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Abstract

Tree-automatic linear orders on regular tree languages are studied. It is shown that there is no tree-automatic
scattered linear order, and therefore no tree-automatic well-order, on the set of all finite labeled trees, and
that a regular tree language admits a tree-automatic scattered linear order if and only if for some n, no
binary tree of height n can be embedded into the union of the domains of its trees. Hence the problem
whether a given regular tree language can be ordered by a scattered linear order or a well-order is decidable.
Moreover, sharp bounds for tree-automatic well-orders on some regular tree languages are computed by
connecting tree automata with automata on ordinals. The proofs use elementary techniques of automata
theory.
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1. Introduction

The aim of this paper is to study tree-automatic linear orders on regular tree languages, and more precisely,
we ask whether a given regular tree language can be ordered by a tree-automatic scattered or well-founded
linear order. This is a part of a larger theme to classify tree and word-automatic structures. Much work has
already been done on the classification of automatic structures in certain classes such as linear orders, Boolean
algebras and Abelian groups [4, 9, 19, 21, 23, 30, 36]. Recent results by Kuske, Lohrey and Liu indicate
that there is no complete characterisation of the linear orders presentable by tree automata [25, 26, 27].
Therefore we restrict the classification question by considering tree-automatic structures whose domain is a
fixed regular tree language. Our goal is to derive algebraic properties of tree-automatic structures with a
given domain and algorithmic consequences. Delhommé [9] proved one of the first important characterisation
results on tree-automatic structures, namely, a well-ordered set has a tree-automatic presentation if and only
if it is a proper initial segment of the ordinal ωω

ω

. Our approach can be understood as a refinement of the
work of Delhommé leading to an alternative proof of his result in Theorem 26.

In Theorem 12 we show that there is no tree-automatic scattered linear order, and therefore no well-order,
on the set T (Σ) of all finite binary trees labeled by symbols from a finite alphabet Σ. This consequence
can also be derived from Gurevich and Shelah’s theorem stating that no monadic second-order definable
choice function exists on the infinite binary tree T2 [11]. We mention that Carayol and Löding [7, Theorem 1]
provide a simple proof of the mentioned result of Gurevich and Shelah. In addition, they prove undecidability
of the MSO theory of the full binary tree with any well-order. The last fact also implies the non-existence
of a tree automatic well-order on the full binary tree.
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A tree language has tree-rank k if k is maximal such that the full binary finite tree of height k can be
embedded into the union of all domains of Σ-trees in the tree language. For instance, the language T (Σ)
does not have a finite tree-rank. In Theorem 19 we show that a regular tree language allows a tree-automatic
well-order if and only if the tree language has finite tree-rank. From the proof we obtain an algorithm which,
given a regular tree language, decides if the language can be well-ordered by a tree automaton.

We further connect certain tree-automatic structures with finite automata on ordinals, which implies
Delhommé’s theorem that ωω

ω

is the smallest ordinal with no tree-automatic presentation. Finally, we
give examples of regular tree languages and describe the spectra and the lower and upper bounds of tree-
automatic well-orders on them.

2. Preliminaries

Let us first collect several definitions and background facts. By a structure A we mean a tuple of the
form (A;R1, . . . , Rn), where A is the domain or the universe of the structure and R1, . . ., Rn are the atomic
relations on A. We will mostly consider linearly ordered sets. A linear order is a well-order if every nonempty
subset of its domain has a least element. The order types of well-orders are the ordinals. A linearly ordered
set is scattered if there is no suborder isomorphic to the ordering (Q,≤) of the rationals. Examples of
scattered orders are the integers, (reverse) well-orders and lexicographic sums of scattered linear orders
along (reverse) well-orders. Let us define the Cantor-Bendixson rank (CB-rank) of a linearly ordered set
L = (L,≤). For x, y ∈ L, let x ∼0 y be the identity relation. Let ∼α+1 denote the derivative of ∼α, that is,
x ∼α+1 y if there are only finitely many equivalence classes of ∼α between x and y. For limit ordinals β,
let ∼β=

⋃
α<β ∼α. Then each relation ∼α is an equivalence relation and the linear order ≤ induces a linear

order on the quotient L/ ∼α, which we call the α-th derivative of L.

Theorem 1 (Hausdorff, see [32]). A linear order L is scattered if and only if there is some α such that
L/∼α is finite.

The least ordinal α for which L/∼α is finite is called the Cantor-Bendixson rank (CB-rank) of L and is
denoted by CB-rank(L).

To define word-automatic and tree-automatic structures, recall the following definitions from automata
theory. A finite alphabet is denoted by Σ and Σ? denotes the set of all finite strings (finite words) over Σ.
Let |σ| denote the length of a string σ. Let λ denote the empty string. Let σ � τ denote that string σ is a
prefix of string τ .

A finite automaton over the alphabet Σ is a tupleM = (S, ι,∆, F ), where S is a finite set of states, ι ∈ S
is the initial state, ∆ ⊆ S × Σ× S is the transition table, and F ⊆ S is the set of final states. A run of M
on a word w = a1a2 . . . an, (where a1, a2 . . . , an are members of Σ) is a sequence of states q0, q1, . . . , qn such
that q0 = ι and (qi, ai+1, qi+1) ∈ ∆ for all i ∈ {0, 1, . . . , n− 1}. If qn ∈ F , for some run ofM on w, then the
automaton M accepts w. The language of M is L(M) = {w | w is accepted by M}. These languages are
called regular, word-automatic, or finite automaton recognizable.

We quickly review the definition of tree automata. A tree (also called binary tree) is a possibly infinite
prefix-closed subset of {0, 1}?. Members of a tree T are called nodes of T . We say that σ is a leaf of a tree
T if σ belongs to T but no proper extension of σ belongs to T . Similarly, σ is an internal node of T if σ
as well as some proper extension of σ belongs to T . If σ and σa both belong to T (where a ∈ {0, 1}), then
σa is called a child of σ and σ is called the parent of σa. A node σ is a branching node of T if σ as well
as σ0 and σ1 belong to T . The distance between a node u and node v in a tree is the number of edges
between them. That is, let w be the longest common prefix of u and v; then, the distance between u and
v is (|v| − |w|) + (|u| − |w|). We say that a finite tree is a full binary tree of height n iff it consists of all
the binary strings up to length n with those of length n being the leaves and the shorter ones being the
branching nodes of the tree. A full binary tree (without specification of any height) contains all the binary
strings.

