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Abstract. Automatic classes are classes of languages for which a finite automaton
can decide the membership problem for the languages in the class, in a uniform way,
given an index for the language. For alphabet size of at least 4, every automatic class
of erasing pattern languages is contained, for some constant n, in the class of all
languages generated by patterns which contain (1) every variable only once and (2)
at most n symbols after the first occurrence of a variable. It is shown that such a class
is automatically learnable using a learner with the length of the long-term memory
being bounded by the length of the first example seen. The study is extended to show
the learnability of related classes such as the class of unions of two pattern languages
of the above type.

1 Introduction

The present work carries on investigations of learnability properties in connection with automatic
structures. The underlying model of learnability is inductive inference [1, 12, 20, 29]. Additionally,
(1) the target class of languages for learning is an automatic family [14–16, 18, 19, 22], that is,
membership problem for the class to be learnt can be recognised by a finite automaton in a
uniform way, and (2) the learner itself is automatic [17]. These learners are given by a function,
where in each step/round, the learner outputs a hypothesis and updates its long term memory
based on its previous memory and a current input. This function is required to be regular, that
is, it must be recognised by a finite automaton. Such learners may be considered to be more
realistic than learners which have access to all past data. Another motivation for the work goes
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back to the programme of Khoussainov and Nerode [22] to establish an automata theoretic
counterpart of recursive model theory; so one might view the current line of research also as an
automata theoretic counterpart of standard inductive inference.

Learners with explicit bounds on the long term memory have already been studied previ-
ously in the general setting of algorithmic learners, see [11, 23]. Such learners are often modeled
by a device having a long term memory which is updated in each round. In each round, the
computation of the learner depends only on the previous value of the long term memory and the
current datum from the input. The update function is required to be recursive. In the current
paper, we consider learners for which the update function of the learner is automatic [17]. Such
learners can learn, for example, the class of all closed intervals {x ∈ Σ∗ : α v x v β} with
respect to an automatic linear order @ and the class {αΣ∗ : α ∈ Σ∗} of all languages which
are the set of extensions of a fixed string. On the other hand, automatic learners are severely
memory restricted (due to the mechanism involved). For an alphabet Σ with at least two sym-
bols, automatic learners fail to learn classes like {Σ∗−{α} : α ∈ Σ∗}, as they cannot keep track
of all the data they have seen so far. All classes given in these examples are represented by an
automatic family [18], that is, a class where the membership relation is uniformly decided by an
automatic function taking an index and a word as an input.

We will mainly be concentrating on learning subclasses of pattern languages [2] and related
classes which are automatic. Angluin initiated the study of pattern languages [1, 2] in learning
theory; here a pattern π is a string of variables and constants; the language generated by π is
the set of all words which can be obtained by replacing variables in the pattern π by non-empty
strings. As an example, consider

π = 01xy200zx1;

the variables (for substitutions) are x, y, z and the constants/terminals are 0, 1, 2. The word
01220020011221 is generated by the pattern π by letting x = 22, y = 00 and z = 11.

Shinohara [34] introduced the concept of erasing pattern languages in which the variables
are allowed to be substituted by empty strings; we follow this approach and consider all pattern
languages as erasing in our paper. Shinohara [34] also introduced the concept of regular patterns,
in which each variable occurring, occurs only once. The regular pattern languages are those
languages which are generated by regular patterns. These language classes have been well-studied
and found various applications. In the present work, we mainly focus on automatic classes of
pattern languages like Pn which consists of all languages generated by a regular pattern whose
variables occur only among the last n symbols of the pattern. Furthermore, we study natural
variants like classes containing the unions of two members of a fixed Pn or patterns which
permit not only variables for strings but also variables for single symbols. The classes Pn are quite
representative for the automatic learning of patterns as every automatic family of regular pattern
languages is contained in one such class Pn (see [18]); so the main focus of the current paper is to
continue the study of the learning power of automatic learners [16–18] for the automata-theoretic
counterparts of the well-studied and natural classes of pattern languages as well as classes which
consist of the unions of two pattern languages.
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We summarise the organisation of our paper. Section 2 below gives the preliminaries related
to the model (for both learning and automatic classes) used in this paper. Section 3 deals with the
learnability properties of certain concrete classes, namely various interesting automatic classes of
pattern languages. In particular, we show that each class Pn is learnable by an automatic learner
where the long term memory is bounded in length by the length of the longest word seen in the
input. In Section 4, we investigate the learnability of related classes which contain the unions of
two members of Pn. We show that such a class is learnable if either all unions are disjoint or the
alphabet size is at least three. Section 5 deals with automatic learnability of character pattern
languages, where the variables are allowed to be replaced only by one character.

2 The Model

The set of natural numbers is denoted by N. The symbol Σ denotes a finite alphabet. The empty
string is denoted by ε. We let Σi denote the set of all strings of length i over the alphabet Σ.
We let u · v, or simply uv denote the concatenation of the strings u and v. The length of a
string x is denoted by |x|. A string of length n over Σ will be treated as a function from the set
{0, 1, 2, . . . , n − 1} to Σ. Thus, a string x of length n is the same as x(0)x(1)x(2) . . . x(n − 1).
For m ≤ |x|, x[m] denotes the prefix of x of length m, that is x[m] = x(0)x(1) · · ·x(m− 1). We
let x <ll y denote that x is length-lexicographically before y, that is, |x| < |y| or |x| = |y| and x
is lexicographically before y. We let x ≤ll y denote that x <ll y or x = y. Let lleast(S) denote
the length-lexicographically least string in the set S. We use w � w′ to denote that w is a prefix
of w′, and w ≺ w′ to denote that w is a proper prefix of w′. We say that the strings w,w′ are
left-consistent iff either w � w′ or w′ � w. We say that the strings w,w′ are right-consistent iff
either w is a suffix of w′ or w′ is a suffix of w.

Cardinality of a set A is denoted by card(A). The symbols ⊆,⊂,⊇,⊃ respectively denote
subset, proper subset, superset and proper superset. We use A ⊆∗ B to denote that A − B is
finite.

The convolution of two strings x = x(0)x(1) . . . x(m − 1) and y = y(0)y(1) . . . y(n − 1) is
defined as follows. Let r = max({m,n}), x′ = x′(0)x′(1) . . . x′(r − 1) and y′ = y′(0)y′(1) . . .
y′(r − 1), where (i) x′(i) = x(i), if i < m, x′(i) = � otherwise, and (ii) y′(i) = y(i), if i < n,
y′i = � otherwise. Intuitively, � is appended to the shorter string to make both the strings
to be of the same length. Now, conv(x, y) = (x′(0), y′(0))(x′(1), y′(1)) . . . (x′(r − 1), y′(r − 1)).
Note that conv(x, y) is a string over the alphabet ((Σ ∪ {�}) × (Σ ∪ {�}))∗. Similarly, one can
define conv on multiple arguments. A relation R or a function f is called automatic if the sets
{conv(x1, x2, . . . , xn) : R(x1, x2, . . . , xn)} and {conv(x1, x2, . . . , xm, y) : f(x1, x2, . . . , xm) = y},
respectively, are regular.

Intuitively, giving convolution of two strings represents giving the two strings in parallel
to the automaton, one character of each string at a time. Note that giving the two inputs in
parallel rather than serially is crucial as, for example, {conv(0n, 1n) : n ∈ N} is regular, but
{0n1n : n ∈ N} is not. Thus, the function f(0n) = 1n will be automatic while functions like
f(x) = 02|x| and f(x) = xx are not automatic, as their graphs {conv(x, 02|x|) : x ∈ Σ∗} and
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{conv(x, xx) : x ∈ Σ∗} are not regular. Also the concatenation is not automatic, but it is possible
to move a constant number of symbols around or to move all symbols by a constant distance.
Therefore f(x) = 0x is automatic; another example of an automatic function is the function
exchanging the first and last symbol (of nonempty inputs). Forming the convolution is also an
automatic function. A further example of an automatic function is to extract some symbol from
a well-specified position; so f(conv(x, y)) = y(|x|) is automatic, where f(x, y) is taken to be
some special symbol in the case that |y| ≤ |x|. Some examples of automatic predicates from the
prior literature include predicates to compare the length of strings, the lexicographic order and
the length-lexicographic order. More information on automatic functions can be found in survey
articles on automatic structures [21, 33].

A family of languages {Lα : α ∈ I}, where each Lα ⊆ D, is said to be automatic iff D and I
are regular sets (over some finite alphabet Σ and Γ respectively) and the set {conv(α, x) : α ∈ I∧
x ∈ Lα} is regular. The sets D and I above are respectively called the domain and index domain
for the automatic family. Usually, we will assume that D = Σ∗, for some finite alphabet Σ. An
example of an automatic family is that of the closed intervals: Lconv(α,β) = {x : α ≤lex x ≤lex β};
however, the class of all regular languages is not contained in an automatic family [18].

An automatic structure is a structure (usually of a finite signature) whose domain, func-
tions and relation are automatic. In a more general sense, a structure that is isomorphic to an
automatic structure is also called automatic.

It can be shown that any family, function or relation which is first-order definable using
automatic families and other automatic parameters, is again automatic [8, 22].

Fact 1 (Blumensath, Grädel [8], Khoussainov, Nerode [22]). Any relation that is first-
order definable from existing automatic relations is automatic.

We will implicitly use the above fact in defining automatic learners. Properties such as decid-
ability of first order theory make automatic structures a useful tool not only in learning theory
but also in other areas such as model checking and Boolean algebras [7, 8, 22, 32, 33]. Moreover,
though the class of all regular languages is learnable using queries [4], it is not learnable under
the usual inductive inference criteria from positive data [1, 12]. Therefore, it is interesting to
investigate which subclasses of regular languages are learnable from positive data and which
are not. For example, Angluin [3] considered learnability of the class of k-reversible languages.
These studies were later extended [10, 13]. In this context, it is useful to consider which automatic
families are learnable and which not.1

The present work considers learning in the setting of automatic structures. The learning task
(also called target class) is a class of languages, L = {Lα : α ∈ I} over a domain D ⊆ Σ∗, where
I is the index domain. The learner uses a hypothesis space H = {Hβ : β ∈ J} to express its
conjectures/hypotheses (here J is the index domain for the hypothesis space). For this paper
both the target class as well as the hypothesis space are automatic families.

1 As noted by Jain, Luo and Stephan [17], even the class of 0-reversible languages is not automatic; however, as mentioned
in the abstract and as will be seen below, some very nice classes of regular languages are automatic classes and learnable
automatically, that is, by learners which are given using finite automata.
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A text T is a mapping from {0, 1, 2, . . .} to D∪{#}. Here the symbol # 6∈ Σ denotes pauses
in the presentation of data. The content of a text T , denoted content(T ), is range(T )−{#}. A
text T is for a language L iff content(T ) = L. We let σ range over initial segments of texts, and
let content(σ) = range(σ)− {#}.

Definition 2. (Based on Gold [12]) Suppose D is a regular domain (over some finite alphabet
Σ) and I, J are regular index sets (over some finite alphabet).

Suppose L = {Lα : α ∈ I} is a target class and H = {Hβ : β ∈ J} is a hypothesis space,
which are both automatic families of languages with Lα, Hβ ⊆ D.

Suppose ∆ is a finite alphabet (used for storing memory by learners) and ? is a special symbol
not in ∆∗ ∪ J .

