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1. Introduction

Automatic families are uniformly regular families of sets which are mainly
used in inductive inference (learning theory) as a way to represent hypothe-
sis spaces with decidable first-order theory. For such spaces, one can decide
whether they are explanatorily learnable in the limit and have effective pro-
cedures to generate such learners. Furthermore, they have also been used
to study various other learnability notions. Automatic families are closely
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related to automatic graphs and automatic structures. All these notions
are based on the notion of a finite automaton. The present work formalises
the notion of a size of a language with respect to an automatic class. It
also relates this size to various measures of the size of a language derived
from its minimal deterministic finite automaton. Furthermore, an overview
of related properties and applications of automatic families is given.

The basic notion of the field is that of a finite automaton. Informally, a
finite automaton could be considered as an algorithm which reads a word
from the left to the right and has a constant-sized memory; when it reaches
the right end of the word, the algorithm says either “accept” or “reject”.
This informal description permits to write algorithms representing finite
automata quite well; on the other hand, when one wants to prove properties
of finite automata, it is better to write them as a finite set of states together
with a state-transition table, a starting state and a set of final states. The
automaton then reads the symbols of the word to be checked from the left
to the right and each time changes its state based on a transition-table
which is a set of triples of the form (old state, current symbol, new state).
Ideally, for every old state and current symbol, there is a unique triple
in the table; an automaton with this property is called a “deterministic
finite automaton” (dfa) and every finite automaton can be converted into
an equivalent automata of this form, which accepts the same language as
the original automaton. Now, for studying automatic structures, the key
generalisation is to permit automata to track various inputs simultaneously,
provided that the reading of these inputs is synchronised. Informally, the
algorithm consists of one loop. In each iteration of the loop the algorithm
first reads, from each of those inputs which are not already exhausted, one
symbol and then updates its internal memory accordingly; the memory is
restricted to a constant size. Here, the algorithm knows when an input is
exhausted and when not, so this piece of information can be taken into
account. When every input is exhausted, the algorithm says “accept” or
“reject”. The fact that all inputs are read at the same speed is important,
otherwise the model would become too powerful and certain undecidability
problems of the theory of such models would arise. Mathematically, one
can also map this back to the case of a single input which is formed as the
convolution of the inputs. The convolution conv(x, y) of two inputs x and
y would consist of symbols which are pairs of the corresponding symbols
from x and y; in the case that one of these input words is shorter than
the other, it is brought up to the same length by appending the special
symbol � sufficiently often; the symbol � is not contained in any of the
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input alphabets used for x and y. One can define conv on more than two
arguments similarly. The next algorithm is an example which decides the
lexicographic order of two strings x and y; the algorithm uses an underlying
ordering < on Σ:

(1) If the input x is exhausted then accept and terminate.
(2) If the input y is exhausted then reject and terminate.
(3) Read the current symbol a of the input x and the current symbol b of

the input y.
(4) If a < b then accept and terminate.
(5) If b < a then reject and terminate.
(6) Go to (1).

Note that this algorithm also accepts if both words are equal; so it accepts
if x ≤lex y and rejects if y <lex x. Furthermore, the algorithm produces an
early decision, when possible. So when comparing 25880 with 2593 the al-
gorithm would already make the decision after having read 258 from 25880
and 259 from 2593. Such an early decision is permitted for easier formu-
lations of the algorithms, although formally the algorithm has to scan the
full input.

Besides automatic relations like the lexicographic ordering, one can also
define automatic functions where the automaton recognises a function f as
follows: it reads convolution of x and y and accepts iff x is in the domain
of f and y = f(x). An automatic family is a structure with the following
properties: One has a domain D and an index domain I which are both
regular sets plus an automatic relation on I × D defining a family {Li :
i ∈ I} such that x ∈ Li iff the underlying relation contains (i, x). Such
a family defines a class of subsets of D and two families have the same
range iff they contain the same languages. In many cases it is also handy to
have that the indexing is a one-one indexing, that is, Li 6= Lj for different
i, j ∈ I. However, this property is not mandatory within the present work.
An important result from the early days of automatic structures [8, 9, 17]
is that whenever a relation or function is first-order definable using other
automatic relations or functions then it is itself automatic. Furthermore,
the first-order theory of automatic structures is decidable. These two results
give this field some importance in model checking and similar applications
and the two results are also frequently used when constructing learners in
inductive inference. The next examples of automatic families illustrate the
concept.
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Example 1.1: Let Σ = {0, 1, 2} and D = Σ∗.
The family of all Li = Σ|i|, where i ∈ {0}∗, is an automatic family. The

automaton recognising the family accepts conv(i, x) iff i and x have the
same length.

The family of all Li = {x ∈ D : x extends i} with i ∈ Σ∗ is an auto-
matic family; an example member of it is L001 = {001, 0010, 0011, 0012,

00100, 00101, . . . , 00122, 001000, 001001, . . .}. The automaton recognising
the family accepts conv(i, x) iff every symbol of i appears at the same
position in x.