A labeled tree is a tree T together with a function from T into a finite alphabet Σ. We say that a (labeled
or unlabeled) tree S embeds into a tree T if there is an injective map h:S → T with σ � τ ⇔ h(σ) � h(τ)
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for all σ, τ ∈ S. We say that a tree T has tree-rank n, written tr(T ) = n, if n is the maximal number such
that a full binary tree of height n can be embedded into T ; in the case that such a maximal n does not exist
and all finite binary trees can be embedded into T , we say that tr(T ) =∞.

A Σ–tree is a mapping t : dom(t) → Σ such that the domain dom(t) is a finite tree such that for every
non-leaf node v ∈ dom(t) we have v0, v1 ∈ dom(t).4 The boundary of dom(t) is the set ∂dom(t) = {xb | x
is a leaf of dom(t) and b ∈ {0, 1}}. The set of all Σ-trees is denoted by T (Σ). A slim Σ-tree is a Σ-tree T
such that the branching nodes in T are all pairwise comparable with respect to the prefix relation. A slim
Σ-tree x is generated by a string x̃ iff x̃ is a branching node in dom(x) and every branching node in dom(x)
is a prefix of x̃.

Note that Σ-trees are essentially labeled trees where each internal node is a branching node. Thus, often
we refer to Σ-trees simply as trees with Σ being implicit.

Definition 2. A tree automaton over the alphabet Σ is a tuple M = (S, ι,∆, F ), where S is a finite set of
states and ι ∈ S is the initial state, ∆ ⊆ S × Σ × (S × S) is the transition table, and F ⊆ S is the set of
final states.

A run of the tree automaton M = (S, ι,∆, F ) on a tree t is a map r : dom(t) ∪ ∂dom(t) → S such that
r(λ) = ι and (r(x), t(x), r(x0), r(x1)) ∈ ∆ for all x ∈ dom(t). If both r(x0) ∈ F and r(x1) ∈ F for every leaf
x ∈ dom(t), then the run r is said to be accepting, and the tree automaton M accepts the tree t if there is
an accepting run of M on t. The tree language L(M) of M is defined as the set of all finite trees t ∈ T (Σ)
accepted by M. These tree languages are called regular tree languages, tree-automatic, or tree automaton
recognizable languages.

In order to define tree-automatic structures, we convolute finitely many Σ-trees t0, . . ., tn−1 into a single
Σ-tree as follows. Let � be a special symbol not in Σ. For x ∈ dom(t0) ∪ . . . ∪ dom(tn−1) and i < n, let
t′i(x) = ti(x) if x ∈ dom(ti), and t′i(x) = � if x 6∈ dom(ti). The convolution of the trees t0, . . ., tn−1 is
the tree conv(t0, . . . , tn−1) with conv(t0, . . . , tn−1)(x) = (t′0(x), . . . , t′n−1(x)) for all x ∈

⋃
i<n dom(ti). We

say that an n-ary relation R on T (Σ) is tree-automatic if the convolution conv(R) = {conv(t0, . . . , tn−1) |
(t0, . . . , tn−1) ∈ R} is a regular tree language. Word-automatic relations are defined according to the
analogous convolution of Σ-words.

Definition 3. A structure A = (A;R1, . . . , Rn) is called tree-automatic or tree-automata recognizable
(word-automatic or word-automata recognizable) if the domain A and the atomic relations R1, . . ., Rn
are all tree-automatic (word-automatic). The structure A is a tree-automatic presentation (word-automatic
presentation) of a structure B if A is isomorphic to B. If there exists a tree-automatic presentation (word-
automatic presentation) of B, then B is said to be tree-automatic presentable (word-automatic presentable).

We will sometimes write automatic instead of tree-automatic or word-automatic if the meaning is clear
from the context. Automatic presentations A of a structure B can be identified with finite sequences of
automata for the domain and the atomic relations of A. The definition of automatic presentability is a
Σ1

1-definition in arithmetic since automatic presentability of B requires a search for an isomorphism from
automatic structures A to B. We will sometimes identify tree-automatic and word-automatic presentable
structures with their presentations.

For example, Presburger arithmetic (N; +) and configuration spaces of Turing machines are word-
automatic, while Skolem arithmetic (N;×) is tree-automatic but not word-automatic [2].

The countable atomless Boolean algebra has the following tree-automatic presentation. Note that the
closed-open subsets of the Cantor space {0, 1}ω form a countable atomless Boolean algebra. Every such set
is a union of finitely many cones vi{0, 1}ω, i ≤ n, where {v0, ..., vn} is prefix-free. Each such set can be
represented by a Σ-tree for Σ = {0} whose branching nodes are exactly the prefixes of the words vi. Then
the Boolean operations are tree-automatic.

4There are various alternative definitions of Σ-trees which lead to the same class of tree automatic presentable structures.
This specific definition has the advantage that the correspondence with ordinal automata in Section 7 is easier to state.
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Let us describe basic properties of tree-automatic structures. Let FO+ ∃ω denote the extension of first-
order logic with the ∃ω quantifier (there are infinitely many). The decidability of the emptiness problem
and closure properties of regular tree languages imply that the FO + ∃ω theories of tree-automatic and
word-automatic structures are uniformly decidable.

Theorem 4 (Blumensath and Grädel [3], Hodgson [13, 14], Khoussainov and Nerode[18]). There
is an algorithm whose input is the finite sequence of automata of a tree-automatic or word-automatic presen-
tation of a structure A and a formula φ(x1, . . . , xn) in FO + ∃ω, and whose output is an automaton which
recognises all tuples (a1, . . . , an) from the structure for which the formula holds.

Note that the structure can be extended by any tree-automatic relation in the given presentation. Therefore,
one can express that the domain of one tree is contained in the domain of another tree and use this to express
∃ω as in Proposition 10.

In a way similar to the pumping lemma for regular languages over strings, the following pumping lemma
for tree-automatic languages can be proven.

Lemma 5. Fix any tree-automaton M. There exists a constant c such that for any Σ-tree t accepted by M
and any α′β′ ∈ dom(t) such that |β′| > c, there exists α, β such that 0 < |β| ≤ c, α′ � α ≺ αβ � α′β′ and
the following holds: for all i ≥ 0, there exsits a Σ-tree t′ acccepted by M such that:

(i) dom(t′) = [dom(t)− {αγ | γ ∈ {0, 1}+}] ∪ {αβiγ | γ ∈ {0, 1}+ and αβγ ∈ dom(t)}∪
{αβrγ | r < i, αβ is not a proper prefix of αγ and αγ ∈ dom(t)},

(ii) for all γ ∈ {0, 1}? such that γ ∈ dom(t) and α is not a proper prefix of γ: t′(γ) = t(γ),

(iii) for all r < i, for all γ ∈ {0, 1}? such that αγ ∈ dom(t) and αβ is not a proper prefix of αγ: t′(αβrγ) =
t(αγ), and

(iv) for all γ ∈ {0, 1}+ such that αβγ ∈ dom(t): t′(αβiγ) = t(αβγ).