(a) A learner is a mapping from (∆∗ ∪ {?})× (D ∪ {#}) to (∆∗ ∪ {?})× (J ∪ {?}).
A learner has an initial memory mem0 ∈ ∆∗ ∪ {?}, and initial hypothesis hyp0 ∈ J ∪ {?}.

(b) Suppose a learner M with initial memory mem0 and initial hypothesis hyp0 and a text T
for a language L is given.

(i) Let memT
0 = mem0, hyp

T
0 = hyp0.

(ii) For k > 0, let (memT
k , hyp

T
k ) = M(memT

k−1, T (k − 1)).
Note that the memory memT

k and hypothesis hypTk of the learner depend only on the
portion T [k] of the input. We refer to memT

k , hypTk as the memory and hypothesis of the
learner M after having seen the input T [k].

(iii) We say that M converges on text T to a hypothesis β iff there exists a t such that
hypTt = β and, for all t′ ≥ t, hypTt′ ∈ {β, ?}.

(iv) We say that M learns the language L (using hypothesis space H) from the text T iff
M converges on text T to a hypothesis β such that Hβ = L.

(c) We say that M learns a language L (using hypothesis space H) iff M learns L from all texts
for the language L (using hypothesis space H).

(d) We say that M learns L (using hypothesis space H) iff M learns all languages in L (using
hypothesis space H).

(e) A class L is said to be learnable iff some learner M learns L using some hypothesis space
H′.

Intuitively, in part (b) of the definition above, the learner is receiving, over time, one by one,
the elements of the text T (0), T (1), T (2), . . . for the input language L. As it is receiving these
inputs, it possibly updates its memory after each datum, and outputs a hypothesis/conjecture.
The learner learns the input language from the text, if the sequence of its hypotheses converges
to an index for the language L. A special symbol ? is used as a conjecture or memory by the
learner. As a memory, ? denotes empty memory (which is different from memory being ε). As
a conjecture, ? denotes that either the learner does not change its previous hypothesis (this is
useful for some memory limited models of learner) or the learner has not yet seen enough data
for its initial conjecture (this is useful in models of learning where the number of hypotheses
output is relevant and false conjectures are penalised).
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Sometimes, for ease of presentation, we just define learner M as acting over time on inputs
T (0), T (1), . . ., and updating its memory/conjecture as it receives more and more inputs. In
such cases, we just define the initial memory/conjecture of the learner and say how it updates
its memory (and outputs its conjecture) when it receives a new input. Furthermore, when the
hypothesis space is clear from context, then we drop the reference to “(using hypothesis space
H)” in learnability.

Note that, for learning a class L, the hypothesis space must contain the family L to be
learnt. When we do not restrict the memory length or computational power of the learner, the
above learning model is equivalent to Gold’s model of inductive inference [12] (called explana-
tory learning or learning in the limit). Based on a result of Angluin [1] characterizing algorithmic
learnability of general indexed classes, Proposition 3 below characterises the general algorithmic
learnability of automatic classes.2 Note that the version of Angluin’s condition for automatic
classes, as used in Proposition 3, can be checked explicitly for automatic families. Hence it is
decidable whether an automatic family is learnable by an algorithmic learner or not. In what
follows, for simplicity, the tell-tale condition will be referred to as Angluin’s, although the simpli-
fications stemming from the decidability of the first order theory of automatic classes are added
in.3

Proposition 3 (Based on Angluin [1]). An automatic family {Lα : α ∈ I} is learnable by a
recursive learner iff, for every α ∈ I, there is a bound bα such that, for all β ∈ I, the implication

[{x ∈ Lα : |x| ≤ bα} ⊆ Lβ ⊆ Lα]⇒ [Lβ = Lα]

holds.

One calls the set {x ∈ Lα : |x| ≤ bα} above a tell-tale set for Lα, and the condition Angluin’s
tell-tale condition. Note that one can take bα = |α|+ c for a suitable constant c (see [18]). This
constant c depends on the family {Lα : α ∈ I} but is independent of α.

Angluin’s tell-tale condition solves the question of algorithmic learnability of automatic clas-
ses. Therefore, for learning automatic families, it is more interesting to consider automatic learn-
ers which have a superior run-time behaviour than usual learners as hypothesis and updated
memory of automatic learners can be computed in time linear in the length of the previous
memory and current datum; this is explained in the following remark.

Remark 4. Any automatic function f can be computed in linear time.
To see this, suppose f is an automatic function from Σ∗1 to Σ∗2 . Suppose the automaton which

accepts {conv(x, f(x)) : x in the domain of f} has Q as its set of states, q0 as its starting state,
δ as its transition function and F as its set of final states. As f is a function, we have that, for
all x in the domain of f , |f(x)| ≤ |x|+ |Q|.
2 Note that herein the focus will, nonetheless, remain primarily on the automatic learnability of automatic classes and

not on their general algorithmic learnability.
3 In the setting of general indexed classes, Angluin needed and employed a slightly more complicated condition where

she required that the still finite tell-tale sets can be uniformly recursively enumerated; this condition would also work
in Proposition 3.
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On input x, below we describe how to compute f(x) in time linear in |x|. Consider a directed
graph G defined as follows. The vertex set V (G) of G is {(q, i) : q ∈ Q, i ≤ |x| + |Q|}. For
i < |x| + |Q|, there is an edge from (q, i) to (q′, i + 1), iff there exists a b ∈ Σ2 ∪ {�} such that
δ(q, (x(i), b)) = q′ (where we take x(i) to be �, for i ≥ |x|). Let S ⊆ V (G) be the set of nodes
which are reachable from (q0, 0). Let, (q, j) be the unique node, if any, such that (q, j) ∈ S,
j ≥ |x| and q ∈ F . Such a node, if any, is unique as f is a function and the automaton accepts
the graph of f . Furthermore, as the automaton accepts conv(x, y) iff y = f(x), the path from
(q0, 0) to (q, j) in the graph G is unique, and for (q′, k), (q′′, k + 1) in this path, there exists a
unique bk such that δ(q′, (x(k), bk)) = q′′. Now, f(x) = b0b1 . . . bj−1.

One can compute the above b0b1 . . . bj−1 in time linear in |x| as follows. First note that one
can define the graph V (G), and find S and (q, j) as above in linear time. Let sj = q. Now,
inductively define sk, bk, for k = j − 1 to k = 0 as follows. Let sk be the unique state in Q such
that, (sk, k) ∈ S and there is an edge from (sk, k) to (sk+1, k + 1), and bk is the unique member
of Σ2 such that δ(sk, (x(k), bk)) = sk+1. The above computation can be done in constant time
for each k < j, and thus one can compute f(x) in time linear in |x|.

Definition 5. Suppose a learner M with initial memory mem0 and initial hypothesis hyp0 is
given. Suppose H = {Hβ : β ∈ J} is a hypothesis space, which is an automatic family.

For a text T : let memT
0 = mem0, hyp

T
0 = hyp0, and for k > 0, let (memT

k , hyp
T
k ) =

M(memT
k−1, T (k − 1)).

(a) [17] A learner M is called an automatic learner iff its graph is automatic. That is, M is
automatic iff {conv(mem, x,mem′, hyp′) : M(mem, x) = (mem′, hyp′)} is regular.

(b) [36] M is said to be iterative iff for all texts T , for all t, memT
t = hypTt .

(c) [5] M is said to be consistent iff for all texts T , for all t, content(T [t]) ⊆ HhypTt
.

(d) [29] M is said to be confident iff for all texts T , either all of hypT0 , hyp
T
1 , . . . are ? or the

sequence hypT0 , hyp
T
1 , . . . converges to some hypothesis β (in the sense of Definition 2 (b) (iii)).

Note that the above constraints are required even for input texts for a language outside the class
to be learnt.

Automatic learners cannot memorise all data they observe; hence the learner can no longer
access the full past history of the data seen so far. Thus, in general, the requirement of a learner
to be automatic is a real restriction and learners cannot be made automatic by just applying
Pitt’s delaying technique [30].

Long term memory limitations were first introduced by Freivalds, Kinber and Smith [11].
The variations of long term memory in the context of automatic learners were considered by
Jain, Luo and Stephan [17].

Suppose T is the input text, and the memory and hypothesis of the learner after having
seen the input T [t] are respectively, memt and hypt. The length-restriction for memory we often
consider is: length of the memory is bounded by the length of the longest datum seen so far plus a
constant, that is for some constant c, for all text T and t ∈ N, |memT

t | ≤ max({|T (s)| : s < t})+c;
we often refer to such memory bounded learners as word length memory bounded. For the ease
of notation, the “plus a constant” is omitted in the notations below. Note that the learner is
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not constrained regarding which alphabet it uses for its memory. Therefore, the learner might,
for example, store the convolution of up to some constant number of examples (in case the
memory does not exceed the allowed bound). Note that, in the case that memory is unbounded
or the bound allows storage of the hypothesis, then the learner can memorise the most recent
hypothesis output, and, thus, abstain from outputting ?.

For many learning paradigms of automatic learning, one can choose the hypothesis space H
to be the same as L. However, when the amount of the memory allowed to the learner depends
on the length of the hypothesis or when the long term memory of the learner has to be the most
recent hypothesis, as in the case of iterative learning, this requirement may be a restriction. The
main reason for hypothesis space not to be critical in many cases is that one can automatically
convert the indices from one automatic family to another for the languages which are common to
both automatic families. Only in the case of iterative learning and bounds given by the length of
the hypothesis, it is often important to have the ability to store some additional information into
the hypothesis — which is impossible in the case of a one-one hypothesis space. For example,
Theorem 9 requires a special class preserving hypothesis space, if one considers iterative learning.
Here a hypothesis space {Hβ : β ∈ J} is called class preserving (class comprising) [26] for the
target class {Lα : α ∈ I}, if {Lα : α ∈ I} = {Hβ : β ∈ J} (respectively, {Lα : α ∈ I} ⊆ {Hβ :
β ∈ J}).

Note that, in contrast, hypothesis spaces do matter for learning general indexed families by
recursive learners (satisfying various properties) [26, 27].

3 Automatic Classes of Pattern Languages

Learning theorists have studied the learnability of the class of pattern languages extensively [2,
9, 25, 31, 34]. Although the full generality of pattern languages cannot be brought over into an
automatic setting, there are still rich automatic classes of pattern languages which deserve to be
investigated [18].

Definition 6. [2, 34] Let Σ be a finite alphabet and V be a set of variables, disjoint from Σ.

(a) A pattern is any string over (Σ ∪ V )∗.
(b) A substitution θ is a homomorphism from the set of patterns to the set of patterns that

maps each a ∈ Σ to a. The image of pattern π under the substitution θ is denoted by πθ.
(c) The language associated with a pattern π, denoted by Lang(π), is the set {πθ : θ is a

substitution and πθ ∈ Σ∗}.
(d) A pattern π is called a regular pattern iff each variable appearing in π appears exactly once.

If π is a regular pattern, then Lang(π) is called a regular pattern language.

Regarding part (c), there are two cases which have been considered in the literature: In the
case of an erasing pattern language [34] one permits substitutions that map variables to the
empty string ε; in the case of a non-erasing pattern language [2], the substitutions must map
each variable to a non-empty string. In the present work, a “pattern language” is by default an
“erasing pattern language”, that is the substitutions of variables are allowed to be ε.
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Example 7. (a) Suppose Σ is a finite alphabet. The class of all sets Lα = αΣ∗, where α ∈ Σ∗,
consists of all regular erasing pattern languages generated by patterns of the form αx; this class
is iteratively learnable by an automatic learner. The hypothesis space used by the learner is
{Hα : α ∈ Σ∗ ∪ {emp}}, where emp 6∈ Σ∗, Hemp = ∅, and Hα = Lα, for α ∈ Σ∗.