The family Lconv(i,j) = {x : i <lex x <lex j} of all i, j ∈ Σ∗ with
i <lex j is also automatic; note that in some special cases like j = i0
the language Lconv(i,j) is empty. The automaton recognising the family is
mainly checking whether x is between the two boundaries i and j which
are coded up in the index conv(i, j).

The family of all Li3a3b with i3a3b ∈ I = Σ∗ ·{3}·Σ ·{3}·Σ and Li3a3b =
{ixaybz : x, y, z ∈ Σ∗} is automatic. For example, L00123231 is given by the
regular expression 0012 · (0 + 1 + 2)∗ · 2 · (0 + 1 + 2)∗ · 1 · (0 + 1 + 2)∗. The
automaton recognising the automatic family has to memorise the values of a

and b when reaching the corresponding position in the input conv(i3a3b, u)
as a and b can occur in u much later than in i3a3b. This is possible as a
finite automaton can memorise a constant amount of information.

Example 1.2: Using a certain regular domain D, one can also code the
natural numbers with addition, the relation < and a predicate Fib recog-
nising the Fibonacci numbers [28]. If now φ(x, i, j, k) is a first-order formula
with four inputs defined using +, <, Fib and natural numbers then the fam-
ily of all Lconv(i,j,k) = {x ∈ D : φ(x, i, j, k) is true} is an automatic family
where the index-domain is the set of all convolutions of three elements of
D. An example for such a formula φ is φ(x, i, j, k) ⇔ ∃y∃z[i < x + y < j

∧ x + x = z + z + z + 2 ∧ Fib(x + y + y + k)].

Note that the above example is more in the traditional style of automatic
structures where all aspects of coding can be freely chosen in order to meet
the specification. Automatic families usually are a bit more fixed; here one
wants to find an automatic indexing of a given class of regular languages;
that is, while the indexing is considered to be “chosen”, the languages inside
the class and the domain D are more considered as “given”. The results in
the next section will establish various facts on the indexings which show
that the indexings are not completely free, but some aspects of them are
determined by the class which has to be represented by the automatic
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family. See [4, 5, 8, 9, 16, 17, 25, 26, 28] for more information on automatic
structures.

2. The size of languages inside a family

Having the concept of an automatic family, one can use its indexing in order
to introduce a measure for the size of the languages inside the given family.

Definition 2.1: Given an automatic family L and a language R ∈ L, let
dL(R) = min{|i| : i ∈ I ∧ Li = R} be the size of R.

The next result shows that the size depends only up to an additive constant
on the chosen automatic family; so enlarging the underlying family or just
changing its indexing has not much impact on the size of a languages inside
the family.

Proposition 2.2: Let L = {Li : i ∈ I} and H = {Hj : j ∈ J} be two
automatic families. Then there is a constant c such that dL(R) and dH(R)
differ by at most c, for all R ∈ L ∩H.

Proof: The basic idea is to look at the set

O = {conv(i, j) : i ∈ I and j ∈ J and Li = Hj and i, j are the
length-lexicographically least indices of their respective sets}.

Note that (i = i′ ∨ j = j′) ⇒ (i = i′ ∧ j = j′) whenever conv(i, j),
conv(i′, j′) ∈ O. The length-lexicographic order <ll is automatic. Hence O

is first-order definable from automatic relations:

conv(i, j) ∈ O ⇔ i ∈ I ∧ j ∈ J ∧ ∀x ∈ D [x ∈ Li ⇔ x ∈ Hj ]

∧ ∀i′ ∈ I [[∀y ∈ D [y ∈ Li′ ⇔ y ∈ Li]] ⇒ i ≤ll i′]

∧ ∀j′ ∈ J [[∀y ∈ D [y ∈ Hj′ ⇔ y ∈ Hj ]] ⇒ j ≤ll j′].

From this fact it follows, by a result of Khoussainov and Nerode [17], that
the set O is regular.

Now one uses the following version of the pumping lemma: If R is a
regular language then there is a constant c such that for all uvw ∈ R with
|v| > c it also holds that utw ∈ R for some string t which consists of up to
c symbols taken from v.

This version of the pumping lemma is now applied to O. Let c be
the corresponding constant. Given any conv(i, j) ∈ O, one takes u to be
the prefix of length min{|i|, |j|} of conv(i, j), v to be the suffix of length
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max{|i|, |j|} − min{|i|, |j|} and w to be the empty string. Assume that
|v| > c and let t be formed by up to c characters from v as described in the
pumping lemma above. Now ut ∈ O. There are two cases. If |j| > |i| + c

then there is a shorter j′ ∈ J with conv(i, j′) = ut and conv(i, j′) ∈ O;
otherwise |i| > |j|+ c and there is a shorter i′ ∈ I with conv(i′, j) = ut and
conv(i′, j) ∈ O. So in either case, there is besides conv(i, j) another pair,
namely conv(i′, j) or conv(i, j′), in O; this pair coincides with conv(i, j) in
one but not in both coordinates in contradiction to the choice of O. Hence
it cannot happen that |v| > c. Thus, the length of i and j differ by at most
the constant c.

