σ) = (mem, hyp) implies |mem| ≤
|hyp|+ c.
(Note that if a learner is iterative then its memory is hypothesis-size bounded,
but hypothesis-size bound on the memory does not imply that a learner is
iterative.)

(c) [Bār74] M is said to be consistent iff, for all finite sequences σ, if M(σ) =
(mem, hyp) with hyp 6=?, then content(σ) ⊆ Hhyp.
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(d) [Wie90] M is said to be monotonic iff for all texts T , for all t < t′, if
M(T [t]) = (mem, hyp),M(T [t′]) = (mem′, hyp′), hyp 6=?, hyp′ 6=?, then
content(T ) ∩Hhyp ⊆ content(T ) ∩Hhyp′ .

Note that the above constraints are required even on texts for languages out-
side the class L. Note that when a learner gets positive data only, then a learner’s
conjecture may contain data that is not in the target language. In this situation,
the learner may not be able to know that it went “beyond” the target language,
as it does not receive any negative data. To address this issue, Jain and Kin-
ber [JK08] considered the notion of learning with negative counterexamples. In
this, for every hypothesis, a learner receives as input a negative counterexample,
if there exists any. Thus, intuitively, the learner gets two input texts: one for
positive data as above, and another for negative counterexamples.

Definition 5 (Based on [JK08]) Suppose Σ, ∆ are finite alphabets used for
languages and memory of learners respectively, where # 6∈ Σ∗. Suppose J is a
regular index set for the hypothesis space used by the learner.

(a) A learner learning using negative examples is a mapping from ∆∗ × (Σ∗ ∪
{#})× (Σ∗ ∪ {#}) to ∆∗ × (J ∪ {?}).
A learner has an initial memory mem0 ∈ ∆∗, and initial hypothesis hyp0 ∈
J ∪ {?}.

(b) Suppose a learner M with initial memory mem0 and initial hypothesis hyp0
is given. We extend the definition of M to sequences as follows. Below, σ, τ
are sequences over Σ∗ ∪ {#} with |σ| = |τ |, and x, y ∈ Σ∗ ∪ {#}.
M(Λ) = (mem0, hyp0);
M(σ�x, τ�y) = M(mem, x, y), where M(σ, τ) = (mem, hyp), for some hyp ∈
J ∪ {?}.
Additionally, for |σ| = |τ | ≥ 1, we inductively define M(mem, σ�x, τ�y) =
M(mem′, x, y), where M(mem, σ, τ) = (mem′, hyp′), for some hyp′ ∈ J ∪
{?}.

(c) We say that M converges on text T with negative counterexample text T ′

to a hypothesis β (written: M(T, T ′)↓hyp = β) iff there exists a t such that
(i) M(T [t], T ′[t]) ∈ ∆∗ × {β}, and
(ii) for all t′ ≥ t, M(T [t], T ′[t]) ∈ ∆∗ × {β, ?}.

Intuitively, M(σ, τ) = (mem, hyp) means that the memory and the hypoth-
esis of the learner M after having seen the sequence σ and the negative coun-
terexample sequence τ is mem and hyp, respectively. Below, NC in the criteria
names denotes learning from negative counterexample. B and L in BNC,LNC,
denote “bounded” and “least”.

Definition 6 (Based on [JK08]) Suppose L = {Lα : α ∈ I} is a target class,
and H = {Hβ : β ∈ J} is a hypothesis space, where both L and H are automatic
families of languages over an alphabet Σ. Below, for ease of notation, we take
H? = ∅.
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(a) (i) We say that T ′ is a counterexample text for M on an input text T for a
language L iff for all n, where M(T [n], T ′[n]) = (mem, hyp),

if Hhyp ⊆ L, then T ′(n) = #, and

if Hhyp 6⊆ L, then T ′(n) ∈ Hhyp − L.

(ii) We say that T ′ is a least-counterexample text for M on an input text T
for a language L iff for all n, where M(T [n], T ′[n]) = (mem, hyp),

if Hhyp ⊆ L, then T ′(n) = #, and

if Hhyp 6⊆ L, then T ′(n) = min(Hhyp − L).