The initial memory of the learner is ?, and initial conjecture of the learner is emp. For
α,w ∈ Σ∗, M(?,#) = (?, emp); M(?, w) = (w,w); M(α,#) = (α, α), and M(α,w) = (w′, w′),
where w′ is the longest common prefix of α and w.

It is easy to verify that M is automatic.
Now consider any text T for a language L. Let the memory and the hypothesis of the learner

M after having seen the input T [k] be memT
k and hypTk respectively. Now, for any k, the following

two conditions hold:

(i) if content(T [k]) = ∅, then memT
k = ? and hypTk = emp;

(ii) if content(T [k]) 6= ∅, then memT
k (= hypTk ) is the longest common prefix of all strings in

content(T [k]).

Thus, M is a consistent learner and converges on any text T for a non-empty language to the
hypothesis α such that α is the longest common prefix of all strings in content(T ). Note that M
converges on the text #∞ to emp. Thus, M is a confident learner and it learns each language
in L.

(b) Let Lα = αΣ∗01Σ∗, where α ∈ Σ∗, 0 ∈ Σ, 1 ∈ Σ and I = Σ∗. Let L = {Lα : α ∈ I}.
Then, L is an automatic class of erasing pattern languages, where Lα = Lang(αx01y). L is
learnable by the learner M described in part (a) using hypothesis space {Hα : α ∈ Σ∗∪{emp}},
where Hα = Lα, for α ∈ Σ∗, and Hemp = ∅. This learner is confident, though not consistent: for
example, if there are inputs such as 111, then the conjecture of M would not contain it. One
can however modify the learner to make it consistent (using a different hypothesis space).

Shinohara [34] considered the class of languages which are generated by regular patterns, that
is, patterns in which the variables do not repeat. In this paper we consider some subclasses of
regular pattern languages. For ease of notation, when considering regular pattern languages, we
use only one variable symbol @. It is to be understood that each occurrence of @ in the pattern
represents a different variable.

Definition 8. Fix n ∈ {1, 2, 3, . . .} and an alphabet Σ.
(a) Let Gn be the union of {ε} and all @ · (Σ ∪{@})m with m < n. That is Gn represents the

set of all regular patterns which are either ε or start with a variable and are of length at most
n. Note that Gn is finite and Σ∗ ∈ Gn.

(b) Pn denotes the class of pattern languages which can be generated by a regular pattern
where variables, if any, in the pattern only appear within the last n symbols of the pattern. That
is, Pn = {Lang(u · v) : u ∈ Σ∗, v ∈ Gn}.

For example, the pattern 010232012012@12@1@ generates a language in P6. Jain, Ong, Pu and
Stephan [18] showed that every class Pn can be given as an automatic family. Furthermore, every
automatic class of languages generated by regular patterns is a subclass of some Pn.

9



Theorem 9. For all n > 0, Pn has an automatic learner which is consistent, confident and
word length memory bounded; in fact the length of the memory of the learner is even bounded by
the length of the first datum seen plus one. This learner can also be made iterative.

Proof. The memory of the learner is either ? or of the form conv(x, α), where x ∈ Σ∗ and
|α| = |x|+ 1. Here the alphabet set used for α is {X : X ⊆ Gn}. Note that Gn is finite and thus
the alphabet set used for α is also finite.

The hypothesis space used by the learner is H = {Hβ : β ∈ {emp} ∪ {conv(x, α) : x ∈ Σ∗,
α ∈ ({X : X ⊆ Gn})∗, |α| = |x| + 1}}, where Hemp = ∅ and Hconv(x,α) = Lang(π′) for the
length-lexicographically least element π′ of A = {y · π : y is a prefix of x and π ∈ α(|y|)} such
that there is no π′′ ∈ A with Lang(π′′) ⊂ Lang(π′). Note that π′ can be defined using first order
formula over automatic relations as follows:

(∃0` ≤ll x) (∃τ ∈ α(`)) [[π′ = x[`]τ ] and
(∀0`′ ≤ll x) (∀τ ′ ∈ α(`′)) [Lang(x[`′]τ ′) 6⊂ Lang(x[`]τ)] and
(∀0`′ ≤ll x) (∀τ ′ ∈ α(`′)) [x[`]τ ≤ll x[`′]τ ′ or

(∃0`′′ ≤ll x) (∃τ ′′ ∈ α[`′′]) [Lang(x[`′′]τ ′′) ⊂ Lang(x[`′]τ ′)]]].

Here note that x[`]τ is the string obtained by the concatenation of the prefix of length ` of x
with τ . Furthermore, a relation such as Lang(π1) ⊆ Lang(π2) is automatic, as it can be given by
the first order formula (∀w) [w ∈ Lang(π1)⇒ w ∈ Lang(π2)]. Thus, H is an automatic family.

The learner M is defined as follows, where x,w ∈ Σ∗ and α ∈ {X : X ⊆ Gn}∗.

– The learner M has initial memory ? and initial conjecture emp. The hypothesis of the learner
will always be linked to its memory, that is, if mem is the memory of the learner after seeing
input T [k], then its hypothesis after seeing T [k] will be conj(mem), where conj(?) = emp
and conj(mem) = mem, for mem 6= ?.

– The learner M does not change its memory/conjecture on input #. That is, M(mem,#) =
(mem, conj(mem)).

– M(?, x) = (conv(x, α), conj(conv(x, α))), where, for each prefix y of x, α(|y|) is the set of
π ∈ Gn such that x ∈ Lang(y · π). Note that this computation is automatic, as it is given by
the formula: (∀0` ≤ll x) (∀π ∈ Gn) [π ∈ α(`) iff x ∈ Lang(x[`]π)].

– M(conv(x, α), w) = (conv(x, α′), conj(conv(x, α′))), where, for each prefix y of x, α′(|y|) is the
set of all π in α(|y|) such that w ∈ Lang(y ·π). Note that this computation is automatic, as it
is given by the formula: (∀0` ≤ll x) (∀π ∈ Gn) [π ∈ α′(`) iff [π ∈ α(`) and w ∈ Lang(x[`]π)]].

As M above is first order definable using automatic functions/relations, M is automatic. Suppose
T is the input text, and let memT

k and hypTk denote the memory and hypothesis of M after
having seen the input T [k]. If memT

k 6= ?, then let xTk , α
T
k be such that memT

k = (xTk , α
T
k ). Note

the following properties:

(P1) The length of the memory of the learner is bounded by the length of the first datum seen
(plus 1).

(P2) If content(T [k]) 6= ∅, then memT
k 6= ? and xTk is the first datum different from # in T [k]

and, for each prefix y of xTk , α(|y|) consists of all π ∈ Gn such that content(T [k]) ⊆ Lang(y·π).
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(P3) From (P2) it follows that if memT
t 6= ?, then for all prefixes y of xTk , αTt+1(|y|) ⊆ αTt (|y|).

Thus the memory sequence (and hence hypothesis sequence) of M on text T converges. Thus,
M is confident.

(P4) From (P2) it also follows that Lang(conj(memT
k )) is a minimal language (generated by

the length lexicographically smallest pattern, in case of several such minimal languages) in
Pn which contains content(T [k]). Hence, the learner M is consistent and learns Pn.

Note that the above learner can be easily made iterative, as the hypothesis space chosen for this
learner is such that the memory of the learner can be obtained from the hypothesis used in this
algorithm. 2

From now on, for ease of presentation, we will not explicitly give the first order formulas as in
the above theorem.

4 Automatic Classes of the Unions of Two Pattern Languages

We now generalise the techniques from Section 3 in order to learn the unions of pattern languages.
Our main results are that the automatic class of disjoint unions of two members from Pn is
automatically learnable (Theorem 15) and that also, for an alphabet size of at least three, the
class of arbitrary unions of two members from Pn is automatically learnable (Theorem 21).

Proposition 10. Let n > 0 and an automatic hypothesis space H = {Hβ : β ∈ J} be given.
Suppose that the automatic learners M1,M2, . . . ,Mn are consistent and confident. Then, there
exists another automatic learner N which is (1) consistent, (2) confident and (3) converges on a
text T for a language L to an index for L whenever at least one of the learners M1,M2, . . . ,Mn

converges on T to an index for L. Furthermore, if the learners M1,M2, . . . ,Mn are word length
memory bounded, then so is N .

Proof. The new learner N maintains as long term memory the convolution of the memories
of M1,M2, . . . ,Mn. If M1,M2, . . . ,Mn conjecture hypothesis β1, β2, . . . , βn, then N conjectures
βi for the least i such that there is no j with Hβj ⊂ Hβi . As M1,M2, . . . ,Mn are automatic,
consistent and confident, so is N .

Now consider any given text T for some language L. The learners M1,M2, . . . ,Mn converge
on a text T to hypotheses β1, β2, . . . , βn, such that Hβj ⊇ L for all j ∈ {1, 2, . . . , n}. Now if
i = min({j ∈ {1, 2, . . . , n} : Hβj = L}) exists, then N converges on T to βi, as Hβi = L ⊆ Hβj

for all j ∈ {1, 2, . . . , n} and L ⊂ Hβj for all j < i. 2

Proposition 11. For all n > 0 and π ∈ Gn, L = {Lang(u ·π)∪{z} : u, z ∈ Σ∗, z 6∈ Lang(u ·π)}
is consistently and confidently learnable by an automatic learner which is word length memory
bounded.

Proof. As for π = ε, the proposition clearly holds, assume π 6= ε. We will define two learners.
Both of them are confident and consistent and at least one of them will succeed on any given
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text for a language Lang(u · π) ∪ {z}, where u, z ∈ Σ∗, π ∈ Gn − {ε}, z 6∈ Lang(u · π). The
proposition then follows using Proposition 10. Fix these parameters u and z from now onwards.

The first learner M1 works in the case that z is the first datum different from # in the
input text. The hypothesis space used by M1 is H = {Hconv(w,x,v) : w, x, v ∈ Σ∗ ∪ {#}},
where, for w, x, v ∈ Σ∗, Hconv(#,#,#) = Hconv(w,x,#) = Σ∗, Hconv(w,#,#) = {w}, Hconv(w,x,v) =
Lang(v · π) ∪ {w}; hypotheses different from the above are not used and can be assumed to
represent Σ∗.

The memory of M1 is of the form conv(w, x, v), where w, x, v ∈ Σ∗ ∪ {#}. If mem is the
memory of M1 after having seen input T [k], then its hypothesis after having seen input T [k] is
also mem. We thus just describe below the memory update of M1 (ignoring its hypothesis).

Intuitively, w is the first datum different from # that M1 receives, x 6= w is the second such
datum and v is the longest prefix of x such that all data received belong to Lang(v ·π)∪{w}. The
values of # for w, x are used to denote unknown values of w, x. When w, x are not #, v = # is
used to denote that there is no v such that all input data belong to Lang(v ·π)∪{w}. Formally,
initial memory of M1 is conv(#,#,#). M1 does not change its memory on input #. Below, let
w, x, v, y ∈ Σ∗.

– M1(conv(#,#,#), w) = M1(conv(w,#,#), w) = conv(w,#,#).