This result is a bit parallel to the corresponding result in the field of Kol-
mogorov complexity [20] that the Kolmogorov complexity of an object de-
pends only up to a constant on the underlying universal machine. The main
difference is that here the measures dL are only defined on a subfamily L of
the regular languages and not on all of them; this invokes some problems
and in the following it is investigated to which degree one can overcome
these problems. Before doing this in the next sections, first a parallel to
Kolmogorov complexity is pointed out: Boolean operations and images of
sets under functions essentially have the complexity of the input sets.

Remark 2.3: Let an automatic family L = {Li : i ∈ I} and an
automatic predicate Φ mapping n inputs Li1 , Li2 , . . . , Lin

to a new set
Φ(Li1 , Li2 , . . . , Lin

) be given. Then there is a new automatic family H such
that for every i1, i2, . . . , in it holds that Φ(Li1 , Li2 , . . . , Lin

) is contained in
H and dH(Φ(Li1 , Li2 , . . . , Lin

)) ≤ c + max{dL(Li1), dL(Li2), . . . , dL(Lin
)},

where c is a constant only depending on L, H and Φ. Examples of such
operators Φ are the Boolean operations like union, intersection and com-
plementations as well as forming the range under an automatic function f :
Φ(L) = {f(x) : x ∈ L}.

3. Universal Complexity Measures

In the following, let AR be the smallest deterministic finite automaton
accepting R; AR has to be complete, that is, for every state p and every
symbol a ∈ Σ there is exactly one state q such that AR goes from p to q on
input a. Let ddfa(R) denote the number of states of AR and drun(R) denote
the maximum n such that, for some input word x, AR on x goes through n

different states. Note that drun(R) ≤ ddfa(R). The next result establishes
an inequality for the converse direction. This inequality witnesses that, for
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each n, there are only finitely many R with drun(R) = n. Thus drun satisfies
some minimum requirement for measuring the size of a language adequately.

Proposition 3.1: Let R ⊆ Σ∗ be a regular language. If Σ has at least two
members then

ddfa(R) ≤ |Σ|drun(R) − 1
|Σ| − 1

;

otherwise ddfa(R) = drun(R).

Proof: Recall that AR is the minimal deterministic finite automaton recog-
nising R. One can look at the finite tree T of all runs of AR in which no
state is visited twice. The height of this tree T is at most drun(R) − 1.
Furthermore, every state of AR occurs in this tree T as it can be reached
by a repetition-free run. In the case that Σ has exactly one element, T has
drun(R) members and ddfa(R) = drun(R). In the case that Σ has at least
two members, the formula

ddfa(R) ≤ |T | ≤ |Σ|0 + |Σ|1 + . . . + |Σ|drun(R)−1 =
|Σ|drun(R) − 1

|Σ| − 1

provides an upper bound on the number of members of T and thus on the
value ddfa(R).

Remark 3.2: The exponential bound in the case of the alphabet Σ having
at least two symbols looks large, but the gap cannot be made much smaller.

The proof of this fact and later results use the notion of the derivative:
L[x] = {y : xy ∈ L} is called the derivative of L at x. Note that ddfa(L)
coincides with the number of distinct derivatives of L.

The exponential bound is now witnessed by the example family
L0, L1, L2, . . . where Ln = {xx : x ∈ Σn}. Then drun(Ln) = 2n + 2 while
ddfa(Ln) ≥ |Σ|n, as for every x ∈ Σn the derivative Ln[x] = {x} is encod-
ing x.

The following connections hold between the size based on automatic families
and these two measures.

Theorem 3.3: For every automatic family L there is a constant c such
that ddfa(R) ≤ dL(R) · c + 1 for all R ∈ L.

Proof: Let Σ be the alphabet satisfying R ⊆ Σ∗ for all R ∈ L and let
A be the automaton recognising the automatic class. That is, there is a
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regular set I of indices such that L = {Li : i ∈ I} and a deterministic finite
automaton A which accepts conv(i, x) iff i ∈ I and x ∈ Li. Let c be the
number of states of A. Let n be the length of the index i of some Li. Now
one constructs an automaton Comb(A, i) which recognises the language Li

and which has at most n · c+1 states. Comb(A, i) is constructed as follows.

• The alphabet of Comb(A, i) is Σ.
• For m < n let Xm = Σm and for m = n let Xm =

⋃
k≥n Σk.

• The set of states of Comb(A, i) is the union of sets Q0, Q1, . . . , Qn,
where Qm consists of all pairs (q, m) with q being a state in A such
that for some x ∈ Xm, A is in state q after reading the first |x| symbols
of conv(i, x).

• For m < n, let there be a transition from (q, m) to (p, m+1) on symbol
a if there is a word x ∈ Xm+1 of length m + 1 such that A is in
state q after reading first m symbols of conv(i, x), A is in state p after
reading first m + 1 symbols of conv(i, x) and the last symbol of x is a.
Furthermore, let there be a transition from (q, n) to (p, n) on symbol
a if there is a word x ∈ Xn such that A after reading conv(i, x) is in
state q and after reading conv(i, xa) is in state p. There are no other
transitions.