(iii) We say that T ′ is a bounded counterexample text for M on an input text
T for a language L iff for all n, where M(T [n], T ′[n]) = (mem, hyp),

if Hhyp ∩ {x ∈ Σ∗ : x ≤ max(content(T [n]))} ⊆ L, then T ′(n) = #, and

if Hhyp ∩ {x ∈ Σ∗ : x ≤ max(content(T [n]))} 6⊆ L, then T ′(n) ∈ Hhyp ∩
{x ∈ Σ∗ : x ≤ max(content(T [n]))} − L.

(That is, the size of a counterexample is bounded by the size of the
longest positive datum seen so far; consequently, if the size of the least
counterexample to the current conjecture exceeds this bound, no coun-
terexample is provided.)

(b) We say that M NCEx-learns the language L (using hypothesis space H) iff
for all texts T for L, for all counterexample texts T ′ for M on input text T ,
M(T, T ′)↓hyp = β such that Hβ = L.

(c) We say that M NCEx-learns L (using hypothesis space H) if it NCEx-
learns all languages in L (using hypothesis space H).

(d) NCEx = {L : (∃M)[M NCEx-learns L using some hypothesis space ]}.
One can similarly define learnability criteria LNCEx and BNCEx for learn-
ing from least-counterexample or bounded counterexamples.

Furthermore, automatic, consistent, monotonic learning and various memory
restricted learning criteria can be similarly defined for learning from counterex-
amples. Here for word-size memory constraint, we bound the memory by the
largest word seen in either the text (for positive data) or the counterexample
text. Also, for consistency we require that the learner is consistent with positive
examples as well as negative counterexamples, that is, for any text T and corre-
sponding negative counterexample text T ′, if M(T [t], T ′[t]) = (mem, hyp) with
hyp 6=?, then content(T [t]) ⊆ Hhyp and content(T ′[t]) ∩Hhyp = ∅.

We use “Auto” in the name of the learning criteria to denote that we re-
quire the learners to be automatic. For example, AutoTxtEx denotes TxtEx-
learning by an automatic learner. Similarly, we use Cons and Mon in the name
of the learning criteria to denote that the learners are consistent and monotonic,
respectively. Similarly, we use Word and Hyp in the name of the learning cri-
teria to denote that the memory of the learners is appropriately bounded. For
It memory restriction, as is common in the literature, we replace the term “Ex”
in the name of the criterion by “It”.

For example, AutoWordNCEx denotes NCEx learnability by a learner
which is automatic and word memory size bounded. AutoMonNCIt denotes
NCEx learnability by a learner which is automatic, monotonic and iterative.



8 Sanjay Jain and Efim Kinber

3 Results

We begin with an easily provable useful technical proposition.

Proposition 7 Suppose L = {Lα : α ∈ I} is an automatic family, where the
indexing is 1–1. Then, there exists a constant c such that the following hold.

(a) [JOPS11] For all α ∈ I such that Lα is finite, |α| ≤ c + max({|x| : x ∈
Lα}).

(b) For all α ∈ I, u ∈ Σ∗, let ProbExt(α, u) = {β : Lα ⊂ Lβ ⊆ Lα ∪
{x : x ≤ll u}}. Then, for all α ∈ I, u ∈ Σ∗ and β ∈ ProbExt(α, u), |β| ≤
max({|α|, |u|}) + c.

(c) For all α ∈ I, for all u ∈ Σ∗, there exists a β ∈ I such that |β| ≤ |u|+ c
and Lβ ∩ {x : |x| ≤ |u|} = Lα ∩ {x : |x| ≤ |u|}.

Intuitively, part (a) of the above proposition says that the indices for finite
sets are not too big in an automatic family. Part (b) of the proposition says that
if Lα and Lβ differ only on strings ≤ll u, then the index for β is not much bigger
than max({|α|, |u|}). Part (c) of the above proposition says that for any index α
and string u, there exists a short β such that Lβ is consistent with Lα for strings
below u.

Our first major result shows that automatic NCEx-learners with word-size
memory limit can learn any automatic class.

Theorem 8 Let L = {Lα : α ∈ I} be an automatic family. Then,
(a) L ∈ AutoNCIt. The learner uses a class preserving hypothesis space.
(b) L ∈ AutoWordNCEx. The learner uses the hypothesis space (Hα)α∈I ,

where Hα = Lα.