Intuitively, the constant c in the above lemma can be taken as any number strictly above s|Σ|, where s is
the number of states of the tree-automaton. Intuitively, the portion of t in β part can be replicated as many
times as needed. We obtain the following corollary.

Corollary 6. Suppose M is a tree-automaton that accepts a subset of {conv(t, t′) | t, t′ are Σ-trees}. Then
there exists a constant c such that,

(a) for each Σ-tree t for which M accepts at least one conv(t, t′), t′ being a Σ-tree, there exists a Σ-tree
t′′ such that M accepts conv(t, t′′) and all nodes of dom(t′′) are within distance c from some node in
dom(t).

(b) for each Σ-tree t for which M accepts at least one conv(t, t′), t′ being a Σ-tree, and for each leaf v of
dom(t), there exists a Σ-tree t′′ such that M accepts conv(t, t′′) and

(i) if v is not a proper prefix of u then u is in dom(t′′) iff v is in dom(t′).

(ii) if v is a proper prefix of u and u is in dom(t′′), then u is at a distance at most c from v.

Blumensath and Grädel [3] address automaticity of structures in terms of interpretability. They proved
that there are specific automatic structures that encompass all automatic structures in first-order logic. For
instance, a structure is word-automatic if and only if it is first-order interpretable in the following extension
of Presburger arithmetic (ω; +, |2), where x|2y iff x is a power of 2 and y is a multiple of x. In this sense,
automaticity is equivalent to first-order interpretability. There are other logical characterisations of auto-
maticity, for example, Colcombet and Löding [8] study characterisations through finite set interpretations;
further characterisations are given by Rubin [33].

The next definition refines the notion of tree-automaticity by placing a focus on the domain. Let K
denote a class of structures closed under isomorphism, for example the linearly ordered sets, well-ordered
sets, trees or Abelian groups.
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Definition 7. Let X be a given regular tree language. The spectrum SpecK(X) of X with respect to the
class K consists of all B ∈ K isomorphic to a tree-automatic structure A with domain X. If some B ∈ K
is isomorphic to a tree-automatic structure with domain X then we say that X admits B. The definition of
the spectrum SpecK(X) for regular languages X is analogous.

For example, no tree-automatic or word-automatic (tree) language admits a structure with undecidable
first-order theory. Let us collect some more examples which restrict the spectra. Rubin [34] showed that
0? admits a well-order α if and only if α < ω2. Delhommé [9] proved that if X is regular and X admits
a well-founded partial order, then its height is strictly below ωω (see also [19]) and that no regular tree
language admits the ordinal ωω

ω

. Tsankov [36] proved that no regular language admits the additive group
of rational numbers (Q; +) from deep results in group theory.

Definition 7 calls for a refined analysis of automaticity, and hence interpretability, of structures; proving
that a certain structure, for example the ordinal ωn, is not admitted by a given regular or regular tree
language requires an analysis of the automata and the algebraic and model theoretic properties of the
underlying structures. In this paper, the class K will be the class of linearly ordered sets.

3. Basic results

The first results give general properties of T (Σ).

Proposition 8. Assume |Σ| ≥ 2. Then, the language T (Σ) admits the order of the rational numbers.

Proof. We give the proof for Σ = {a, b} only and declare a < b. For any two given trees p, q ∈ T (Σ)
such that p 6= q consider the lexicographically least node x(p,q) in the convolution tree conv(p, q) for which
p′(x(p,q)) 6= q′(x(p,q)), where p′ and q′ are defined as in the definition of the convolution operation for trees.
Now we define the relation v on T (Σ) as follows. For trees p, q ∈ T (Σ) declare p v q if and only if either
p = q or conv(p, q)(x(p,q)) ∈ {(a, b), (�, b), (a,�)}.

We now claim that the relation v is the desired one. Note that the relation is tree-automatic. A
tree automaton recognising this relation can be described as follows. On input conv(p, q) the automaton
non-deterministically selects a path leading to x(p,q). At all nodes v lexicographically less than x(p,q) the
automaton verifies that p(v) = q(v). Once the node x(p,q) is reached the automaton accepts the tree
depending on whether or not its label belongs to {(a, b), (�, b), (a,�)}. If the automaton chose along some
path a wrong location for x(p,q), then the automaton fails along this non-deterministically chosen path that
searches for x(p,q) and the corresponding run will not be accepting.

It is not hard to verify that the relation v is a linear order on T (Σ). We need to show that v is dense
and has no end-points. Indeed, take a tree p ∈ T (Σ) and let v be any leaf of p. We extend p to p1 such that
p1(v0) = a and p1(v1) = b, and we extend p to p2 such that p2(v0) = b and p2(v1) = b. In this way we have
p1 @ p @ p2. Hence, v is a linear order without end-points.

Let p, q be such that p 6= q and p v q. First consider the case that p′(x(p,q)) = a and either q′(x(p,q)) = b
or q′(x(p,q)) = �. Let v be the lexicographically largest leaf of p above x(p,q) (if x(p,q) is a leaf of p, then we
take v to be xp,q). Note that in our terminology trees grow upwards, that is, a node v is above a node u if
u is closer to the root and u, v are on a common branch. Extend p to p2 using v as above (by adding nodes
p2(v0) = b and p2(v1) = b). Then p @ p2 @ q. Next consider the case that p′(x(p,q)) = � and q′(x(p,q)) = b.
Let w be the lexicographically largest leaf of q above x(p,q) (if x(p,q) is a leaf of q, then we take w to be xp,q).
Extend q to q1 using the node w (by adding nodes q1(w0) = a and q1(w1) = b to q). Then p @ q1 @ q.
Hence the linear order v is dense. �

The next two results show that tree-automatic structures are closed under ∃ω and under quotients by tree-
automatic congruence relations. Although these facts are not new, we will give proofs since the proof ideas
are used later. The first fact was claimed by Blumensath [2], proved by Colcombet and Löding [8] and
complexity-theoretically analysed by Kuske and Weidner [28].
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Proposition 9. Suppose that ≡ is a tree-automatic equivalence relation on a tree-automatic set A. There
is a tree-automatic function f picking representatives from equivalence classes of ≡; that is, f : A→ A and,
for all p, q ∈ A with p ≡ q, f(p) ≡ p and f(p) = f(q).