• Note that Q0 contains only (s, 0) where s is the starting symbol of A;
(s, 0) is then the starting state of the automaton Comb(A, i).

• The accepting states of Comb(A, i) are all states of the form (p, m)
such that there is an x ∈ Xm ∩ Li and Comb(A, i), on input x, goes
from state (s, 0) to state (p, m).

Note that |Q0| = 1 and, in general, |Qm| ≤ c. Hence Comb(A, i) has at
most n · c + 1 states. Furthermore, one can show that Comb(A, i), on input
x, goes from state (s, 0) to state (q, m) iff x ∈ Xm and A, after reading
first |x| symbols of conv(i, x), goes from starting state s to state q. Assume
now that x, y are such that Comb(A, i) is in the same state (q, m) after
processing x, y. Clearly x, y ∈ Xm. If m < n, then after reading the first
m symbols of conv(i, x) and conv(i, y), respectively, A is in the same state.
Therefore A accepts conv(i, x) iff A accepts conv(i, y); hence x ∈ Li iff
y ∈ Li. Furthermore, if m = n, then after reading conv(i, x) and conv(i, y),
A is in the same state q. Again x ∈ Li iff y ∈ Li. It follows that Hq,m =
{x ∈ Σ∗ : Comb(A, i), on input x, goes from state (s, 0) to state (q, m)} is
either a subset of Li or disjoint to Li. So, by the definition of Comb(A, i),
the automaton Comb(A, i) accepts the members of Hq,m iff Hq,m ⊆ Li and
rejects the members of Hq,m iff Hq,m ∩ Li = ∅. It follows that Comb(A, i)
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recognises the language Li. The minimal automaton of Li has at most as
many states as Comb(A, i). So ddfa(Li) ≤ |i|·c+1 and therefore the theorem
follows.

Remark 3.4: The multiplicative constant c in the above theorem is indeed
needed: If L is the class of all finite languages consisting of up to c strings,
then each automaton accepting the language Ln = {0d1n0d : d < c} needs
at least c · n states in order to memorise the number of 0s and then to
count the number of 1s before comparing the number of 0s after the block
of 1s with the memorised value. Also, one can easily verify that — up to
an additive constant — dL(Ln) = n.

The next result is the main contribution of this paper. It shows that drun

is a measure which meets the expectation in at least one point: given any
automatic class L, the measures dL and drun coincide on L up to a constant.

Theorem 3.5: For every automatic family L there is a constant c′ such
that, for all R ∈ L, the values drun(R) and dL(R) differ from each other by
at most c′.

Proof: Let L be the given automatic family and let c be the number of
states of the minimal automaton A recognising the family. Let R ∈ L.

Now it is shown that drun(R) ≤ dL(R) + c. For every index i ∈ I, one
constructs the automaton Comb(A, i) as described in Theorem 3.3. In any
run, this automaton passes through at most |i|+ c states; namely for each
m < |i| through at most one state in Qm and through at most c states
in Q|i|. On input x, the minimal automaton AR goes through at most as
many states as Comb(A, i). Thus the bound obtained is also a bound for
drun(R).

Now it is shown that dL(R) is bounded by drun(R) plus a constant
independent of R. For i ∈ I, let Li[x] = {y : xy ∈ Li} be a derivative
of the language Li. Now, if |x| ≥ |i| then one can produce the following
automaton B accepting the derivative Li[x]:

• The set of states of B equals the set of states of A;
• The starting state of B is the state of A after having read the first |x|

symbols of conv(i, x);
• The state transition of B from p to q on a symbol a occurs iff A goes

on the one-symbol word conv(�, a) from p to q;
• The accepting states of B and A are the same.
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Hence the language Li[x] is recognised by an automaton containing only c

states. Let Bq be the automaton B with the starting state q. Now let n be
the least positive natural number such that, for every x ∈ {0, 1}n, Li[x] is
recognised by some automaton Bq. Note that the choice of q only depends
on the state in which A is after having read first |x| symbols of conv(i, x).
Without loss of generality, some of the Bq accept the empty string and
some do not. Now let t : {1, 2, . . . , c} → {1, 2, . . . , c} code a finite function
satisfying the following conditions:

• if there is x ∈ Σn and A is in state b after processing the first n symbols
of conv(i, x) then Bt(b) recognises Li[x];

• if there is y ∈ Σ∗ with |y| < n such that A is in state b after processing
the first n symbols of conv(i, y) then Bt(b) accepts the empty string iff
y ∈ Li.

Note that if there are x, y ∈ Σ∗ with |x| = n ∧ |y| < n and A being in the
same state after processing the first n symbols of conv(i, x) and conv(i, y),
respectively, then x ∈ Li iff y ∈ Li iff the empty string is in Li[x]. So above
conditions do not contradict each other and the mapping t exists.