– For x 6= w, M1(conv(w,#,#), x) = conv(w, x, v), for v being the longest prefix of x such
that x ∈ Lang(v · π); where if no such v exists, then we let v = #.

– For y 6= w, M1(conv(w, x, v), y) = conv(w, x, v′), for v′ being the longest prefix of v such that
y ∈ Lang(v′ · π); where if no such v′ exists, then we let v′ = #.

– M1(conv(w, x, v), w) = conv(w, x, v).

– M1(conv(w, x,#), y) = conv(w, x,#).

Note that the length of v (after w and x get their values different from #) is monotonically
non-increasing until it gets the value #, if ever. It is now easy to verify that M1 is consistent,
confident and learns L = Lang(u · π)∪{z} from text T for L if the first datum different from #
in T is z.

The second learner M2 works in the case that the first datum x in T is different from z.
The hypothesis space used by the learner is H = {Hconv(w,x,v) : w, x, v ∈ Σ∗ ∪ {#}}, where
for w, x, v ∈ Σ∗, Hconv(#,#,#) = Hconv(w,x,#) = Hconv(#,x,#) = Σ∗, Hconv(#,x,v) = Lang(v · π),
Hconv(w,x,v) = Lang(v · π) ∪ {w} (other undefined hypotheses are not used and can be assumed
to represent Σ∗).

The memory of M2 is conv(w, x, v), where w, x, v ∈ Σ∗ ∪ {#}. If mem is the memory of M2

after having seen input T [k], then its hypothesis after having seen input T [k] is also mem. We
thus just describe below the memory update of M2 (ignoring its hypothesis).

Intuitively, x is the first datum different from # received by the learner, v is the longest
prefix of x such that all data in the input, except maybe for one datum (with w denoting this
datum, if any), belong to Lang(v · π). If and when such a v does not exist, v is taken as #.
Formally, initial memory of the learner is conv(#,#,#). M2 does not change its memory on
input #. Below, let w, x, v, y ∈ Σ∗.

12



– M2(conv(#,#,#), x) = conv(#, x, v), where v is the longest prefix of x such that x ∈
Lang(v · π); if no such v exists, then we let v = #.

– M2(conv(#, x, v), y) = conv(#, x, v), if y ∈ Lang(v · π); otherwise M2(conv(#, x, v), y) =
(y, x, v).

– M2(conv(w, x, v), w) = conv(w, x, v).
– For y 6= w, M2(conv(w, x, v), y) = conv(w′, x, v′), where, v′ is the longest prefix of v such

that at least one of y, w is in Lang(v′ · π); where w′ is #, if both w, y belong to Lang(v′ · π),
otherwise, w′ is the one of w, y which does not belong to Lang(v′ · π).
If there is no v′ as above, then M2(conv(w, x, v), y) = (w, x,#).

– M2(conv(w, x,#)) = conv(w, x,#).
– M2(conv(#, x,#)) = conv(#, x,#).

It is easy to verify that M2 is consistent and learns Lang(u · π)∪ {z}, if z is not the first datum
different from # in the input text. Furthermore, note that length of the third component v in
the memory of M2, after the first input datum different from # is received, is monotonically
nonincreasing, until, if ever, it becomes equal to #. Also, for each value of v, the first component
w of the memory changes at most once, from # to some element in Σ∗. Thus, M2 is confident.

Hence, for each text T for L = Lang(u ·π)∪{z}, either M1 or M2 converges on T to a correct
hypothesis for L. This, along with Proposition 10 implies that L is learnable by a consistent and
confident automatic learner which is word length memory bounded. 2

Theorem 12. For all n > 0, {L ∪ {z} : L ∈ Pn, z ∈ Σ∗ − L} is consistently and confidently
learnable by an automatic learner. Furthermore, the learner is word length memory bounded.

Proof. The theorem follows from Proposition 10, Proposition 11, the finiteness of Gn, and the
fact that each language in Pn is of the form Lang(u · π) for some π ∈ Gn, u ∈ Σ∗. 2

Proposition 13. Suppose n > 0. Suppose π, π′ ∈ Gn−{ε} are such that the constant suffixes of
π and π′ are not right-consistent. Then, L = {Lang(u ·π)∪Lang(v ·π′) : u, v ∈ Σ∗} is learnable
by a consistent and confident automatic learner which is word length memory bounded.

Proof. Note that the requirements on π and π′ imply that Lang(π)∩Lang(π′) = ∅. The learner
essentially tries to learn Lang(u · π) and Lang(v · π′) separately. The hypothesis space used by
the learner is

H = {Hβ : β ∈ {emp} ∪ {conv(u′, v′, c, cu, cv) : u′, v′ ∈ Σ∗, c, cu, cv ∈ {0, 1}}},

where, for u′, v′ ∈ Σ∗, cu, cv ∈ {0, 1},

– Hemp = ∅,
– Hconv(u′,v′,0,cu,cv) = Σ∗,
– Hconv(u′,v′,1,1,1) = Lang(u′ · π) ∪ Lang(v′ · π′),
– Hconv(u′,v′,1,0,1) = Lang(v′ · π′),
– Hconv(u′,v′,1,1,0) = Lang(u′ · π).
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Other hypotheses are not used, and thus can be assumed to represent Σ∗.
If content(T [k]) = ∅, then after having seen the input T [k], the memory and hypothesis of

the learner are ? and emp, respectively. Otherwise, the memory and the hypothesis of the learner
after having seen input T [k] are conv(u′, v′, c, cu, cv) satisfying the following conditions, where
u′, v′ ∈ Σ∗, c, cu, cv ∈ {0, 1}:

(P1) cu is 1 if content(T [k]) ∩ Lang(π) 6= ∅ and 0 otherwise. If cu = 1, then u′ is the longest
string such that all strings in content(T [k])∩Lang(π) belong to Lang(u′π); otherwise u′ = ε.

(P2) cv is 1 if content(T [k]) ∩ Lang(π′) 6= ∅ and 0 otherwise. If cv = 1, then v′ is the longest
string such that all strings in content(T [k])∩Lang(π′) belong to Lang(v′π); otherwise v′ = ε.

(P3) If all strings in content(T [k]) are in Lang(π) ∪ Lang(π′), then c is 1. Otherwise, c is 0.

Note that one can easily automatically update the memory to satisfy the above properties. It is
easy to verify that the learner consistently learns L.

Furthermore, the strings u′ and v′ above are prefixes of the first datum different from #
in the input which belongs to Lang(π) and Lang(π′), respectively. Furthermore, u′, v′ are also
monotonically non-increasing in length (except for the initial change from ε to a prefix of the
first datum different from # which belongs to Lang(π) and Lang(π′), respectively). Also, once
the value of c is 0, it never changes its value. Similarly, once the value of cu (respectively cv) is
1, it never changes its value. Thus, the learner is confident. Hence the proposition follows. 2

Proposition 14. Suppose n > 0. Suppose π, π′ ∈ Gn − {ε} and a, b ∈ Σ are such that a 6= b.
Then, {Lang(uavπ) ∪ Lang(ubwπ′) : u, v, w ∈ Σ∗} is learnable by a consistent and confident
automatic learner which is word length memory bounded.

Proof. The hypothesis space used by the learner is H = {Hconv(u,uav,ubw,c,α,β,c′,c′′) : u, v, w, α, β ∈
Σ∗, c, c′, c′′ ∈ {0, 1}} ∪ {Hemp}, where Hemp = ∅ and

Hconv(u,uav,ubw,c,α,β,c′,c′′) =

{
Lang(uavπ) ∪ Lang(ubwπ′), if c = 1;
Σ∗, otherwise.

The initial memory of the learner is ?. After having seen input text T [t], the memory of the
learner is either ? (if content(T [t]) = ∅) or of the form conv(u, uav, ubw, c, α, β, c′, c′′), where
u, v, w, α, β ∈ Σ∗ and c, c′, c′′ ∈ {0, 1}. Intuitively,

(P1) u is the longest common prefix of all strings in content(T [t]).
(P2) If c′ = 1, then α is the longest string such that content(T [t]) ⊆ Lang(αaπ); c′ = 0 denotes

that such an α does not exist (in this case the actual value of α is irrelevant).
(P3) If c′′ = 1, then β is the longest string such that content(T [t]) ⊆ Lang(βbπ′); c′′ = 0

denotes that such a β does not exist (in this case the actual value of β is irrelevant).
(P4) If c = 0, then content(T [t])∩ uaΣ∗ = ∅ or content(T [t])∩ ubΣ∗ = ∅ or there exist no v, w

such that content(T [t]) ⊆ Lang(uavπ) ∪ Lang(ubwπ′).
(P5) If c = 1, then v, w are the longest strings such that content(T [t]) ⊆ Lang(uavπ) ∪

Lang(ubwπ′). Furthermore, content(T [t]) ∩ uaΣ∗ 6= ∅ and content(T [t]) ∩ ubΣ∗ 6= ∅.
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Formally, the memory and the hypothesis of the learner are defined as follows. Suppose T is the
input text, and memT

t and hypTt are the memory and the hypothesis of the learner after having
seen input T [t]. If memT

t = ?, then hypTt = emp, else hypTt = memT
t . Thus, we just describe how

memT
t+1 is obtained from memT

t .
Initially memory of the learner is memT

0 = ?. The learner will not change its memory on
#, thus memT

t = ? if content(T [t]) = ∅. If content(T [t]) 6= ∅, then suppose the memory of
the learner after having seen input T [t] is memT

t = conv(ut, utavt, utawt, ct, αt, βt, c
′
t, c
′′
t ). Now,

memT
t+1 is defined from memT

t and T (t) via the following automatic updating function.

(1) If T (t) = #, then memT
t+1 = memT

t .
(2) If memt = ? (that is content(T [t]) = ∅), and the new input T (t) = x 6= #, then memt+1 =

(ut+1, ut+1avt+1, ut+1awt+1, ct+1, αt+1, βt+1, c
′
t+1, c

′′
t+1), where

ut+1 = x, ct+1 = 0 (vt+1 and wt+1 are irrelevant in this case and we can take them to be ε).
αt+1 is the longest prefix of x, if any, such that x ∈ Lang(αt+1aπ). If such αt+1 exists, then
c′t+1 = 1; otherwise c′t+1 = 0 (in case c′t+1 = 0, then the value of αt+1 is irrelevant and we can
take it to be ε).
βt+1 is the longest prefix of x, if any, such that x ∈ Lang(βt+1bπ

′). If such βt+1 exists, then
c′′t+1 = 1; otherwise c′′t+1 = 0 (in case c′′t+1 = 0, then the value of βt+1 is irrelevant and we can
take it to be ε).