Proof. For each p ∈ A, set t(p) to be the Σ–tree such that the domain of t(p) is the set ∩q≡pdom(q) and
t(p) labels every node of its domain by some default value. The tree t(p) does not need to be in A. There
is a constant c such that for all p ∈ A there is a q ∈ A for which q ≡ p and every node in q is at a distance
at most c from a node in t(p). To prove this, we list all leaves u0, u1, . . . , un−1 in dom(t(p)), and consider
the automaton which recognises the relation ≡. Let c bound the number of states of this automaton. We
start with q0 = p, and for each m < n proceed, inductively, as follows. There is a Σ–tree t ≡ qm which does
not contain um0 and um1. By Corollary 6(b), there is a qm+1 ≡ t such that qm+1 coincides with qm on all
nodes except those above um and the height of the subtree of qm+1 above um is bounded by the constant c.
By transitivity we have qm ≡ qm+1. Doing this with all nodes u0, . . . , un−1, we produce a tree qn ≡ p. The
tree qn is the desired tree q.

Consider the set S(p) = {q ∈ A | p ≡ q and each node of q is at most c distance away from a node of
t(p)}. The relation {(p, q) | q ∈ S(p)} is tree-automatic: Given the convolution of two trees, one can check
with a tree automaton whether a leaf of one tree is more than c levels above a leaf of another tree, due to
nondeterministically choosing the path in this leaf and counting up to c+ 1. Furthermore, the relation ≡ is
tree-automatic, and intersections and complements of tree-automatic relations are tree-automatic.

We now define f(p) as follows. Restrict the order v from Proposition 8 to S(p) and take f(p) to be the
least element of S(p) with respect to the order v. �

Proposition 10. From a tree-automaton accepting a (n + 2)-ary relation R, one can compute a tree-
automaton accepting S = {(p, a1, a2, . . . , an) ∈ T (Σ)n+1 | ¬∃ωq R(p, q, a1, a2, . . . , an)}.

Proof. For trees p, q ∈ T (Σ) we write p ⊆d q if and only if dom(p) ⊆ dom(q). It is clear that ⊆d is
tree-automatic. Consider the set

S′ = {(p, a1, a2, . . . , an) ∈ T (Σ)n+1 | ∃q ∈ T (Σ) ∀t(R(p, t, a1, a2, . . . , an)⇒ t ⊆d q)}.

Since S′ is first-order definable from the tree-automatic relations ⊆d and R, it is effectively regular (effective
in the tree-automaton accepting R). It is not hard to verify that S = S′. �

The next corollary can be seen as a geometric interpretation of the proposition stated above.

Corollary 11. Consider the relations R and S as in Proposition 10 (with n = 0). For every p ∈ S define
the following Σ–tree φ(p):

(a) dom(φ(p)) = ∪R(p,q)dom(q);

(b) φ(p) labels every node v ∈ dom(φ(p)) by a default value, say by a ∈ Σ.

The function φ : S → T (Σ) is tree-automatic. Hence, there exists a constant c such that every node v of
φ(p) is at most c distance away from some node of p.

Proof. Note that, for each p ∈ S, the number of q which satisfy R(p, q) is finite and thus the tree is finite.
The corollary now follows from Proposition 10. �

4. On the nonexistence of scattered orders

In this section we show that the set of all Σ-trees does not admit a scattered tree-automatic linear order.
As a corollary there is no tree-automatic well-order on the set T (Σ). The anonymous referees pointed out
that the results in this section can also be obtained by using a connection of tree-automatic relations to
MSO-definable relations; these connections and the resulting proofs are explained in Section 6.
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Theorem 12. T (Σ) does not admit a tree-automatic scattered linear order.

Proof. Suppose by way of contradiction that ≤ is a tree-automatic scattered linear order on T (Σ). For any
nonempty alphabet Ξ ⊆ Σ, the restriction of ≤ to T (Ξ) is again a tree-automatic scattered linear order.
Hence we can assume without loss of generality that Σ is a singleton.

Let B be the set of slim Σ-trees. We use x, y, z and U, S, T to refer to trees in B and T (Σ), respectively.
For x ∈ B, x̃ denotes the node that generates x. The set Strings = {x̃ | x ∈ B} admits the order v, where
x̃ v ỹ iff x ≤ y. The word-automatic linear order (Strings,v) is isomorphic to (B,≤). The CB-rank r of
(Strings,v) is finite as proved in [23, 34].

Consider the sequence of derivatives ∼0,∼1, . . . ,∼r, for (L,≤) = (B,≤) defined just before Theorem 1,
where r is the CB-rank of (B,≤). Below we will define a set Bi using representatives of equivalence classes
of B with respect to ∼i (for ease of presentation, we define and consider ∼i+1 restricted to Bi only; it can
be extended to the whole of B by additionally including ∼i in ∼i+1). Let n = |Br| and k be the number of
infinite ∼r equivalence classes of Br−1.

Among all the possible scattered linear orders on T (Σ), choose the order ≤ on T (Σ) such that the
corresponding triple (r, n, k), called the extended rank of (B,≤), is the smallest possible with respect to the
lexicographical ordering of triples. Note that r ≥ 1.

The idea now is to show the existence of a z̃ such that the set Bnew of all trees in B having z̃ as a
branching node has a lower extended rank (Claim 15). As one can convert the scattered ordering ≤ on Bnew
to a scattered ordering ≤′ on B, this would give a contradiction (Claim 16). The following notions and
definitions and corresponding Claim 13 and Claim 14 about them allow us to show the above mentioned
Claim 15 and Claim 16.

We now give an inductive analysis of the sequence B0, B1, . . . , Br, formally define the relations ≤m+1,
∼m+1, sets Cm+1, constants cm+1 and dm+1, and functions tm+1, fm+1 and repm+1, where 0 ≤ m < r. For
m = 0 we have: B0 = B, ∼0= {(x, x) | x ∈ B}, and ≤0=≤. So, assume that for m, we have already defined
Bm, ∼m and ≤m on Bm.

For x, y ∈ Bm, let Cm+1(x, y) denote the interval [x, y] if x ≤m y and [y, x] if y ≤m x (that is, Cm+1(x, y)
consists of the trees z ∈ Bm, such that x ≤m z ≤m y in case x ≤m y (y ≤m z ≤m x, in case y ≤m x)).
We write x ∼m+1 y, where x, y ∈ Bm, if the interval Cm+1(x, y) is finite. Note that x ∼m+1 y iff there is a
Σ-tree U such that for all z ∈ Cm+1(x, y) we have dom(z) ⊆ dom(U). Hence ∼m+1 is recognised by a tree
automaton.