Using n and t, one can code Li by an index j which is the convolution
of t and the first n symbols of i. Note that there is an automatic function
f with f(i) = j as above; the reason is that n and t can be defined from i

and the indexing of L using first-order formulas. Let J = {f(i) : i ∈ I} and
Hf(i) = Li; the set J is regular and the family {Hj : j ∈ J} is automatic.

Now let i ∈ I and j = f(i). It follows, using the pumping lemma, that
every word in Li of length drun(Li) is of the form uvw such that Li[uv|i|w] =
Li[uvw]. Hence Li[uvw] is recognised by one of the automata Bq and so
|j| ≤ drun(Li). Thus it holds, for all R ∈ L, that drun(R) ≥ dH(R). As
dL(R) and dH(R) differ by at most a constant (Proposition 2.2), it follows
that dL(R) ≤ drun(R) + c′′, for some constant c′′.

It follows from above analysis that drun(R) differs from dL(R) only by
a constant independent of R.

Corollary 3.6: For every automatic family L there is a constant c such
that dL(R) ≤ ddfa(R) + c for all R ∈ L.

The following result shows that — when restricted to an automatic fam-
ily — the size of Boolean operations and images among the members of
the family do not have a much larger size than the corresponding compo-
nents. This situation is similar to the situation with respect to Kolmogorov
complexity.
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Theorem 3.7: For every automatic family L over domain D and every
automatic function f over domain D, there is a constant c such that, for
all L,H ∈ L, it holds that

• drun(L ∪H) ≤ max{drun(L), drun(H)}+ c,
• drun(L ∩H) ≤ max{drun(L), drun(H)}+ c,
• drun(D − L) ≤ drun(L) + c and
• drun({f(x) : x ∈ L}) ≤ drun(L) + c.

However the first, second and fourth condition of this list do not hold without
the restriction to an automatic family.

Proof: The main part of this result follows from the Proposition 2.2, Re-
mark 2.3 and Theorem 3.5. So the rest of the proof is to show that these
connections do not hold in general, except for the third condition which is
just obtained by interchanging acceptance and rejection inside D.

Let n ∈ {1, 2, 3, . . .}. For the first two conditions one considers the lan-
guages (Σn)∗ and (Σn+1)∗. While drun((Σn)∗) = n and drun((Σn+1)∗) =
n + 1, it holds that drun((Σn)∗ ∪ (Σn+1)∗) = n(n + 1) and drun((Σn)∗ ∩
(Σn+1)∗) = n(n + 1). For the fourth condition, assume Σ = {0, 1, 2} and
consider the automatic function f which interchanges 1 and 2 at every sec-
ond occurrence of one of these digits. So f(001001001001) = 001002001002
and f(1212121221212121) = 1111111122222222. Let L = (0n1)∗. Then
{f(x) : x ∈ L} = (0n10n2)∗ + (0n10n2)∗ · 0n1. While drun(L) = n + 2
it holds that drun({f(x) : x ∈ L}) = 2n + 3.

Remark 3.8: Besides drun , one could also look at the following measure:
drf (R) is the largest number n such that there is an input x ∈ Σ∗ on which
the minimal automaton AR for R goes through exactly n states without
repeating any of them.

Note that drf (R) ≤ drun(R) ≤ ddfa(R) for every regular language R

and the proof of Proposition 3.1 gives directly that

ddfa(R) ≤ |Σ|drf (R) − 1
|Σ| − 1

for the case that Σ has at least two elements. Furthermore, Theorem 3.5
holds also with drf in place of drun .

Although there are many parallel results for these two measures, drun

and drf are not identical. Consider the language R = {0n, 1n}∗ with n ≥ 2.
The minimal automaton AR has the states reached by 0m with m < n, 1m

with m < n plus one rejecting state which is never left; as the initial state
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is double counted in this list, there are in total 2n states and ddfa(R) = 2n.
On the word 0n1n01 all states are visited and therefore drun(R) = 2n.
However drf (R) = n + 1 and this maximum number is taken on the input
0n−11.

4. Characterising Automatic Families

The central question of this section is: When is a class L of regular languages
a subclass of some automatic family. The answer is that every language in
the class must be representable by an automaton of a specific form.

Theorem 4.1: A class L is a subclass of an automatic family iff there is
a constant c such that every R ∈ L is accepted by a deterministic finite
automaton whose states can be partitioned into sets Q0, Q1, Q2, . . . , Qn sat-
isfying the following conditions: each set Qm has up to c states; Q0 consists
exactly of the starting state; if there is a transition from a state p to a state
q, then there are r, r′ with p ∈ Qr, q ∈ Qr′ and r′ = min{r + 1, n}.

Proof: Given an automatic class L with an automaton A recognising the
class, one can construct, for each i ∈ I, the automaton Comb(A, i) to
recognise Li as in Theorem 3.3; it is easy to see that the automaton is of
the above form.