Proof. Due to space restrictions, we only show part (a). Part (b) can be proven
in a way similar to Theorem 10.

Without loss of generality assume that the indexing (Lα)α∈I is 1–1 (other-
wise, we can ignore the non-minimal indices of I, which can be automatically
determined as (non) minimal indices can be expressed as a first order formula
using automatic relations (see Lemma 1)). Furthermore, assume that I is infinite
(otherwise, the theorem is trivial). Let c be as in Proposition 7 (for L).

Let i0 be a special symbol which we take to be length-lexicographically
smaller than all members of I. This is for ease of presentation of the proof.

Suppose L is the target language. The aim of the learner M is to find an
α such that Lα ⊆ L and L ⊆ Lα. The learner can check if Lα ⊆ L using the
counterexamples. However, the learner may not easily be able to check if L ⊆ Lα,
as it may have forgotten some past data. To overcome this problem is the main
aim of the construction.

The learner keeps memory of the form conv(α, u, β, b), where α ∈ I ∪ {i0},
β ∈ I, u ∈ Σ∗ ∪ {#}, and b ∈ {0, 1}. In case α = i0 in the memory, then we will
have b = 1 (that is, the memory will never be of the form conv(i0, u, β, 0)).

The hypothesis of the learner is directly linked to its memory: If, [b = 1
or [b = 0 and |β| ≤ max({|α|, |u|}) + c]], then Hconv(α,u,β,b) = Lβ ; otherwise,
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Hconv(α,u,β,b) = Lα (note that the above implicitly gives the hypothesis space
used by the learner, which is class preserving as α = i0 implies b = 1).

Intuitively, α (when α 6= i0) is the index for which the learner is currently
testing (or last tested) whether Lα = L (in case the learner finds Lα 6= L, it
may continue to keep the same α for some time until it finds an appropriate
replacement for it). The α used by the learner will always have the property
that Lα ⊆ L. Thus the learner then needs to check if L ⊆ Lα. Though the
learner can check for any future elements seen in the input whether they belong
to Lα (this is kept track of by using the parameter b in the memory), the learner
may not be able to check whether the past data belonged to Lα, as it may
have forgotten them. For this purpose, learner keeps track of a parameter u
which length-lexicographically bounds any elements in the past which may be
in L − Lα (how the learner keeps track of u will be clearer later). The learner
uses the parameter β to search for any potential index such that Lα ⊂ Lβ ⊆ L.
If such a β exists, then the learner replaces α above by β, and continues the
process. In case such a β does not exist, then α would be the only possible index
for L. The learner uses Proposition 7(b) to bound the search for such β in case
the learner, since it has started testing for Lα, has not seen an element in L−Lα.

We now proceed formally. Let T be a text for the input language L and
T ′ be a sequence of counterexamples. Suppose M(T [n], T ′[n]) = (memn, hypn),
where memn = conv(αn, un, βn, bn). We will always have hypn = memn. Thus,
the learner is iterative. The invariants maintained by the learner related to the
memory are as follows. For ease of notation below, we take Li0 = ∅. For all n:

(I1) αn ≤ll αn+1 ≤ll βn ≤ll βn+1.
(I2) Lαn ⊆ Lαn+1

⊆ L.
(I3) For all α′ <ll βn such that α′ 6= αn and α′ ∈ I, Lα′ 6= L.
(I4) max(content(T [n])− Lαn) ≤ll un. Furthermore un ≤ll un+1.

Let m be the least number such that αm = αn.
(I5) bn = 0 iff αn 6= i0 and {T (s) : m ≤ s < n} ⊆ Lαn .
(I6) If bn = 0, then un = um; otherwise un = max({um} ∪ {T (s) : m ≤ s <

n} − Lαn).
(I7) If m < n then, βn−1 = βn iff [bn−1 = 0 and |βn−1| > max({|αn|, |un|})+c].