We recast the proof of Proposition 9 to extract the constant cm+1 and the function repm+1 that selects
representatives from the ∼m+1-classes. For x ∈ Bm, let tm+1(x) be the intersection of all the trees y ∈ Bm
with x ∼m+1 y. There exists a constant cm+1 independent of x such that for some y ∈ Bm we have Cm+1(x, y)
is finite and every node of y is at most cm+1 distance away from some node of tm+1(x). Then let repm+1(x)
be the y which has ỹ length-lexicographically least, among all y such that Cm+1(x, y) is finite and every node
of y is at most cm+1 distance away from some node of tm+1(x). Now set Bm+1 = {repm+1(x) | x ∈ Bm}
and ≤m+1 be ≤ restricted to Bm+1. Thus, we have the following claim.

Claim 13. There is a descending sequence B0, B1, . . . , Br of subsets of B such that B0 = B and, for
m = 0, 1, . . . , r, the following conditions hold:

(a) Bm is tree-automatic;

(b) The tree-automatic linearly ordered set (Bm,≤m) is isomorphic to the m-th derivative of (B,≤);

(c) If m < r, for each x ∈ Bm there is exactly one y ∈ Bm+1, denoted as y = repm+1(x), such that
Cm+1(x, y) is finite;

(d) If m < r, the function x 7→ repm+1(x) is tree-automatic, has domain Bm and there exists a constant
cm+1 such that, for all x ∈ Bm, every node of repm+1(x) is at most cm+1 distance away from some node
of tm+1(x).

The next claim defines the constant dm+1 and the function fm+1. The proof follows from the first-order
definability, Corollary 6, and Corollary 11.
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Claim 14. For each x ∈ Bm let fm+1(x) be the Σ-tree U such that U is the union of all the domains of
y ∈ Bm such that y ∈ Cm+1(x, repm+1(x)). Then the mapping x 7→ fm+1(x), where x ∈ Bm, is tree-
automatic and there is a constant dm+1 such that every node in fm+1(x) is at a distance at most dm+1 from
a branching node in x.

Without loss of generality, we assume that dm ≥ cm, m = 1, . . . , r.

Claim 15. There exists a Σ-tree z ∈ B such that ({u ∈ B | z̃ is a branching node in u},≤) has extended
rank (r′, n′, k′) with (r′, n′, k′) <lex (r, n, k).

For a proof of the claim, start with a Σ-tree x in Br such that the ∼r–equivalence class of x in Br−1 is
infinite. There are v, w ∈ Br−1 satisfying the following conditions:

• v ≤ x ≤ w;

• v ∼r w;

• either v = min{u ∈ Br−1 | u ∼r x} or |ṽ| > |x̃|+ d1 + . . .+ dr + 2;

• either w = max{u ∈ Br−1 | u ∼r x} or |w̃| > |x̃|+ d1 + . . .+ dr + 2.

Note that such a v exists as either the number of members of Br−1 which are ∼r x but below x in Br−1

is finite or all but finitely many of them satisfy |ṽ| > |x̃| + d1 + . . . + dr + 2. Similar argument holds for
existance of w.

We fix v and w chosen above. Take any sequence xr, xr−1, . . ., x0 that satisfies the following conditions:

1. xr = x and xm ∈ Bm, where m = 0, 1, . . . , r;

2. xm ∼m+1 xm+1, where m ∈ {0, 1, . . . , r − 1};

3. Either xr−1 < v or xr−1 > w.

Assume first that xr−1 < v. Consider now the following sequence of nodes

ṽr, ṽr−1, . . . , ṽ1, ṽ0

where ṽr = ṽ, and each ṽm is obtained from ṽm+1 by omitting the top dm+1 edges of ṽm+1 for m =
r − 1, . . . , 1, 0.

Now, by reverse induction on m = r − 1, . . . , 0, we claim that ṽm is a prefix of x̃m for m = r − 1, r −
2, . . . , 1, 0. To see this, first note that as xr−1 < v ≤ xr, by definition of dr and fr, every node of v is at most
a distance dr from a branching node of xr−1. Thus, ṽr−1 obtained by omitting the top dr edges from ṽr is a
prefix of x̃r−1. By induction, suppose that ṽm+1 is a prefix of x̃m+1. Then, as every node in xm+1 is at most
a distance dm+1 from a branching node in xm (by definition of dm+1 and fm+1), we have that ṽ′m obtained
by removing top dm+1 edges from x̃m+1 is a prefix of x̃m. Now, as ṽm+1 is a prefix of x̃m+1, we have that
ṽm is a prefix of ṽ′m. Thus by induction we have that ṽm is a prefix of x̃m for m = r − 1, r − 2, . . . , 1, 0.

Due to the length of v, we have |ṽ0| ≥ 2. Similarly, one can show that if xr−1 > w then x̃0 extends the
prefix w̃0 of w of length 2.

Now choose z such that z̃ has length 2 and z̃ is different from ṽ0, w̃0. Hence x̃0 cannot be a node
which extends z̃. For u ∈ B, let Rep0(u) = u and define Repi+1(u) (for i ≤ r − 1) as follows: let u0 = u,
ui+1 = repi+1(ui); Repi+1(u) = ui+1. Now, all u ∈ B containing z̃ as a branching node satisfy: Repr(u) 6= x,
or Repr−1(u) = y for some y ∈ Br−1 with v ≤ y ≤ w.

Now consider the set: Z = {u ∈ B | z̃ is a branching node in u}. As, for all u ∈ Z, Repr(u) 6= x, or
Repr−1(u) = y for some y ∈ Br−1 with v ≤ y ≤ w, we immediately have that the extended rank of (Z,≤)
is less than (r, n, k). Thus, z is the desired Σ-tree. This proves the claim.

Claim 16. There exists, in contradiction to the assumption, a scattered tree-automatic linear order (T (Σ),≤′
) such that the extended rank of (B,≤′) is strictly less than (r, n, k).
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Indeed, take the tree z from the previous claim. Consider the set A′ of all Σ-trees which contain z̃ as a
branching node and which do not have branching nodes incomparable to z̃. Let ≤′ be the restriction of ≤
to A′. Now, A′ = (A′,≤′) can be converted into a tree-automatic scattered linear order of the set B: for
t1, t2 ∈ B generated by t̃1, t̃2 respectively, let t1 ≤′′ t2 iff t′1 ≤′ t′2, where t′1 and t′2 are generated by z̃t̃1 and
z̃t̃2 respectively. The linearly ordered set (B,≤′′) has extended rank (r′, n′, k′) which is smaller than the
extended rank of (B,≤). This contradicts the choice of ≤. This completes the proof of Theorem 12. �

Corollary 17. The set T (Σ) of all Σ–trees does not admit any well-ordering.