For the converse direction, consider the class H of all languages which
are accepted by an automaton of the above form with a given fixed constant
c. The indices j of H consist of symbols coding Q0, Q1, . . . , Qn, respectively.
For each Qm it is coded which of the states of Qm (numbered as 1, 2, . . . , c)
are accepting and what transitions are there from Qm to Qmin{m+1,n} based
on various inputs from Σ. Without loss of generality state 1 from Q0 is the
starting state and that does not need to be coded. Now J = Γ∗ where

Γ = {reject, accept}c × {1, 2, . . . , c}|{1,2,...,c}×Σ|,

that is, where each symbol in Γ codes the acceptance of the c states in Qm

plus the transition table to Qmin{m+1,n}. Without loss of generality, the
empty string just codes the empty language. This convention permits to
avoid a domain check for the index j.

As a finite automaton is the same as an algorithm working from the left
to the right through the word with constant memory, the algorithm is now
given more explicitly than it would be in the case of an automaton. It runs
in stages and it memorises information which can be stored in constantly
many bits; note that the number of these bits depends on the value of c but



On Automatic Families 13

not of the value of n. For easier readability, this information is memorised
in variables which are initialised in the first two steps. The algorithm reads
in steps (2) and (4) the symbols unless the end of the corresponding inputs
(j and x) is reached in which case the last value is not overwritten. If j is
empty, then the algorithm rejects all x.

(1) Variables: status ∈ {reject,accept}; state ∈ {1, 2, . . . , c}; a ∈ Σ (current
input symbol to be processed); b (table of current Qm).
Let state = 1 and b be a code such that 1 is a rejecting state and all
transitions are from 1 to 1.

(2) If there is some symbol of the code of j to be read
then read b

else let b unchanged.
(3) If the current value of state according to b is an accepting state

then let status = accept
else let status = reject.

(4) If there is some symbol of the input word to be read
then read a

else accept/reject according to status and terminate.
(5) Decode from b the new value of state in dependence of a and of the

current value of state.
(6) Go to (2).

The verification is left to the reader, as it is straightforward but lengthy.
Note that L is automatic iff the set {j ∈ J : Hj ∈ L} is regular.

The characterisation from Theorem 4.1 could be put into a more general
form. Recall that R[x] is the set {y ∈ Σ∗ : xy ∈ R}.

Theorem 4.2: A class L is a subclass of an automatic family iff there is
a constant c such that R ∈ L iff there is an n such that:

• For every m there are at most c different derivatives R[x] with x ∈ Σm;
• There are at most c different derivatives R[x] with x ∈ Σ∗ ∧ |x| ≥ n.

This result has an interesting corollary for the case of the unary alphabet.

Corollary 4.3: If Σ = {0} then L is contained in an automatic family iff
there is a finite class F of regular languages such that every language in L is
equal to H ∪ (0m ·L) for some m, some L ∈ F and some H ⊆ {0` : ` ≤ m}.

In learning theory, an important and well-studied family is that of the pat-
tern languages [2, 18, 27]. Here a pattern is a string consisting of constants
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and variables, where the language generated by the pattern is the set of
all those words which are obtained by replacing variables by strings. If
the strings replacing the variables are permitted to be empty, then these
languages are called “erasing pattern languages”; if these strings are not
permitted to be empty, then these languages are called “non-erasing pat-
tern languages”. The learnability of pattern languages has been extensively
studied and while there is an explanatory learner for the class of non-
erasing pattern languages [2], such a learner does not exist in the case
of the erasing pattern languages [24]. In particular, the class of “regu-
lar pattern languages” is quite important and one might ask what the
automatic counterpart of it is. Here Shinohara [27] defined that a pat-
tern is called a regular pattern iff it contains every variable at most once.
So if Σ = {0, 1, 2} and the pattern is i = 01121x121y112z then the
language generated by this pattern is given by the regular expression
01121 · (0 + 1 + 2)∗ · 121 · (0 + 1 + 2)∗ · 112 · (0 + 1 + 2)∗; in the non-erasing
case, one would have to replace “(0+1+2)∗” by “(0+1+2) · (0+1+2)∗”
as every variable represents at least one letter.

Theorem 4.4: Let L be a class of erasing pattern languages, each generated
by a regular pattern. The class L is contained in an automatic family iff
there is a constant c such that, in every pattern of a language in the family,
there are at most c constants after the occurrence of the first variable.

Proof: In the case that Σ has only one element, say 0, variables and con-
stants commute and every pattern language in the class is generated by a
pattern where the constants come first and the variables come last. One can
without loss of generality then assume that there is at most one variable.
Hence over the unary alphabet, the class of all erasing regular pattern lan-
guages is contained in the automatic family of the languages generated by
one of the patterns in {x, 0x, 00x, 000x, . . .} ∪ {ε, 0, 00, 000, . . .}. So assume
the case that Σ has at least two elements.