(3) Suppose T (t) = x′ 6= # and memt = conv(ut, utavt, utbwt, ct, αt, βt, c
′
t, c
′′
t ). Then memt+1 =

conv(ut+1, ut+1avt+1, ut+1bwt+1, ct+1, αt+1, βt+1, c
′
t+1, c

′′
t+1), where

(i) Update of ut+1: ut+1 is the longest common prefix of ut and x′.
(ii) Update of c′t and αt+1:

If c′t = 0, then c′t+1 = 0, αt+1 = αt.
If c′t = 1, then αt+1 is the longest prefix of αt such that αt+1a is a prefix of αta and
x′ ∈ Lang(αt+1aπ); if such a αt+1 exists, then c′t = 1, else c′t+1 = 0 and the value of αt+1

is irrelevant.
(iii) Update of c′′t and βt+1:

If c′′t = 0, then c′′t+1 = 0, βt+1 = βt.
If c′′t = 1, then βt+1 is the longest prefix of βt such that βt+1b is a prefix of βtb and
x′ ∈ Lang(βt+1bπ

′); if such a βt+1 exists, then c′′t = 1, else c′′t+1 = 0 and the value of βt+1

is irrelevant.
(iv) Update of vt+1, wt+1, ct+1:

Case 1: ut+1 is a proper prefix of ut.
(* Note that in this case, there are a′, b′ ∈ Σ, a′ 6= b′, such that all strings in content(T [t])
as well as ut extend ut+1a

′ and x′ extends ut+1b
′. *)

If ut ∈ ut+1aΣ
∗, and x′ ∈ ut+1bΣ

∗, c′t = 1, ut+1a is a prefix of αta and there exists a
longest string w such that x′ ∈ Lang(ut+1bwπ

′), then, vt+1 is such that ut+1avt+1 = αta,
wt+1 = w, ct+1 = 1;
Else if ut ∈ ut+1bΣ

∗, x′ ∈ ut+1aΣ
∗, c′′t = 1, ut+1b is a prefix of βtb and there exists a

longest string v such that x′ ∈ Lang(ut+1avπ), then, wt+1 is such that ut+1bwt+1 = βtb
and vt+1 = v, ct+1 = 1;

15



Otherwise, ct+1 = 0 and values of vt+1, wt+1 are irrelevant and taken to be ε.
Case 2: Not case 1 (that is, ut+1 = ut) and ct = 1:
If x′ ∈ utaΣ∗, then vt+1 is the longest prefix of vt such that x′ ∈ Lang(utavt+1π). If such
a vt+1 exists then let ct+1 = 1, wt+1 = wt; otherwise ct+1 = 0 and values of vt+1, wt+1 are
irrelevant and set to ε.
If x′ ∈ utbΣ∗, then wt+1 is the longest prefix of wt such that x′ ∈ Lang(utbwt+1π

′). If such
a wt+1 exists then let ct+1 = 1, vt+1 = vt; otherwise ct+1 = 0 and values of vt+1, wt+1 are
irrelevant and set to ε.
Case 3: Not case 1 (that is, ut+1 = ut) and ct = 0. In this case let vt+1 = vt, wt+1 = wt
and ct+1 = ct.

This completes the description of how the memory of the learner is updated. It is easy to verify
that the properties (P1) to (P3) are maintained (see (2) when the memory takes a non-? value
for the first time, and the updates in (3)-(i), (ii) and (iii)). For properties, (P4) and (P5) note
that in (3)-(iv) above: if ut+1 = ut and ct = 1, then Case 2 updates vt+1, wt+1, ct+1 to maintain
properties (P4) and (P5). If ut+1 is proper prefix of ut, then by the remark in Case 1, and using
property (P2) and (P3), the construction assigns appropriate values to vt+1, wt+1, ct+1.

Furthermore, using properties (P1), (P4) and (P5), it is easy to see that the learner is
consistent, and it learns the class L. Also, learner is confident as the values of ut, αt, βt are
monotonically non-increasing in t, and once ut is stabilized to its final value, vt and wt are
monotonically non-increasing. Furthermore, once ut, vt, wt, αt, βt have reached their final values,
ct, c

′
t, c
′′
t can only go from 1 to 0, and not the other way around. Thus, the memory gets stabilized

on all inputs, and thus the learner is confident. 2

Theorem 15. For all n > 0, the class Pn ∪ {L ∪ L′ : L,L′ ∈ Pn ∧ L ∩ L′ = ∅} has an
automatic learner. Furthermore, this learner is consistent and confident, and is word length
memory bounded.

Proof. Note that for any two members π1, π2 ∈ Gn−{ε} and any strings u and v with Lang(u ·
π1) ∩ Lang(v · π2) = ∅, we must have that either the constant suffixes of π1 and π2 are not
right-consistent or u, v are not left-consistent.

Thus, the theorem follows using Proposition 10, Theorem 9 (for learning Pn), Proposition 11
and Theorem 12 (for learning languages L ∪ {z}, with L ∈ Pn and z 6∈ L), Proposition 13,
Proposition 14, the fact that Gn is finite, and Pn = {u · π : π ∈ Gn, u ∈ Σ∗}, (where the last
two propositions above give the learnability of L ∪ L′, with L,L′ ∈ Pn and L ∩ L′ = ∅, L,L′ are
infinite). 2

We now consider the general case of learning unions of pattern languages from Pn. While the
above results also hold for non-erasing pattern languages, the following results of this section
hold only for erasing pattern languages.

Lemma 16. Suppose k > 1, and Σ is a finite alphabet. Suppose L0, L1, . . . , Lk are erasing
pattern languages (over the alphabet Σ) generated by regular patterns. If card(Σ) ≥ k + 1, L0 is
infinite and the difference L0 −

⋃
i∈{1,2,...,k} Li is not empty, then this difference is infinite.
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Proof. If S = {i : 1 ≤ i ≤ k, Li is infinite}, then infiniteness of L0 −
⋃
i∈S Li implies the

infiniteness of L0 −
⋃
i∈{1,2,...,k} Li. Thus, without loss of generality, we can assume that each of

L1, L2, . . . , Lk is infinite.
For j with 0 ≤ j ≤ k, suppose Lj = Lang(πj), where πj = α1

j@α
2
j@ . . .@α

tj
j , where tj > 1,

αsj ∈ Σ+ for all s with 1 < s < tj and α1
j , α

tj
j ∈ Σ∗. Note that as Lj is a regular pattern language,

there exists such a πj.
Consider a string w in L0−

⋃
i∈{1,2,...,k} Li. Let w1 = α1

0 and w2 be such that w = w1w2. Below

we will construct a string y ∈ Σ+ such that w1yw2 6∈
⋃
i∈{1,2,...,k} Li. Note that w1yw2 ∈ L0. As

this process can be repeated, we have that L0 −
⋃
i∈{1,2,...,k} Li is infinite. Let

S1 = {j : 1 ≤ j ≤ k ∧ w1 is a proper prefix of α1
j},

S2 = {j : 1 ≤ j ≤ k ∧ w2 is a proper suffix of α
tj
j },

S3 = {j : 1 ≤ j ≤ k ∧ w1 is not left-consistent with α1
j or w2 is not right-consistent with α

tj
j }.

For each j ∈ S1, let cj = α1
j (|w1|) (thus cj is the character right after the prefix w1 in α1

j ).

For each j ∈ S2, let cj = α
tj
j (|αtjj | − |w2| − 1) (thus cj is the character right before the suffix

w2 in α
tj
j ). Let Σ ′ = Σ − {cj : j ∈ S1 ∪ S2}. The y we choose below will be a member of

(Σ ′)+. Thus, it easily follows that w1yw2 6∈ Lj, for j ∈ S1 ∪ S2 ∪ S3. Furthermore, clearly
card(Σ ′) > k − card(S1 ∪ S2 ∪ S3).

For j ∈ {1, 2, . . . , k}− (S1 ∪S2 ∪S3), let rj be maximal, and correspondingly βj be maximal

prefix of α
rj
j such that w1 ∈ Lang(α1

j@α
2
j@ . . .@α

rj−1
j @βj). Note that there exists such a rj > 1

as α1
j is a prefix of w1. Furthermore, note that if rj 6= tj, then βj is a proper prefix of α

rj
j .

Similarly, let r′j be minimal, and γj be corresponding maximal suffix of αr′j such that w2 ∈

Lang(γj@α
r′j+1

j @αr
′
j+2@ . . .@α

tj
j ). Note that there exists such a r′j < tj as α

tj
j is a suffix of w2.

Furthermore, if r′j 6= 1, then γj is a proper suffix of α
r′j
j .

Fix j ∈ {1, 2, . . . , k} − (S1 ∪ S2 ∪ S3). Now, rj ≤ r′j (otherwise, w1w2 ∈ Lj, as w1 ∈
Lang(α1

j@α
2
j . . .@α

rj−1
j @) and w2 ∈ Lang(@α

rj
j @α

rj+1
j . . .@α

tj
j )). If rj < r′j, then rj 6= tj, and

thus βj must be a proper prefix of α
rj
j . Let S4 = {j ∈ {1, 2, . . . , k} − (S1 ∪ S2 ∪ S3) : rj < r′j

or |βjγj| < |α
rj
j |}. For j ∈ S4, let cj = α

rj
j (|βj|). Let Σ ′′ = Σ ′ − {cj : j ∈ S4}. We will

make sure that y ∈ (Σ ′′)+. Thus, we will have that w1yw2 6∈ Lj′ , for j′ ∈ S4. Note that
card(Σ ′′) ≥ k − card(S1 ∪ S2 ∪ S3 ∪ S4).

Note that for j ∈ {1, 2, . . . , k} − (S1 ∪ S2 ∪ S3 ∪ S4), rj = r′j and |βjγj| > |α
rj
j | (here, rj = r′j

and |βjγj| = |αrjj | is not possible as otherwise, w1w2 ∈ Lj). Furthermore, as 1 < rj = r′j < tj,

βj 6= ε, γj 6= ε, βj is a proper prefix of α
rj
j and γj is a proper suffix of α

rj
j . Thus, we have that

|βj| ≥ 1, |γj| ≥ 1, and |αrjj | ≥ 3.

Let r > |αrjj |, for all j ∈ {1, 2, . . . , k} − (S1 ∪ S2 ∪ S3 ∪ S4). Let a, b ∈ Σ ′′ be such that

a 6= α
rj
j (|βj|) and b 6= α

rj
j (|αrjj |− 1−|γj|) (that is βja is not a prefix of α

rj
j and bγj is not a suffix

of α
rj
j ), for all j ∈ {1, 2, . . . , k} − (S1 ∪ S2 ∪ S3 ∪ S4).
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Claim 17. For j ∈ {1, 2, . . . , k} − (S1 ∪ S2 ∪ S3 ∪ S4), for any y ∈ arΣ∗br, if w1yw2 ∈ Lj, then
α
rj
j is a substring of y.

The claim holds as, for the substitution θ such that w1yw2 = πjθ, by definition of rj, w1

is a prefix of (α1
j@α

2
j . . .@α

rj−1
j @βj)θ. As, α

rj
j (|βj|) 6= a, w1a

r must be a proper prefix of

(α1
j@α

2
j . . .@α

rj−1
j @α

rj
j )θ. Similarly, by definition of r′j, w2 is a suffix of (γj@α

rj+1
j @ . . .@α

tj
j )θ.

As, α
rj
j (|αrjj | − 1− |γj|) 6= b, brw2 must be a proper suffix of (α

rj
j @α

rj+1
j @ . . .@α

tj
j )θ. Claim thus

follows as |αrjj | < r.
If w1a

rbrw2 6∈ Lang(Lj), for all j ∈ {1, 2, . . . , k}−(S1∪S2∪S3∪S4) then one can take y = arbr.
Otherwise, suppose w1a

rbrw2 ∈ Lang(Lj0), for some j0 ∈ {1, 2, . . . , k}−(S1∪S2∪S3∪S4). Then,
by Claim above, α

rj0
j0

= aibi
′

for some i, i′. Furthermore, i 6= 0 and i′ 6= 0, as α
rj0
j0

(|βj0 |) 6= a and

α
rj0
j0

(|αrj0j0 | − 1− |γj0|) 6= b. Thus

Claim 18. (w1(|w1| − 1), w2(0)) ∈ {(a, a), (b, b), (b, a)}.