We now specify how the learner computes αn, un, βn, bn. Initially, α0 = i0, β0
is the length-lexicographically least element of I, b0 = 1 and u0 is the length-
lexicographically least element of Σ∗. We now describe how the memory of the
learner is updated after receiving input T (n), T ′(n) (where the previous memory
is (αn, un, βn, bn)).

Let un+1 = un, if T (n) = # or [αn 6= i0 and T (n) ∈ Lαn ]; otherwise,
un+1 = max({un, T (n)}). For defining, αn+1, βn+1, bn+1, consider the following
cases.

Case 1: [bn = 1 or [bn = 0 and |βn| ≤ max({|αn|, |un|}) + c]].
In this case Hhypn = Lβn .
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Case 1a: [αn = i0 or Lαn ⊂ Lβn ] and T ′(n) = #.
In this case, Lβn ⊆ L and either αn = i0 or Lαn ⊂ Lβn . Thus, αn is not
a correct index for L (note that i0 6∈ I).
Let αn+1 = βn+1 = βn and bn+1 = 0.

Case 1b: [αn 6= i0 and ¬[Lαn ⊂ Lβn ]] or T ′(n) 6= #.
In this case, either αn = βn or Lβn 6= L (note that (Lα)α∈I is 1–1).
Let αn+1 = αn, βn+1 = succI(βn).
Let bn+1 = 1, if bn = 1 or T (n) 6∈ Lαn ; otherwise bn+1 = 0.

Case 2: Not Case 1.
In this case Hhypn = Lαn .
Let αn+1 = αn, βn+1 = βn.
Let bn+1 = 1, if bn = 1 or T (n) 6∈ Lαn ; otherwise bn+1 = 0.

It is now easy to verify that the learner is automatic and word size memory
bounded. Definition of α0, β0, b0, u0 clearly maintain the invariants. We now show
that the construction maintains the invariants while defining αn+1, βn+1, un+1,
bn+1. Note that in Case 1a, αn 6= βn = αn+1, which is the only case which
changes value of αn. (I1) is clearly maintained by both cases (βn+1 ≥ll βn in
both cases, and αn+1 is either αn or βn). (I2) is maintained as the only time
αn+1 6= αn is via Case 1a, where Lαn ⊆ Lβn ⊆ L holds. (I3) is maintained as
in Case 1a, Lβn ⊆ L and either αn = i0 or Lαn ⊂ Lβn ; in Case 1b, Lβn 6= L or
βn = αn, and in Case 2 αn+1 = αn and βn+1 = βn. (I4), (I5) and (I6) are also
maintained by definition of un+1 and bn+1 in both cases. Note that in Case 1a,
Lαn ⊆ Lβn = Lαn+1

. (I7) is trivially maintained by Case 1a; Case 1b and Case
2 also maintain (I7) as Case 1b makes βn+1 6= βn and Case 2 makes βn+1 = βn
(note the conditions for Cases 1 and 2).

Now, suppose L ∈ L. By invariants (I1) and (I3), αn ≤ll α′, for α′ such that
Lα′ = L. It follows using (I1) that limn→∞ αn converges, to say α. Here, note
that α 6= i0, as eventually by Case 1b, a βn would be chosen such that Lβn ⊆ L,
making αn+1 = βn via Case 1a. If Lα = L, then clearly by (I5), limn→∞ bn also
converges; If Lα 6= L, then by (I1) and (I3), limn→∞ βn converges, (since βn is
then bounded by the index for L) and thus by (I7) limn→∞ bn converges. Thus,
in either case limn→∞ bn converges, to say b. If Lα 6= L, then using (I1) and (I3),
we have that limn→∞ βn converges; if Lαn = L, then by (I5) limn→∞ bn = 0,
and thus by (I6) limn→∞ un converges, and thus by (I7) limn→∞ βn converges.
Hence, in both cases we have that limn→∞ βn converges, to say β. Thus, by
(I4), (I7) we have that limn→∞ un converges, to say u. Thus, the memory of
the learner converges to conv(α, u, β, b). By (I2) we have that Lα ⊆ L. By, (I7)
we have that |β| > max({|α|, |u|}) + c and b = 0. Thus, Hconv(α,u,β,b) = Lα.
Furthermore, using the invariants (I3), (I4) and Proposition 7(b), we have that
Lα = L.