Given the constant c, it is first shown that there is an automatic family
containing all the erasing regular pattern languages with up to c constants
after the first occurrence of a variable. Note that there are only finitely
many regular patterns which start with a variable and contain up to c

constants; the reason is that a double variable xy has the same effect as
a single variable in the case that variables can take the empty word and
are not repeated. Now let Γ be the set of all these patterns and assume
that Γ is coded such that it is disjoint to Σ. One chooses as an indexing
the set Σ∗Γ. If Lg is the language generated by g ∈ Γ then extend this
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definition to Lig = i · Lg for i ∈ Σ∗. The family of all Lig is automatic as
the finite automaton recognising {conv(ig, x) : x ∈ Lig} accepts conv(ig, x)
iff x = iy for some y and y ∈ Lg; note that the latter can be checked as
there are only finitely many languages of the form Lg with g ∈ Γ — thus,
one can combine the corresponding finite automata to get an automaton
for checking whether y ∈ Lg.

For the converse direction, assume that an automatic family {Li : i ∈ I}
of erasing regular pattern languages is given. As shown in the proof of
Theorem 3.5, there is a constant c such that, for every i ∈ I, there are at
most c different derivatives Li[x] with |x| ≥ |i|. Now assume that i ∈ I is the
index of the language generated by a pattern of the form ux0a1x1 . . . anxn

where u ∈ Σ∗, a1, . . . , an ∈ Σ, x0 is a variable and x1, . . . , xn are each
either a variable or the empty string. Furthermore, let b ∈ Σ − {a1}. Now
choose k larger than the length of i. Then there are n different derivatives
Li[ubka1 . . . am] correspondingly with the shortest word am+1 . . . an, where
m ∈ {1, 2, . . . , n}. Thus, as |ubk| ≥ |i| the inequality n ≤ c holds and
therefore the pattern has at most c constants after the occurrence of the
variable x0.

By using essentially the same proof, one can obtain the counterpart of this
result for non-erasing pattern languages. As here the variables have at least
the length 1, the patterns x and yz do not generate the same language;
hence one has to bound the number of variables as well.

Corollary 4.5: Let L be a class of non-erasing pattern languages, each
generated by a regular pattern. The class L is contained in an automatic
family iff there is a constant c such that every language in L can be generated
by a pattern which has at most c variables and constants after the first block
of variables. That is, if the pattern contains a constant a after some variable
x, then there are at most c variables and constants after the above xa.

A direct application of this result is the following: The family of lan-
guages generated by the patterns {x, 0x, 00x, 000x, 0000x, 00000x, . . .} is
automatic while the family of languages generated by the patterns
{x00, x00x1, x00x1x2, x00x1x2x3, . . .} is, in the case that |Σ| ≥ 2, not auto-
matic.

Note that every regular pattern generates a regular language [27]. Rei-
denbach [23] discussed the converse direction and showed that certain non-
erasing patterns generate regular languages although the patterns them-
selves are not regular; he furthermore noted that in the non-erasing case, a
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language is either generated only by regular patterns or only by nonregular
patterns. Jain, Ong and Stephan [13] show that the converse direction also
fails for erasing pattern languages and alphabet sizes up to 3.

Remark 4.6: Reidenbach [23] provided examples of nonerasing pattern
languages which are regular but are not generated by a regular pattern. An
example is given by the pattern xyxz which generates the regular language
∪a,b,c∈ΣabΣ∗acΣ∗ and which, for alphabets of size 2 or more, cannot be
generated by a regular pattern.

Jain, Ong and Stephan [13] considered the corresponding question for
erasing pattern languages. If Σ has at least four symbols, then every erasing
pattern language which is regular is generated by a pattern which does
not have repetitions of the variables. However for alphabets of size 1, 2
and 3 there are also erasing pattern languages which are regular sets but
need repetitions of variables to be generated. For Σ = {0, 1} the pattern
x1x2x31x2x4x4x51x6x5x7 generates the language (0 + 1)∗ · 1 · (0 + 1)∗ · 1 ·
(0 + 1)∗ − 10 · (00)∗ · 1, which is not generated by any regular pattern.

5. Applications of Automatic Families in Learning Theory

Automatic families are a special case of indexed families [1, 19] which are
a widely studied subject in inductive inference. Here an indexed family
{Li : i ∈ I} is uniformly recursive, that is, the domain D, the set of ad-
missible indices I and the mapping i, x 7→ Li(x) are all recognisable by
Turing machines. So automatic families are just the restriction obtained
when replacing Turing machines by finite automata with possibly several
inputs. Gold [7] formalised the notion of learning and introduced the fol-
lowing notion of explanatory learning: A family {Li : i ∈ I} is explanatorily
learnable iff there is a recursive learner which reads more and more data
about the language R to be learnt from a text T and outputs a sequence
e0, e1, e2, . . . of indices which syntactically converges to one index i ∈ I

with R = Li. Here a text is an infinite sequence of words containing every
member of the set to be learnt but not any nonmember; the words in the
text can be in arbitrary and adversary order and repetitions are permitted.
The interested reader might find more background information on learning
theory in the standard textbooks of inductive inference [14, 22]. Angluin [1]
gave a criterion on the learnability of an indexed family which — in the
case of automatic families — can be simplified to the following one [11].