The claim holds as βj0 is a suffix of w1 and a nonempty proper prefix of α
rj0
j0

, and γj0 is a prefix

of w2 and a nonempty proper suffix of α
rj0
j0

, and |βj0γj0| > |α
rj0
j0
|.

If {1, 2, . . . , k}− (S1∪S2∪S3∪S4) = {j0}, then taking y = (ab)r, we have that w1yw2 6∈ Lj0 ,
as α

rj0
j0

must be a substring of (ab)r, which would imply α
rj0
j0

= ab, a contradiction to |αrj0j0 | ≥ 3.
So suppose card({1, 2, . . . , k}−(S1∪S2∪S3∪S4)) ≥ 2. Thus, card(Σ ′′) > 2. Let c ∈ Σ ′′−{a, b}.

Then, we claim that w1a
rcrbrw2 6∈ Lang(Li) for any i ∈ {1, 2, . . . , k}−(S1∪S2∪S3∪S4). Suppose

by way of contradiction that for some i ∈ {1, 2, . . . , k}−(S1∪S2∪S3∪S4), w1a
rcrbrw2 ∈ Lang(Li).

Then, by Claim 17 we must have that αrii is a substring of arcrbr. By choice of a, b ∈ Σ ′′, we
have that αrii 6∈ a∗ and αrii 6∈ b∗. Furthermore, by Claim 18, αrii 6∈ c∗, as αrii contains w1(|w1|− 1)
and w2(0). Now consider the following two cases.

Case 1: αrii ∈ a+c+. In this case, by Claim 18, we must have that w2(0) = a, and some string
in a+c+ is a prefix of w2. But this contradicts the fact that γj0 (which is a non-empty suffix of
α
rj0
j0
∈ a+b+) is a prefix of w2.

Case 2: αrii = c+b+. In this case, by Claim 18, we must have that w1(|w1| − 1) = b, and some
string in c+b+ is a suffix of w1. But this contradicts the fact that βj0 (which is a non-empty
prefix of α

rj0
j0
∈ a+b+) is a suffix of w1.

From the above analysis it follows that, for some y 6= ε, w1yw2 6∈
⋃
j∈{1,2,...,k} Lj. 2

Recall that lleast(S) denotes the length-lexicographically least string in the set S.

Theorem 19. Suppose |Σ| ≥ 3, n > 0 and π, π′ ∈ Gn−{ε}. Let L = {Lang(u·π)∪Lang(v ·π′) :
u, v ∈ Σ∗, lleast(Lang(u · π)) ≤ll lleast(Lang(v · π′))}. Then, there is a confident and automatic
learner Mπ,π′ using hypothesis space H = (Hβ)β∈J for some regular index set J and automatic
family H such that:

(1) Mπ,π′ is word length memory bounded,
(2) Mπ,π′ learns L,
(3) for all texts T for a language L 6∈ L, Mπ,π′ converges on T to an index β such that L−Hβ

is finite.
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Proof. Note that by Lemma 16 different languages in L are pairwise infinitely different. The
hypothesis space used by the learner is {Hconv(x,u,v,c) : x, u, v ∈ Σ∗, c ∈ {0, 1, 2}}∪{Hemp}, where
Hemp = ∅, Hconv(x,u,v,0) = Σ∗, Hconv(x,u,v,1) = Lang(u ·π) and Hconv(x,u,v,2) = Lang(u ·π)∪Lang(v ·
π′).

If content(T [k]) = ∅, then the memory of the learner Mπ,π′ will be ? and hypothesis of the
learner will be emp; otherwise, the memory and hypothesis of the learner Mπ,π′ will be the same.
Thus we will just describe how the learner updates its memory.

Suppose T is the input text. Let memT
k denote the memory of the learner after having seen

T [k]. If content(T [k]) = ∅, then memT
k = ?. If content(T [k]) 6= ∅, then memT

k is of the form
conv(xk, uk, vk, ck), where xk, uk, vk ∈ Σ∗, ck ∈ {0, 1, 2}.

The following properties will be satisfied by memT
k = (xk, uk, vk, ck).

(P1) xk is the length-lexicographically smallest string in content(T [k]). Below let k0 be least
such that T (k0) = xk.

(P2) If there does not exist a prefix uk of xk such that xk is the length-lexicographically smallest
string in Lang(uk · π), then ck = 0 and values of uk, vk are irrelevant.

For the following properties, assume that there exists a prefix uk of xk such that xk is the length-
lexicographically smallest string in Lang(uk · π). Note that such a uk is unique, if it exists.

(P3) uk is the prefix of xk such that xk is the length-lexicographically smallest string in Lang(uk ·
π).

(P4) If all strings in {T (s) : k0 ≤ s < k} − {#} belong to Lang(uk · π), then ck = 1 (in this
case value of vk is irrelevant).

(P5) If there exists a string in {T (s) : k0 ≤ s < k}−{#} which does not belong to Lang(uk ·π),
then
If there exists a vk such that {T (s) : k0 ≤ s < k} − {#} ⊆ Lang(uk · π)∪Lang(vk · π′), then
vk is the longest such string and ck = 2. Otherwise, ck = 0 and value of vk is irrelevant.

Intuitively, c = 0 denotes that for the currently seen length-lexicographically minimal string x,
there are no u, v such that x is the length-lexicographically smallest string in Lang(u · π), and
all the strings seen after x belong to Lang(u · π) ∪ Lang(v · π′).

The case of c = 1 denotes that, for the currently seen length-lexicographically minimal string
x, x is also the length-lexicographically smallest string in Lang(u · π); furthermore, all strings
seen in the input after x belong to Lang(u · π).

The case of c = 2 denotes that, for the currently seen length-lexicographically minimal string
x, x is also the length-lexicographically smallest string in Lang(u · π); furthermore, at least one
input string seen after x does not belong to Lang(u · π), and all strings seen in the input after
x belong to Lang(u · π) ∪ Lang(v · π′), and v is the longest such possible string.

The learner Mπ,π′ can now be defined to satisfy the above properties as follows. Whenever
Mπ,π′ sees an input w which is length-lexicographically smaller than any previously seen input,
it changes its memory to conv(w, u, v, c) satisfying the following conditions: v = ε; if there is a
prefix s of w such that w is the length lexicographically least element of Lang(s · π), then u = s
and c = 1, else u = w and c = 0.
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In other cases, suppose the previous memory of Mπ,π′ is conv(x, u, v, c) and the new input is
w. Then, use the first case below which applies:

Case 1: c = 0 or w ∈ Lang(u · π). In this case new memory is conv(x, u, v, c).
Case 2: w 6∈ Lang(π′). In this case change the memory to conv(x, u, v, 0).
Case 3: c = 1. In this case let v′ be the longest prefix of w such that w ∈ Lang(v′ · π′), and

change the memory to conv(x, u, v′, 2). If there is no such v′, then change the memory to
(x, u, v, 0).

Case 4: c = 2. In this case let v′ be the longest prefix of v such that w ∈ Lang(v′ ·π′), and change
the memory to (x, u, v′, 2). If there is no such v′, then change the memory to (x, u, v, 0).

Note that, on all input texts T , the memory/conjecture of Mπ,π′ converges. To see this, note that
value of limk→∞ xk clearly converges to the length-lexicographically least string in content(T ).
Once final value limk→∞ xk is achieved, then limk→∞ uk and limk→∞ ck also converge (as ck can
only go from 1 to 2 to 0, after limk→∞ xk achieves its final value). Furthermore, vk is monotonically
non-increasing in length while ck = 2.

Suppose content(T ) 6= ∅ and the converged memory/conjecture is conv(x, u, v, c). Then, using
the properties (P1) to (P5) above for different values of c, the final hypothesis of the learner is
either for Σ∗ (when c = 0), or u · π contains the length-lexicographically smallest string in the
input and content(T ) ⊆∗ Hconv(x,u,v,c) (when c = 1 or 2).

Furthermore, if content(T ) = L = Lang(s · π) ∪ Lang(s′ · π′), for some s, s′ ∈ Σ∗, where
Lang(s · π) contains the length-lexicographically smallest string in L, then the following two
statements hold:

(a) Mπ,π′ on T converges to an index β such that Hβ ⊇ L, as L ⊆∗ Hβ, and thus by Lemma 16,
L ⊆ Hβ.

(b) Mπ,π′ converges on T to an index β such that Hβ ⊆ L (and thus by (a) Hβ = L). To see
this, suppose Mπ,π′ converges on T to index conv(x, u, v, c). Then x is the length-lexicographically
least element of L, Lang(s · π) and Lang(u · π). Thus s = u. Furthermore, if c = 2, then we
have that Lang(s′ · π′) ⊇ Lang(v · π′) (since in Cases 3 and 4, the algorithm chooses the longest
possible prefix). So the theorem follows. 2

Corollary 20. Suppose |Σ| ≥ 3 and n > 0. Let L = {Lang(u · π) ∪ Lang(v · π′) : u, v ∈ Σ∗,
π, π′ ∈ Gn − {ε}}. Then, there is a confident and automatic learner M using hypothesis space
H = (Hβ)β∈J for some regular index set J and automatic family H such that:

(1) M is word length memory bounded;
(2) M learns L;
(3) for all texts T for a language L 6∈ L, M converges on T to an index β such that L−Hβ

is finite.

Proof. For π, π′ ∈ Gn−{ε}, let Mπ,π′ , be as given by Theorem 19. Define M which uses memory
which is the convolution of the memories of all these Mπ,π′ , π, π′ ∈ Gn − {ε}.

Hypothesis of M is the hypothesis of Mπ,π′ , where π, π′ are chosen to be length-lexicographi-
cally least pair such that the conjecture of Mπ,π′ is not a proper superset of the conjecture of any
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other Mπ′′,π′′′ . Now it follows using Theorem 19 and Lemma 16, that M learns L. For any text
T for L 6∈ L, (3) holds as this holds for the limiting conjectures of each of the learners Mπ,π′ . 2

Theorem 21. Suppose |Σ| ≥ 3 and n > 0. Let L = {L1 ∪ L2 : L1, L2 ∈ Pn}. Then, there exists
an automatic learner which is word length memory bounded such that:

(1) The learner learns L;
(2) For all texts T for a language L 6∈ L, the learner converges to an index for a language L′

such that L− L′ is finite.

Proof. For π ∈ Gn, let

Lπ1 = {Lang(s · π) ∪ {z} : s ∈ Σ∗, z ∈ Σ∗, z 6∈ Lang(s · π)},
L1 =

⋃
π∈Gn

Lπ1 and

L2 = {L1 ∪ L2 : L1, L2 ∈ Pn, |L1| > 1, |L2| > 1}.

Let Mπ
1 and Mπ

2 be the two learners given in the proof of Proposition 11. Note that (1) for every
text T for L ∈ Lπ1 , at least one of Mπ

1 and Mπ
2 learns L from text T , and (2) for any input text T ,

if Mπ
1 (Mπ

2 ) converges to the hypothesis different from that of Σ∗, say Lang(s ·π)∪S, where S is
either ∅ or a set containing one element not in Lang(s·π), then S ⊆ content(T ) ⊆ Lang(s·π)∪S.
(This property can be easily verified from the construction of M1 and M2 in Proposition 11).

The learner for L2 (say M) as given in Corollary 20 is confident (though may not be consis-
tent).