Thus, M NCIt-learns L.

Hypotheses of the learner in the above theorem are not consistent with the
data seen so far. We can make the learner consistent if it receives least counterex-
amples whenever it’s hypothesis contains data that is not a part of the target
language.
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Theorem 9 (Frank Stephan, personal communication) Let L be an au-
tomatic class. Then, L ∈ AutoWordConsLNCEx as witnessed by a learner
using a class comprising hypothesis space.

Now we turn to automatic BNCEx-learning with word-size memory limit.

Theorem 10 Let L = {Lα : α ∈ I} be an automatic family which consists
only of infinite languages. Then, L ∈ AutoWordBNCEx. The learner uses
the hypothesis space (Hα)α∈I , where Hα = Lα.

Proof. Without loss of generality assume that the indexing (Lα)α∈I is 1–1 (oth-
erwise, we can ignore the non-minimal indices of I, which can be automatically
determined). Furthermore, assume that I is infinite (otherwise, the theorem is
trivial). Let c be as in Proposition 7 (for L).

For ease of presentation, the size of the memory of the learner is word size
bounded only for the case when the input language is in the class L. One can eas-
ily convert such a learner to always having word-size memory bound by remem-
bering the length-lexicographically largest word seen in the text/counterexample
text, and if the memory tries to exceed the appropriate bound (relevant constant
plus the size of the remembered largest word), then abandoning the learning pro-
cess.

The learner M has memory of the form: (α,w, u, β), where α, β ∈ I, w, u ∈
Σ∗ ∪ {#}. Let T be a text for the input language L and T ′ be a sequence
of counterexamples. Suppose M(T [n], T ′[n]) = (memn, hypn), where memn =
(αn, wn, un, βn).

Intuitively, αn is the index for which the learner is currently testing if Lαn =
L. The length-lexicographically largest element seen in the input T [n] is denoted
by wn. The length-lexicographically largest element seen in the text T before the
learner starts testing for αn is denoted by un.

If Lαn 6⊆ L, L ∈ L and M conjectures Lαn infinitely often then the learner
will eventually get a counterexample for it as every language in L is infinite.
For the elements received after the learner starts testing for αn, the learner can
check if they belong to Lαn as the elements are received. However, the learner
may have forgotten the elements it had seen before it starts testing for Lαn (note
that all the forgotten elements would be ≤ll un, though we do not exactly know
which). For testing whether such elements are in L − Lαn , the learner checks
if there is some β ∈ I which satisfies: Lαn ⊂ Lβ ⊆ Lαn ∪ {x : x ≤ll un} and
Lβ ∩ {x : x ≤ll un} ⊆ L. Such β’s (satisfying Lαn ⊂ Lβ ⊆ Lαn ∪ {x : x ≤ll un})
are finite in number and can be determined using Proposition 7(b).

We proceed formally now. The invariants maintained by the learner related
to the memory are as follows. For all n:

(I1) wn = max(content(T [n])).
(I2) αn ≤ll αn+1.
(I3) For all α′ <ll αn with α′ ∈ I, Lα′ 6= L, where content(T ′[n]) ∩ Lα′ 6= ∅ or

there exists an x ≤ll wn, x ∈ L− Lα′ .

Let m be the least number such that αm = αn.
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(I4) un = max(content(T [m])).
(I5) If n = m, then βn = αn.
(I6) (i) content(T [n])− {x : x ≤ll un} ⊆ Lαn ,

(ii) for all β such that αn <ll β <ll βn, if Lαn ⊂ Lβ ⊆ Lαn ∪{x : x ≤ll un},
then Lβ 6⊆ L, and

(iii) if m < n and |βn−1| ≤ max({|αn|, |un|}) + c, then βn−1 <ll βn.
(iv) if m < n and |βn−1| > max({|αn|, |un|}) + c, then βn−1 = βn.

The hypothesis of the learner is directly obtainable from memory as follows. If
|βn| ≤ max({|αn|, |un|}) + c, then hypn = βn; otherwise, hypn = αn. Thus, it is
enough to specify how the learner computes αn, wn, un, βn.