Note that almost all parts of the proof of Theorem 12 worked only on the trees in B of the special form
which are generated by nodes. A straightforward generalisation gives the following corollary.

Corollary 18. Let a, b, c, d be strings such that b and c are different but of the same length. Let A = {x |
some node x̃ ∈ a(b∪ c)?d generates the tree x}. Then there is no tree-automatic scattered linear order on A.

5. A characterisation

The techniques of the previous section can be applied to characterise regular tree languages that admit
scattered linear orders.

Theorem 19. Let A be a regular tree language. Then the following three conditions are equivalent:

(1) There is a tree-automatic scattered linear order ≤ on A;

(2) There is a tree-automatic well-order v on A;

(3) The tree T =
⋃
{dom(t) | t ∈ A} has finite tree-rank.

Proof. For finite A, theorem can easily be seen to hold. So assume A is infinite.
It is clear that (2) implies (1). We now prove that (3) implies (2). We will give a proof in which we

define the well-order. Let us define the tree-rank tr(s) of a node s ∈ T as the tree-rank of the subtree T
above s, that is, the subtree with root s. Then tr(s) is a natural number by the assumption. For every
branching node s ∈ T either

• tr(s0) < tr(s) and tr(s1) < tr(s), or

• tr(si) = tr(s) and tr(s(1− i)) < tr(s) for i = 0 or i = 1.

Let Σ = {a, b} and define Λ:T → Σ? as follows. Let Λ(λ) = λ. Suppose that Λ(s) is defined and s0, s1 ∈ T .
Now the following statements hold:

• Λ(s0) = Λ(s)a, Λ(s1) = Λ(s)b if tr(s0) < tr(s);

• Λ(s0) = Λ(s)b, Λ(s1) = Λ(s)a if tr(s0) = tr(s) and tr(s1) < tr(s).

The first n symbols of Λ(s) and Λ(t) are equal if s, t ∈ T have a common prefix of length n. Note that Λ(s)
contains a at most tr(T ) times for all nodes s ∈ T . Let s v t for trees s, t ∈ A if one of the following three
conditions holds:

• s = t or

• dom(s) 6= dom(t) and u ∈ dom(t) for the unique u ∈ (dom(s) − dom(t)) ∪ (dom(t) − dom(s)) with
lexicographically largest Λ(u) or

• dom(s) = dom(t) and s(u) < t(u) for the lexicographically largest u ∈ dom(s) such that s(u) 6= t(u).
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Since tr(T ) is finite, the lexicographical order on range(Λ) is a well-order, and hence v is a well-order on
A.

We consider the extended language with a relation for slim Σ-trees. Any relation on T defined by a
first-order statement about A in the extended language is decidable by a tree automaton by the proof of the
uniform decidability Theorem 4. It is easy to verify that for each d < tr(T ), there is a first-order formula
in this language which decides whether the tree-rank of a given node is at least d. It follows that v is
tree-automatic.

It remains to show that (1) implies (3). Suppose by way of contradiction that the tree T =
⋃
{dom(t) |

t ∈ A} does not have a finite tree-rank. Since T is regular and does not have a finite tree-rank, there is a
word α such that the automaton accepting T takes the same state s after reading α and again after reading
αβ and αγ for two incomparable extensions. We can assume that β and γ have the same length, otherwise
we replace them with β|γ| and γ|β|, respectively. Let δ denote a word such that the state after reading αδ
is accepting. Then α(β ∪ γ)?δ ⊆ T .

Let us assign a Σ-tree ts ∈ A to each s ∈ α(β ∪ γ)?δ as follows. There is a Σ-tree t ∈ A, containing s as
a node, such that

(i) t is recognised by the automaton accepting A and

(ii) for any node s′ = s′′s′′′ in t, where s′′ is the largest common prefix of s′ and s, in the accepting run of
the automaton on t, no state of the automaton is repeated in the suffix s′′′ of s′.

Hence for some constant c, all nodes of dom(t) have distance ≤ c from some prefix of s. We can now choose
the unique Σ-tree ts ∈ A satisfying (i) and (ii) above such that for all t ∈ A satisfying the above requirements
(i) and (ii) and one of the following three conditions:

• ts = t or

• dom(ts) 6= dom(t) and u ∈ dom(t) for the unique u ∈ (dom(ts) − dom(t)) ∪ (dom(t) − dom(ts)) with
lexicographically largest u or

• dom(ts) = dom(t) and ts(u) < t(u) for the lexicographically largest u ∈ dom(ts) such that ts(u) 6= t(u).

As in the previous part of the proof, the assignment of ts to s ∈ α(β ∪ γ)?δ is tree-automatic. We can
assume that it is injective, since we can replace β, γ with βc+1, γc+1 otherwise (note that this will imply
injectivity as ts contains s as a node and none of the nodes in ts are at a distance more than c from a prefix
of s, whereas different members of α(βc+1 ∪ γc+1)?δ are at least a distance c+ 1 apart).

Recall from Section 2 that a tree x is generated by a string x̃ if x̃ is a branching node of the tree x and
every branching node of x is a prefix of x̃. If A admits a tree-automatic scattered linear order ≤A, then
B = {x | x̃ ∈ α(β∪γ)?δ and x is generated by x̃} admits a tree-automatic scattered linear order ≤B defined
by x ≤B y if tx̃ ≤A tỹ. However, this contradicts Corollary 18. �

The tree-rank of T =
⋃
{dom(t) | t ∈ A} is either infinite or bounded by the number of states of a

deterministic automaton accepting the nodes in T . Therefore we can compute this upper bound and then
apply Theorem 4 to determine whether the tree-rank of T is properly above this bound; this decides whether
T has finite tree-rank and thus we have the following corollary.

Corollary 20. It is decidable if a given regular tree language can be well-ordered by a tree automaton.

In contrast to Theorem 12 we have the following result.

Theorem 21. The set Σ? admits every infinite word-automatic scattered linear order.

Proof. Suppose that L = (L,≤) is an infinite word-automatic scattered linear order. Recall the definition
of ∼i defined before Theorem 1.