Let N be a learner which on input text T has memory containing the convolution of the
memories of the learner M for L2 (from Corollary 20) and the memories of the learners Mπ

1 and
Mπ

2 , for each π ∈ Gn. Thus, N can simulate each of the above learners. Additionally, in memory
it remembers if it has seen at most 2 elements along with the elements in the input text, if there
are at most 2 elements in the input text.

The hypothesis space used by N contains the hypothesis spaces used by Mπ
r (for π ∈ Gn,

r ∈ {1, 2}) and by the learner M , as well as hypotheses for all languages containing at most two
elements of Σ∗. The hypothesis of N on any input is based on the first case below which applies:

(a) The hypothesis for the input elements seen up to then, if it contains at most two elements;
(b) The hypothesis of the learner Mπ

r , π ∈ Gn r ∈ {1, 2}, if this hypothesis is not a proper
superset of any of the hypothesis of Mπ′

r′ , π′ ∈ Gn and r′ ∈ {1, 2}, and contains at most
finitely many elements not in the hypothesis of the learner M ;

(c) The hypothesis of the learner M , if no such learner Mπ
r as in (b) above exists.

Clearly the above learner learns all languages of cardinality at most two.
Now consider the case of an input language L ∈ L1, of cardinality more than 2. Using

Lemma 16 and the consistency of the learners Mπ′

r′ as well as the property of the learner M for
L2 that its final hypothesis misses out at most finitely many elements in the input language, one
can see that the learner N converges as in (b) above to a correct hypothesis.
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The last remaining case is that the input language L is in L2 − L1. Now, using Lemma 16,
consistency of Mπ′

r′ and the fact that a hypothesis Lang(s ·π′)∪{z} by Mπ′

r′ implies {z} ⊆ L, we
have that (b) cannot hold in the limit or the hypothesis of the case (b) and the learner M are
equivalent. Thus, N converges to the same language as the learner M for L2. Thus, N learns
L1 ∪ L2. 2

5 Character variables

In this section, we consider the following modification of pattern languages. We consider two
types of variables: character variables which can be replaced by one symbol of Σ and string
variables which can be replaced by any string, including the empty string. For such a pattern π,
Lang(π) denotes the set of all strings that can be obtained by replacing character variables by
some character in Σ, and string variables by some string in Σ∗.

Note that one can simulate non-erasing pattern languages (as studied by Angluin [2]) by
putting one character variable followed by one string variable. The above kind of languages are
a special case of typed pattern languages considered by Koshiba [24]. The non-erasing pattern
language associated with pattern xyxz can be proven to be regular, by chosing the equivalent
pattern x′y′yx′z′z of character variables x′, y′, z′ and erasing string variables y, z.

Definition 22. Suppose n ∈ N. Let

On = {π : π contains only constants and character variables and for all i, j < |π| with
π(i) = π(j) and π(i) being a character variable, card({π(`) : i < ` < j, π(`) is a character
variable}) ≤ n}

and On = {Lang(π) : π ∈ On}.

For example, the pattern abxaxyazba is in O0 (where Σ = {a, b} and x, y, z are character
variables) and axbxbybx is in O2 but not in O1.

Remark 23. In this remark we show that, for all n ∈ N, On is an automatic family. Note that
for π ∈ On, the number of variables in π might be large. This causes representation problems if
we use On as indices for the automatic family — the corresponding alphabet set becomes infinite.
The trick is to reuse variables, as at any point at most n+ 1 variables can be “active”. Consider
any pattern π ∈ On. We say that a variable π(`) is active at `′, if both {`′′ ≤ `′ : π(`) = π(`′′)}
and {`′′ ≥ `′ : π(`) = π(`′′)} are not empty. Note that by definition of On, at any `′, there can be
at most n+ 1 active variables. Thus, we will code π by using only n+ 1 variables, where inactive
variables are reused. The following sequence of definitions and arguments show that, for each
n ∈ N, On is an automatic family.

(a) For i ≤ n, let si, vi be 2n+ 2 symbols not in Σ. Let X = {si : i ≤ n} and Y = {vi : i ≤ n}.
Let PP = {π′ ∈ (Σ ∪X ∪ Y )∗ : (∀j < |π′|) [(π′(j) = vi)⇒ (∃j′ < j) [π′(j′) = si]]}.
Intuitively, each occurrence of si indicates that the variable number i is being reused from
that point onwards. Occurrence of vi in π′ then just corresponds to the variable which occurs
at the most recent previous si in π′.
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(b) For π′ ∈ PP , let h be a function such that, if π′(j) = vi, then h(j) = j′ for the largest j′ < j
such that π′(j′) = si. Note that the mapping 0j → 0h(j) is automatic.
Let LL(π′) = {y : (∀`, `′ < |π′|) [[(π′(`) ∈ Σ) ⇒ (y(`) = π′(`))] and [(π′(`) = vi) ⇒ (y(`) =
y(h(`)))]]}.
As the above gives a first order definition for checking whether y ∈ LL(π′), we have that
{(π′, x) : x ∈ LL(π′)} is automatic.

(c) For any pattern π ∈ On there exists a pattern π′ ∈ PP such that Lang(π) = LL(π′). To see
this, define π′ as follows.

BEGIN
Let Free = {i : i ≤ n+ 1}.
For j = 0 to |π| − 1 do

Beginfor
If π(j) ∈ Σ,
Then let π′(j) = π(j).
Else (*π(j) is a variable*)

If π(j) does not appear in π[j],
Then let i = min(Free), let Free = Free− {i} and let π′(j) = si.
Else let π′(j) = vi, for the unique i ≤ n such that for some j′ < j, π(j′) = π(j)
and π′(j′) = si.

Endif
If π(j) is a variable which does not appear in π(j + 1)π(j + 2) . . . π(|π| − 1),
Then let Free = Free ∪ {i}, where i satisfies π′(j) ∈ {si, vi}.
Endif

Endif
Endfor

END

It can be easily verified that Lang(π) = LL(π′). We say that π′ above represents pattern π.
(d) For π′ ∈ PP , it is easy to automatically check if it “represents” a pattern in On. To see this

note that π′ represents a pattern in On iff for all `′ < |π′|, such that π′(`′) = vi, for ` = h(`′),
the following property is satisfied:
card({h(j) : π′(j) ∈ Y, ` < j < `′} ∪ {j : π′(j) ∈ X, ` < j < `′}) ≤ n.

(e) Thus, we have that On = {LL(π′) : π′ ∈ PP and π′ represents a pattern in On}. Thus, On
is an automatic family.

Theorem 24. For all n ∈ N, On is learnable by an automatic learner with memory bounded by
the length of the longest datum seen so far in the input.

Proof. Suppose s and v are special symbols not in Σ.
The memory of the learner will be either ? or of the form conv(x, x0, x1, . . . , x2n), where

x ∈ Σ∗ and each xr is in Σ∗ · (s · (Σ ∪ {v})∗)∗, with |xr| = |x|. Furthermore, xr(`) ∈ {x(`), s, v}
for all ` < |x| and all r ≤ 2n. Let MEM = {conv(x, x0, x1, . . . , x2n) : x ∈ Σ∗ and for r ≤ 2n,
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xr ∈ Σ∗ · (s · (Σ ∪ {v})∗)∗ and |xr| = |x|}, that is MEM is the set of possible values for the
memory (besides ?).

The hypothesis of the learner will always be the same as its memory, where Hβ, β ∈ MEM
is as defined below.

We say that β = conv(x, x0, x1, . . . , x2n) ∈ MEM is a prepattern iff, for every ` < |x|, there is
at most one r ≤ 2n with xr(`) ∈ {s, v}. Intuitively, a prepattern codes a pattern π as described
below.

For a prepattern conv(x, x0, x1, . . . , x2n), let PAT(conv(x, x0, x1, . . . , x2n)) = π be such that

(a) |π| = |x|;
(b) π(`) = x(`) iff xr(`) = x(`) for all r ≤ 2n;
(c) π(`) is the variable v`′ iff for some r ≤ 2n, xr(`) ∈ {s, r} and `′ ≤ ` is the largest number

such that xr(`
′) = s.

Intuitively, in a prepattern conv(x, x0, x1, . . . , x2n) each xi codes some of the variables appearing
in the target pattern π: appearance of s and v’s (before the next s) in xi corresponds to a
(distinct) variable which appears in the corresponding locations in π.

If β is a prepattern, then we let Hβ = Lang(PAT(β)), else we let Hβ = ∅. Note that
H = {Hβ : β ∈ MEM} is an automatic family, as one can automatically check whether
conv(x, x0, x1, . . . , x2n) is a prepattern, and for a prepattern β, automatically decide if y ∈
Lang(PAT(β)). Note that one does not need to compute PAT(β) to do this, as for β =
conv(x, x0, x1, . . . , x2n), y ∈ Lang(PAT(β)) iff

(∀0`, 0`′ : 0` <ll 0`
′ ≤ll x) (∀r ≤ 2n)

[[xr(`) = s and xr(`
′) = v]⇒ [(∃0`′′ : 0` <ll 0`

′′
<ll 0`

′
)[xr(`

′′) = s] or y(`) = y(`′)]].

Thus, H is an automatic family.
For all π ∈ On, for a text T for Lang(π), the learning algorithm will eventually give a

prepattern β such that PAT(β) = π (except for possible renaming of variables).
The automatic learner initially has memory ? until it sees the first input x 6= #; at which

point its memory is conv(x, x, x, . . . , x) (x appears 2n+ 2 times in the convolution).
In the following, suppose π is the target pattern. The invariants maintained by the learner

on its memory conv(x, x0, x1, . . . , x2n), after having seen input T [k], with content(T [k]) 6= ∅ are
as follows.

(I) x is the first element of T [k] different from #.
(II) If, for all w ∈ content(T [k]), w(`) = x(`), then xr(`) = x(`), for all r ≤ 2n.

(* Intuitively, x(`) appears to be a constant. *)
(III) For each ` < |x|, the following are equivalent statements:

(a) There exists a w ∈ content(T [k]) such that ` is the least number for which w(`) 6= x(`).
(b) There exists a r ≤ 2n such that xr(`) = s.
Furthermore, in (b) above, such a r is unique and for all r′ ≤ 2n with r′ 6= r, xr′(`) = x(`).
Also, once xr(`) = s, it never gets modified again.
Note that this property implies that, for any `, there is at most one r such that xr(`) = s.
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(* Intuitively, exactly one of the xr will be assigned the task of coding a variable in π. This
assignment takes place when a w is received as input such that, for the least ` such that π(`)
is the corresponding variable, w(`) 6= x(`) and w(`′) = x(`′), for `′ < `.*)

(IV) Suppose xr(`) = s and `′ > ` is the least (if any) such that xr(`
′) = s; if no such `′ exists,

then let `′ =∞ for the following.
Let S = {w ∈ content(T [k]) : ` is the least `′′ such that w(`′′) 6= x(`′′)}.
Let S ′ = {`} ∪ {`′′ : ` < `′′ < `′ and xr(`

′′) = v}.
(a) `′′ ∈ S ′ implies that for all w ∈ S, [w(`′′) = w(`) and x(`′′) = x(`)].
(b) S ′ ⊇ {`′′ : π(`) = π(`′′)}.
(* Intuitively, the set S ′ represents the possible locations where the variable π(`) may appear
in π.*)

Note that, if ` is the position where a variable π(`) first appears in π, then once a string w
is received as input such that the positions `′′ at which w(`′′) 6= x(`′′) is exactly the positions
in which a variable π(`) appears in π, we will have by (IV) above that S ′ is exactly the set of
positions at which variable π(`) appears in π.