Initially, α0 = β0 =<ll-least element of I, w0 = u0 = #. We now describe
how memory of the learner is updated after receiving input T (n), T ′(n) (where
the previous memory is (αn, wn, un, βn)).

Case 1: T (n) 6∈ Lαn or T ′(n) ∈ Lαn or [T ′(n) = #, |βn| ≤ max({|αn|, |un|})+c
and Lαn ⊂ Lβn ⊆ Lαn ∪ {x : x ≤ll un}].
This case implies that Lαn 6= L as either T (n) ∈ L−Lαn or T ′(n) ∈ Lαn−L
or [Lβn ∩ {x : x ≤ll un} ⊆ Lβn ∩ {x : x ≤ll wn} ⊆ L and Lβn ∩ {x : x ≤ll
un} 6⊆ Lαn ]. Furthemore, note that either Lαn ∩ content(T ′[n + 1]) 6= ∅, or
there exists a x ≤ll wn+1 such that x ∈ L− Lαn .
Let αn+1 = βn+1 = succI(αn). Let wn+1 = un+1 = max(content(T [n+ 1])).
Note that wn+1, un+1 can be computed using wn and T (n).

Case 2: Not Case 1 and |βn| ≤ max({|αn|, |un|}) + c
Note that in this case hypn = βn. Furthermore, either Lβn 6⊆ L (when,
T ′(n) 6= #) or ¬[Lαn ⊂ Lβn ⊆ Lαn ∪ {x : x ≤ll un}] (as Case 1 does not
hold).
Let αn+1 = αn, un+1 = un, wn+1 = max(content(T [n + 1])), βn+1 =
succI(βn).

Case 3: Not Case 1 and |βn| > max({|αn|, |un|}) + c
Note that in this case hypn = αn. Furthermore, T (n) ∈ Lαn and T ′(n) = #.
Let αn+1 = αn, βn+1 = βn, un+1 = un, and wn+1 = max(content(T [n+1])).

Clearly, the learner M is automatic.
The invariants (I1), (I2), (I4), (I5), (I6)(iii), (iv) are clearly maintained by

the construction. For (I3) note that Case 1 is the only case where αn+1 6= αn,
and in this case Lαn 6= L. For (I6)(i), note that if T (n) is not in Lαn , then
by Case 1, αn+1 6= αn; thus, using (I4), (I6)(i) holds. For (I6)(ii), note that
in Case 1, βn+1 = αn+1, in Case 3 βn+1 = βn and in Case 2, Lβn 6⊆ L or
¬[Lαn ⊂ Lβn ⊆ Lαn ∪ {x : x ≤ll un}]; thus, (I6)(ii) is maintained in all the
cases.

By (I5), (I6)(iii), (iv), we have that length of β is at most a constant more
than max({|αn|, |wn|}). Furthermore, by (I1), (I3) and Proposition 7(c), we
have that |αn| is bounded in length by a constant plus max(content(T [n]) ∪
content(T ′[n])). Thus, M is word-size memory bounded.

Now, for L = Lα′ , α′ ∈ I, by invariant (I3), αn ≤ll α′. Thus, by (I2)
limn→∞ αn converges, to say α. Thus, by (I4), limn→∞ un converges, to say
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u. Furthermore, using the invariants (I5) and (I6)(iii), we have that, for all but
finitely many n, |βn| > max({|αn|, |un|}) + c. Thus, by (I3), (I6)(i), (I6)(ii), and
Proposition 7(b), we have that either, Lα 6⊆ L or Lα = L. Furthermore, by
definition of hypn, for all but finitely many n, hypn = α. Thus, if Lα 6⊆ L, then
by cardinality of L being infinite, we must have T ′(n) ∈ Lα (and thus Case 1
holding) for large enough n, a contradiction.

It follows that Lα = L. Thus, the learner M NCEx-learns L.

Yet a result from [JK08] can be used to show that some automatic classes
cannot be BNCEx-learned (even by a non-automatic learner).

Theorem 11 [JK08] Let L = {Σ∗} ∪ {Lx : x ∈ Σ∗}, where Lx = {y : y ≤ll x}.
Then, L is an automatic family and L 6∈ BNCEx.