Suppose first that every ∼1-equivalence class is finite. Then ∼α=∼1 for all α ≥ 1. Hence L/ ∼1 is finite
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by Theorem 1. Thus L is finite, contradicting the assumption.
Suppose that [x] = {y | x ∼1 y in L} is an infinite ∼1-equivalence class. Thus [x] and C = [x]∪ (Σ? \L)

are regular. Hence, ([x],≤) is isomorphic to either the positive integers, or the negative integers, or the
integers. We first suppose that ([x],≤) is isomorphic to (ω,<). Let L[x] = {z ∈ L | z < x, z 6∈ [x]} and
R[x] = {z ∈ L | z > x and z 6∈ [x]} so that Σ? = L[x] ∪ C ∪ R[x]. We define a linear order ≤′ extending the
old order ≤ on L[x] and R[x] such that the words in [x] ∪ (Σ? \ L) are ordered length-lexicographically, all
the elements in C are strictly greater than all elements in L[x], and all elements in C are strictly smaller
than all elements in R[x]. Then ≤′ is a word-automatic linear order on Σ? isomorphic to L. The cases
for ([x],≤) being isomorphic to the negative integers and the integers, respectively, are similiar, since every
infinite regular set allows both of these order types. �

We do not know if the above result holds for all infinite word-automatic linear orders.

6. Alternative Proofs

Büchi proved that the ω-regular languages of ω-words and those definable by monadic second order logic
are the same. As the referees pointed out, this connection also holds for the tree-variant of regularity.
Recall that a scattered tree-automatic linear ordering on the Σ-trees induces a scattered tree-automatic
linear ordering on the slim Σ-trees. This ordering is MSO-definable and in turn induces an MSO-definable
scattered linear ordering on the nodes generating the slim Σ-trees. Thus one has a scattered linear ordering
on all the nodes of the full binary tree. Now, the next step is the following result which was sketched by an
anonymous referee.

Lemma 22. Let A ⊆ {0, 1}? be regular and let ≤ be a scattered linear order on A which is MSO-definable
in the full binary tree. Then there is a well-order on A which is MSO-definable in the full binary tree.

Proof. Let B be the set of slim Σ-trees (for unary Σ) generated by elements of A, i.e. t ∈ B if there are
a1a2 . . . an ∈ A with each ai ∈ {0, 1}, dom(t) = {a1a2...aib | b ∈ {0, 1}, i ≤ n} and t(x) is the unique value
in Σ, for all x ∈ dom(t). We will denote the linear order on B corresponding to ≤ by ≤ as well. We now
follow the first part of the proof of Theorem 12 and use the notation from this proof. The only difference
is that in the proof of Theorem 12, we used ∼i+1 to denote the restriction to Bi, while here we will again
use ∼i+1 for the relation on B as defined just before Theorem 1. As noted in the proof of Theorem 12, the
relation ∼i used in the current proof can be obtained by taking the union of ∼j , for j ≤ i, used in the proof
of Theorem 12.

As before, the linear order (B,≤) is automatic and therefore has finite CB-rank r. Then r is minimal
with ∼r+1= B2. As before, all equivalence relations ∼i are definable (using FO + ∃ω) in (B,≤), and there
are tree-automatic functions fi = repi choosing representatives from every ∼i-equivalence class. We can
additionally assume that for all i, the range of fi+1 is contained in the range of fi. We use these functions to
define a well-order v on B by placing the ∼i classes greater that the representative given by fi+1 below (with
respect to v) the ∼i classes less than the representative given by fi+1 (where the ordering is inverted). More
precisely, let x v y if fi(x) ≤ x ≤ y, y ≤ x ≤ fi(x) or y < fi(x) ≤ x, where i is minimal with x ∼i y. This
relation is tree-automatic, since it is definable in the tree-automatic structure (B,≤, (∼i, fi)i≤r)). Therefore
its copy on A is MSO-definable in the full binary tree. The lemma now follows from the two claims below
which verify that v is a well-order.

Claim 23. v is a linear order on B.

For a proof of the claim, it is easy to see that v is reflexive, antisymmetric and total. We prove that v is
transitive. Let ix,y denote the least i ≤ r with x ∼i y, for x, y ∈ B. We write x @ y if x v y and x 6= y.
Suppose that x @ y and y @ z. We prove that x @ z. Note that in {ix,y, ix,z, iy,z} there are at least two
equal values and these are maximal among these three values. We distinguish four cases.

First suppose that i = ix,y < j = iy,z = ix,z.
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• Suppose y < fj(y). Then, z < y < fj(y) = fj(x). Hence either z < fj(x) ≤ x or z < x < fj(x) (as
fi(x) = fi(y) 6= fi(z)). In both cases x @ z.

• Suppose fj(y) ≤ y. Since y @ z, either fj(y) ≤ y < z or z < fj(y) ≤ y. If fi(y) = fj(y),
then fi(x) = fi(y) = fj(y). Since x @ y and fi(x) ≤ y, we have fi(x) ≤ x < y. Hence either
fj(x) ≤ x < y < z or z < fj(x) ≤ x < y. In both cases x @ z. On the other hand, if fi(y) 6= fj(y),
then x is not ∼i-equivalent to fj(y). Since fj(y) ≤ y, we have fj(x) = fj(y) < fi(x) = fi(y) and
fj(y) < x. Note that x and y are ∼i-equivalent, but x and z are not ∼i-equivalent. If fj(y) ≤ y < z,
then fj(x) < x < z. If z < fj(y) ≤ y, then z < fj(x) < x. In both cases x @ z.

Second, suppose that i = ix,z < j = ix,y = iy,z. Then x ∼i z but x 6∼i y and y 6∼i z. Since y @ z, we have
the following options.

• Suppose fj(y) ≤ y < z. Then fj(y) ≤ y < x, contradicting the assumption that x @ y.

• Suppose z < y < fj(y). Then x < y < fj(y), again contradicting the assumption that x @ y.

• Suppose z < fj(y) ≤ y. Then x < y. Since x @ y, we have fj(y) = fj(x) ≤ x < y. Hence,
fj(x) = fi(x) (as z < fj(x) ≤ x and thus fj(x) must be same as fi(x)). Then z < fi(x) = fj(x) ≤ x
and hence x @ z.

Third, suppose that i = iy,z < j = ix,y = ix,z. Since x ∼j y, fj(x) = fj(y).

• Suppose fj(x) ≤ x. Since x @ y, y < fj(x) ≤ x or fj(x) ≤ x < y. Since y ∼i z and x 6∼i y,
z < fj(x) ≤ x or fj(x) ≤ x < z, so x @ z.