Theorem 5.1: An automatic family L = {Li : i ∈ I} is explanatorily
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learnable iff there exists a constant c such that for all i, j ∈ I the equality
Li = Lj holds whenever {x ∈ Li : |x| ≤ dL(Li) + c} ⊆ Lj ⊆ Li.

In other words, one can build a learner which — when learning R — always
conjectures the least i such that all data in Li shorter than |i| + c have
already been observed but no data outside Li.

Based on this observation, Jain, Luo and Stephan [11] formulated the no-
tion of an automatic learner which is less powerful than a recursive learner.
An automatic learner has a long term memory which stores all relevant in-
formation about the data observed; this long term memory is a string like
any input word, though it might be over a larger alphabet. The learner is
then given by an update function

F : (old long term memory, current data item) 7→ (new long term
memory, new hypothesis).

Starting from an initial value for its long term memory, the learner reads
in each round a current datum and updates its memory and the hypothesis
according to F . The update function F has to be automatic. Jain, Luo
and Stephan [11] showed that not every learnable automatic class can also
be learnt by an automatic learner. Indeed even quite simple classes like
the one given by Li = Σ∗ − {i} (where D = I = Σ∗) is learnable only
if the alphabet consists of one symbol; in the case of an alphabet with at
least two symbols this class is no longer learnable by an automatic learner,
as the automatic learner cannot memorise enough information about the
data observed. Special cases considered were those where the long term
memory cannot be longer than the longest datum observed so far, where
the long term memory is the last hypothesis conjectured (iterative learning)
and where the long term memory consists of up to c data items observed
previously (bounded example memory); the ability for an automatic learner
to learn depends heavily on the nature of such restrictions imposed. Ong
[21] investigated the learnability of automatic families of pattern languages
and related classes.

Jain, Martin and Stephan [12] considered the setting of robust learn-
ing [6, 15, 29] and asked when every translation of an automatic family L
is learnable, where a translation is given by a first-order definable opera-
tor which preserves inclusions among all languages as well as non-inclusions
among languages from the class. An example is Φ(L) = {x : ∃y ∈ L [y 6= x]}
and the underlying family L contains ∅, every singleton {x} and the full
set D. It is easy to see that L is learnable. However the given translation
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of L is not learnable, as the learner would have to converge to Φ(D) after
having seen finitely many data items and then the input language could be
Φ({y}) = D − {y} for some y which has not yet been observed in the in-
put. General characterisations were given for the question of the following
type: “For which classes are all translations learnable under a given cri-
terion?” Besides the standard criteria from inductive inference, the paper
also looked at query learning. Here a learner can ask a teacher questions,
in a given query language; for example the learner can ask whether the
language Li is a superset of the language R to be learnt (if the query lan-
guage allows superset queries). The learner asks finitely many queries and
has then to conjecture the correct index of the input language. Angluin
[3] started the investigation of the learnability of regular languages from
queries. She showed that the class of all regular languages can be learnt
using membership and equivalence queries in polynomial time where, when
learning R, the time bound depends on ddfa(R) and the largest counter
example observed. The following result of Jain, Martin and Stephan [12]
links explanatory learning, query learning and robustness.

Theorem 5.2: The following conditions are equivalent for an automatic
family L = {Li : i ∈ I}.
(a) For every i ∈ I there is a bound b such that, for all j ∈ I with Lj ⊂ Li,
there is a k ∈ I with k ≤ll b, Lj ⊆ Lk and Li 6⊆ Lk.
(b) Every translation of L is explanatorily learnable.
(c) Every translation of L can be learnt using superset queries and mem-
bership queries.
(d) L can be learnt using superset queries.

Note that in condition (d) it does not matter whether one learns only L
using superset queries or every translation of L using superset queries. The
reason for this is that translations do not change the inclusion structure of
the automatic family. This result shows that there are also connections to
robust notions of query learning.

Jain, Luo, Semukhin and Stephan [10] investigated the question on what
can be said on the learnability of uncountable families. For this they use
ω-automatic families, where the indices of the sets are ω-words and where a
nondeterministic Büchi-automaton checks whether a finite word x belongs
to the language defined by an ω-word. Also here the Büchi automaton is
fed with the convolution of the input word and the ω-word serving as the
index of the language. As there are uncountably many indices, it is no
longer possible for the learner to come up with the correct index after finite
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time; therefore the model is adjusted to a verification game. So the learner
reads in parallel a text consisting of all the words in the language and an
ω-index; the output is a sequence of Büchi automata which converges to
one fixed automaton. Then this automaton has to accept the given ω-index
iff it is an index for the language observed. Also in this setting, learnability
is equivalent to Angluin’s tell-tale condition [1]. However it is necessary for
this result that the learner has the right to choose the indexing; otherwise
the criterion is more restrictive. Also further other criteria are transferred to
this model and it is shown that one can abstain from adjusting the indexing
if one requires vacillatory learning, where the learner in the limit oscillates
between finitely many Büchi automata, and each of them accepts the given
ω-index iff it is an index for the language to be learnt.
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