The following corollary shows that, for the unrestricted automatic learnabil-
ity, as well as automatic learnability with all types of memory restrictions, there
are automatic classes that are NCEx-learnable, but not BNCEx-learnable.

Corollary 12 (a) AutoNCIt−AutoBNCIt 6= ∅.
(b) AutoHypNCEx−AutoHypBNCEx 6= ∅.
(c) AutoWordNCEx−AutoWordBNCEx 6= ∅.
(d) AutoNCEx−AutoBNCEx 6= ∅.

Our next result shows that some automatic class, while not HypBNCEx-
learnable, can be automatically learned with word-size memory without negative
counterexamples.

Theorem 13 AutoWordTxtEx−HypBNCEx 6= ∅.

Let Σ = {0}. Let L0 = {02n : n ≥ 0}.
Let L1i = {02n : n ≤ i} ∪ {02i+1}. Let L(2i,3j) = L1i ∪ {02j}.
Let L = {Lα : α ∈ I}, where I = {0, 1i, (2i, 3j) : i, j ∈ N}.
Then L witnesses Theorem 13. We omit the detailed proof.
The next theorem shows that automatic iterative learners using negative

counterexamples still can sometimes learn automatic classes that cannot be
learned using positive data alone.

Theorem 14 (AutoWordNCEx ∩ AutoWordBNCEx ∩ AutoNCIt ∩
AutoBNCIt)−TxtEx 6= ∅.

Let Σ = {a}. Let Lε = a∗, and Lw = L0 − {w}, for w ∈ a+. Let L = {Lw :
w ∈ a∗}. Then L witnesses Theorem 14. We omit the detailed proof.

Our last result shows that monotonic (even non-automatic) learners cannot
learn some automatic classes, even using least counterexamples.

Theorem 15 There exists an automatic class L = {Lα : α ∈ I} such that
L 6∈MonLNCEx.
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Proof. Let Σ = {0}. Let L0 = 0∗, L1j = {0i : i ≤ j}, Lconv(1j ,2k) = {0i : i ≤
j} ∪ {0k}. Let I = {0, 1j , conv(1j , 2k) : j, k ∈ N}, and L = {Lα : α ∈ I}.

Clearly, L is an automatic family. Suppose, by way of contradiction, that
M is a monotonic learner which LNCEx-learns L. Consider the shortest σ
such that M(σ,#|σ|) is for an infinite language. Note that there exists such
a σ as M learns L0. Now consider a text T extending σ for L1j , where j =
max(content(σ) ∪

⋃
s<|σ| LM(σ[s],#s)). Let T ′ be the least-counterexample text

for M on the text T . Then M(T, T ′) must converge to a grammar g for L1j .
Thus, content(T ′) is finite. Let x ∈ LM(σ,#|σ|) − (content(T ) ∪ content(T ′)).
Let m be such that content(T ) = content(T [m]), content(T ′) = content(T ′[m]),
σ ⊆ T [m], and M(T [m], T ′[m]) = g. Then M is not monotonic on T [m]�x, where
counterexamples provided are least counterexamples.

4 Conclusions

In this paper we considered learning automatic families by automatic learners
which receive negative counterexamples. Various versions of memory restriction
and counterexamples were considered. Table 1 gives a summary of results re-
garding learning all classes of a particular type for various criteria.

Learning Criterion Aut. Classes of All Automatic Consistent Learning
Infinite Languages Classes for All Aut. Classes

Auto(Word,Hyp)NCEx yes yes open
AutoNCIt

Auto(Word)LNCEx yes yes yes

Auto(Word)BNCEx yes no no

AutoHypBNCEx open no no
AutoBNCIt
Table 1. Summary of results on when all classes of particular type are learnable.

We showed that there is an automatic class which is in AutoWordBNCEx−
AutoHypBNCEx, though at this point we do not know if AutoWordBNCEx
properly contains AutoHypBNCEx. It is also open whether AutoBNCEx ⊆
AutoWordBNCEx. Note that the corresponding problems in AutoTxtEx
learning (without using negative counterexample) are also open [JLS10]. Re-
garding monotonic learning, we showed that there are automatic families which
cannot be LNCEx-learnt by any monotonic (even non-automatic) learners.
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