Once all such w, each corresponding to a variable in π, have been received, we will have by the
above invariants that conv(x, x0, x1, . . . , x2n) is a prepattern and PAT(conv(x, x0, x1, . . . , x2n))
will be a pattern equivalent to π (except for variable renaming).

What remains is to show how the memory is updated to maintain the invariants. Recall that
memory of M remains as ? until it first receives a non-# input x. At that time, the memory of
the learner becomes conv(x, x, x, . . . , x) (where x appears 2n+2 times in the convolution). From
then on, M does not update its memory on input # or input x. On receiving an input y 6= x,
M does the following.

Let ` be least such that y(`) 6= x(`).
(A) If there exists a r such that xr(`) = s, then:

Let `′ be least such that `′ > ` and xr(`
′) = s; if no such `′ exists, then let `′ = |x|.

Let S ′′ = {`′′ : ` < `′′ < `′, y(`′′) = y(`) and x(`′′) = x(`)}.
For `′′ such that ` < `′′ < `′, if `′′ 6∈ S ′′, then let xr(`

′′) = x(`′′) (that is, if xr(`
′′) = v, then

it is reset to be x(`′′)).

Note that invariants (I), (II), (III) and (IV) (a) are clearly maintained. For invariant (IV)
(b) note that for all `′′ such that π(`) = π(`′′), we must have y(`) = y(`′′) and x(`) = x(`′′);
thus, `′′ ∈ S ′′ and (IV) (b) also holds.
(* Intuitively, for ` < `′′ < `′, this step removes the variable v at xr(`

′′), if it is found that
π(`) and π(`′′) cannot be the same variable. *)
Note that checking condition (A), and doing the update of memory as above is automatic.

(B) If there does not exist a r such that xr(`) = s, then:
(* Intuitively, in this step we will assign an r to code the variable π(`). Note that this is the
first time that an input y has been received with ` being least `′ such that y(`′) 6= x(`′). *)
Let S = {`′′ : y(`′′) = y(`) and x(`′′) = x(`)}. Note that S is a superset of `′′ such that
π(`) = π(`′′).
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For each r, let `r be the largest value < `, if any, such that xr(`r) = s (if no such `r exists,
then one takes `r to be −1). Similarly, for each r, let ur be the least, if any, such that ur > `
and xr(ur) = s (if no such ur exists, then take ur to be |x|).
Without loss of generality assume that `0 ≤ `1 ≤ . . . ≤ `2n.
(a) For r with 0 ≤ r ≤ n and for all `′ with ` ≤ `′ < ur, let xr(`

′) = x(`′).
(* Intuitively, if `r 6= −1, then variable π(`r) cannot appear in positions `′ with ` ≤ `′,
as there are at least n + 1 other variables π(`r′), n < r′ ≤ 2n, and π(`) which appear
between locations `r (exclusive) and ` (inclusive). Thus, we can safely reset these places
`′′ < ur to x(`′), without violating invariant (IV) (b) for these variables. *)

(b) Let u be the median of ur’s.
Delete from S all elements ≥ u.
(* Intuitively, if u < |x|, then variable π(`) cannot appear in positions `′ with u ≤ `′, as
there are at least n+1 other variables π(ur′), (for r′ satisfying ` < ur′ ≤ u), which appear
between locations ` (exclusive) and u (inclusive). Thus, we can safely deduce that π(`)
cannot appear in π at or beyond location u. *)

(c) Let r be such that r ≤ n and ur ≥ u.
(* Note that there exists such an r by u being median of {ur′ : r′ ≤ 2n}. *)
Now, by invariant (IV) (b) we have that, if `r 6= −1, then variable π(`r) does not appear
beyond location ` (using operation done in part (a) above, and invariant (IV) (b)). We
thus assign xr to code the variable π(`).
For each `′ ∈ S − {`}, let xr(`

′) = v. Let xr(`) = s.
For each r′ 6= r, let xr′(`) = x(`). (* This is done to ensure invariant (III) — Note that
this change is safe as π(`) is not equal to any other variable π(`′′′), with `′′′ < `, as ` is
the least position at which y differs from x. *)

Based on the comments given above, it is easy to verify that the invariants are maintained. Now
it follows, using the comment given after the invariants that the limiting value of the memory
gives a prepattern β such that PAT(β) is π (except for possible renaming of variables).

Thus, M above learns L. 2

Let U be a fixed plain universal Turing machine which maps strings to strings, that is, a partial-
recursive function from strings to strings such that the complexity defined by it is optimal up
to a constant; see the book of Li and Vitányi [28] for the existence of universal Turing machines
and further background. Then, the plain Kolmogorov complexity of a string x is the length of
the least string p such that U(p) = x. The plain Kolmogorov complexity of a string x relative
to K, the halting problem, is the length of the least string p such that UK(p) = x.

Theorem 25. The class L = {L ∪H : L ∩H = ∅ ∧ L,H ∈ O0} is not automatically learnable.

Proof. Note that the patterns in which each character variable appears at most once are in
O0. Let K denote the halting problem.

For any n, and i ≤ n, let σi,n ∈ {0, 1}n be such that the plain Kolmogorov complexity, relative
to K, of σ0,nσ1,n . . . σn,n is at least n2+n. Let Li,n = {0i10n−iσi,n}. Let Hi,n = {0, 1}i ·0·{0, 1}2n−i.
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The language Hi,n is generated by a pattern which has i character variables followed by 0 followed
by 2n − i character variables (where all the character variables in Hi,n are distinct). Note that
Li,n, Hi,n ∈ O0 and Li,n ∩Hi,n = ∅.

Fix an automatic learner M . We will show below that M fails to learn Li,n ∪Hi,n, for some
i, n with i ≤ n.

Let T ′i,n be a text for Hi,n (obtained effectively from i, n). Let τ be a sequence of length n+ 1
such that τ(j) = 0j10n−jσj,n, for j ≤ n. Let Ti,n = τT ′i,n. Note that Ti,n is a text for Li,n ∪Hi,n.

The memory of M , after receiving input τ , can be of length at most 2n + c(n + 2), where c
is a constant independent of n. To prove this, we inductively show that after receiving the m-th
element of τ , the length of the memory of the learner is of length at most 2n+ c · (m+ 1), for c
being greater than both the number of states of the automata accepting the graph of the learner
M and the length of the initial memory of M . For m = 0, this claim clearly holds. Inductively,
if the memory of M after receiving the m-th element is of length at most 2n+ c · (m+ 1), then
as the automata accepts the graph of M , the length of the new memory can be at most the
maximum of the length of the older memory and of the length of the new input plus the number
of states of the automata. Thus, the memory of M after seeing m+ 1 elements of τ is bounded
in length by 2n+ c · (m+ 2).

One can compute σi,n, using oracle K, by considering the final conjecture of M on input Ti,n.
Hence, σi,n can be computed, using oracle K, from i, n and the memory of M after seeing input
τ . It follows that the plain Kolmogorov complexity of σ0,nσ1,n . . . σn,n, relative to K is bounded
by a function linear in n, a contradiction. Thus, no such learner M can exist. 2

We now consider the case of patterns having both string and character variables. We will only
consider the case where each variable appears only once. Let n ∈ N. Let Rn consist of the class
of all pattern languages, where in the pattern each character variable or string variable occurs at
most once and where there are at most n− 1 items (characters or variables of either type) after
the first occurrence of a string variable, if any. It can be shown that every automatic family of
pattern languages, containing character and/or string variables, generated by patterns without
repeating variables is contained in some Rn.

We now show thatRn has an automatic learner. Let Sn denote the set of all patterns of length
at most n, starting with a string variable and having each variable at most once. Let O′ denote
the set of all languages which are generated by patterns involving only character variables, each
appearing at most once.

Let Rn,π, for π ∈ Sn, contain all languages of the form L · Lang(π) with L ∈ O′.
Then Rn is the union of O′ and the classes Rn,π, π ∈ Sn. Using Proposition 10, it suffices to

give automatic consistent and confident learners for O′ and Rn,π, π ∈ Sn.

Proposition 26. O′ is learnable by a consistent and confident automatic learner.

Proof. The hypothesis space H consists of the following languages: Hemp = ∅, Hcomp = Σ∗ and,
for π ∈ (Σ∪{@})∗, Hπ = Lang(π), where each appearance of @ in π denotes a distinct character
variable (that is all variables appearing in π are assumed to be distinct).
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The learner N0 for O′ conjectures emp until it sees the first datum x. From then onwards, the
learner maintains in memory a string a0a1 . . . ai−1 of length i = |x|, where for r < i, ar = x(r)
if all the strings y observed so far have y(r) = x(r); otherwise ar is @ representing a character
variable. If only strings of length |x| have been observed so far, then N0 conjectures a0a1 . . . ai−1,
else N0 conjectures comp. It is easy to verify that the above learner is automatic, consistent and
confident and learns O′. 2

Proposition 27. For all n > 0, for π ∈ Sn, Rn,π is learnable by a consistent and confident
automatic learner.

Proof. Fix n > 0 and π ∈ Sn. The hypothesis space H consists of the following languages:
Hemp = ∅, Hcomp = Σ∗ and, for α ∈ (Σ∪{@})∗, Hα = Lang(α)·Lang(π), where each appearance
of @ in α denotes a distinct character variable.

The learner Nπ for languages in Rn,π, π ∈ Sn starts with the conjecture emp. After the first
datum x is observed, the memory of the learner is of the form a0a1 . . . ai−1, where i is the largest
number such thatΣi·Lang(π) contains all data observed so far. Furthermore, for r < i, ar = x(r),
if all the strings y seen so far have x(r) = y(r). Otherwise, ar is @, representing a character
variable. If all data observed so far are in Lang(π), then the conjecture is a0a1 . . . ai−1; otherwise
the conjecture is comp. Here, note that Σ∗ ⊇ Lang(π) ⊃ Σ · Lang(π) ⊃ Σ2 · Lang(π) ⊃ . . .,
which permits the learner Nπ to update the i monotonically: initially i is at most |x|; later,
whenever a new datum w is observed, the new value of i is the minimum of the old value of i
and the largest j with Σj ·Lang(π) containing w. So the memory as above can be maintained by
the learner automatically. Note that the language conjectured by Nk also grows monotonically.
Furthermore, Nk is consistent and confident. 2

Learnability of Rn now follows using Propositions 26, Propositions 27 and Proposition 10.

Corollary 28. For all n > 0, Rn is learnable by a consistent and confident automatic learner.

6 Conclusion

In this paper we considered learnability of automatic subclasses of pattern languages. Such classes
are contained in Pn for some n. We showed that each such class can be learnt by a consistent
and confident automatic learner where the memory of the learner is bounded by the length of
the first datum seen. We also investigated when the class of unions of two languages from Pn is
automatically learnable and got an affirmative answer for the case that the alphabet size is at
least three.

Additionally, we considered character variables and showed that the class On, where the
number of distinct character variables between any two same character variables is bounded by
n, has an automatic learner. We showed that no automatic learner can learn the class of the
unions of two languages from O0.

It is open at this point to which degree we can extend our result about learning of unions of
languages in Pn; in particular whether Theorem 21 has a counterpart for the learning of unions
of three or more languages from Pn.
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14. Bernard R. Hodgson. Théories décidables par automate fini. Ph.D. thesis, University of
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