• Suppose x < fj(x). Since x @ y, y < x ≤ fj(x). Since y ∼i z and x 6∼i y, z < x ≤ fj(x). Hence x @ z.

Fourth, suppose that i = ix,y = ix,z = iy,z.

• Suppose x < fi(x). Then, y < x < fi(x) as otherwise y @ x. Furthermore, as y @ z, we have
z < y < x < fi(x). Hence we have x @ z.

• Suppose fi(x) ≤ x. Thus, either fi(x) ≤ x < y or y < fi(x) ≤ x. If fi(x) ≤ x < y then either
fi(x) ≤ x < y < z or z < fi(x) ≤ x < y, and in both cases, x @ z. On the other hand, if
y < fi(x) ≤ x, then z < y < fi(x) ≤ x, as otherwise z @ y. Thus, we have x @ z.

Claim 24. v is well-founded.

For a proof of the claim, suppose that there exists an infinite strictly decreasing sequence in (B,v). By
Ramsey’s theorem, there is some i ≤ r and an infinite subsequence (xn)n∈{0,1,2,...} such that xm+1 ∼i+1 xm
and xm+1 6∼i xm, and xm+1 @ xm for all m. If there are infinitely many m such that xm ≤ fi+1(x0),
then there exist m1,m2 such that m1 < m2 and xm1

@ xm2
, contradicting the choice of xi’s. Thus, for

all but finitely many m, fi+1(x0) ≤ xm. But then for the least m such that fi+1(x0) ≤ xm, we have that
fi+1(xm) = fi+1(x0) 6∼i+1 xm, as there are infinitely many m′ such that fi+1(xm) = fi+1(x0) < xm′ < xm.
This contradicts the assumption on fi+1 that fi+1(xm) ∼m+1 xm. This completes the proof of the claim
and also of Lemma 22. �

Alternative Proof for Theorems 12 and 19. The alternative proof is for the following statement:

If a regular tree-language R satisfies that the union T of the domains of the Σ-trees in R has
infinite tree-rank, then there is neither a tree-automatic scattered linear order on R nor a tree-
automatic well-order on R.

So assume that R and T are given and that T has infinite tree-rank. There is a regular subset S of T
satisfying the following two conditions:
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• For every branching node σ ∈ S there are exactly two branching nodes τ ∈ S such that τ properly
extends σ and there is no branching node of S between σ and τ ;

• For every branching node σ ∈ S there is a tree t ∈ R such that t contains a branching node τ ∈ S iff
τ � σ.

To see that such an S exists, first let S′ be a prefix-closed regular subset of T such that for every branching
node σ of S′, there exist branching node of S′ which extends σ0 and another branching node of S′ which
extends σ1. Note that, using first-order definability of slim Σ-trees one can first-order define whether tree-
rank of a tree is greater than any fixed given constant d. Furthermore, by the pumping lemma (Lemma 5, for
an automaton for accepting T ), tree-rank of a subtree of T is finite if only if it is bounded by some constant
c (depending on the automaton accepting T ). Hence, one can construct an automaton which accepts a node
in T iff the subtree rooted at it has at least tree-rank c+ 1. The so-defined regular set S′ consists therefore
of all nodes in T which are roots of a sub-tree of T with infinite tree-rank. Now given any node v of S′,
one can automatically find a tree tv in R which contain the node (that is, the mapping from v to tv is
automatic). As this mapping is automatic, we have a constant c′ such that every node of tv is at a distance
at most c′ from a prefix of v. Now take S as a regular subset of S′ for which (i) the root of S′ belongs to
S, (ii) between any two branching nodes of S there are exactly 2c′ + 1 branching nodes of S′, (iii) for every
branching node σ of S, there are branching nodes extending σ0 and σ1 in S, and (iv) the branching nodes
of S′ which are not branching nodes of S have only the left child of S′ as a member of S. This S satisfies
the requirements given above.

Now there is a tree-automatic function F which, for each branching node σ ∈ S, picks t ∈ R containing
exactly those branching nodes τ ∈ S which satisfy τ � σ; by assumption on S this function is one-one. Hence
one can deduce from the scattered linear ordering on R a scattered linear ordering on the branching nodes
of S: σ @S τ ⇔ F (σ) @R F (τ) where @S ,@R refer to the two linear orders; as @R is scattered so is @S .
Furthermore, by Lemma 22, there is now a well-ordering on S which is MSO-definable. However, Carayol
and Löding [7, Theorem 7] proved that the theory of any well-ordering on the nodes of a full binary tree is
undecidable. As the theory of any MSO-definable ordering on S is decidable, this gives a contradiction and
so the given tree-language must satisfy that the union T of its domains does have finite tree-rank. �

The just cited result is an automata-theoretic version of the Theorem of Gurevich and Shelah [11] who
proved that there is no MSO-definable choice-function on the full binary tree. The undecidability result of
Carayol and Löding [7] is stronger and proven with purely automata-theoretic tools.

7. Lower and upper bounds

Suppose that A is an infinite regular tree language with a tree-automatic well-ordering. Let minord(A) and
maxord(A) denote the minimum and the supremum of the ordinals α such that A admits a tree-automatic
well-ordering of type α. In this section we study the possible values which minord(A) and maxord(A) might
take. It is known that minord(A) = ω and maxord(A) = ω2 if all branching nodes in the trees in A are of
the form 1n and Σ is unary, and minord(A) = ω and maxord(A) = ωω if |Σ| > 1 (see for instance [34]). We
generalise this to the case where the tree-rank of T =

⋃
{dom(t) | t ∈ A} is at most k.

Let us define the ωk-automata connected to this question. The definition and basic results on ordinal
automata can be found for instance in [35, 10, 17]. Let P(S) denote the powerset of S. Suppose that
γ is an ordinal and Σ is a finite alphabet. A (deterministic) γ-automaton is a finite automaton together
with a limit transition function P(S) → S, where S is the set of states. The letters of a finite input
word w : γ → Σ ∪ {�} (that is, all but finitely many of its letters are �) are read successively. Here, we
let dom(w) = {α | w(α) 6= �}. At every limit time γ′ ≤ γ the state is determined by the limit transition
function applied to the set of states appearing unboundedly often before γ′, as in Büchi and Muller automata
[5, 6, 1, 31]. At time γ we check whether the state is an accepting state.

Definition 25. Suppose γ is an ordinal and A is a set of finite γ-words. A structure A = (A;R1, ..., Rn) is
finite word γ-automatic if the domain and the relations are recognizable by deterministic γ-automata.
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Let CΣ
k denote the set of Σ-trees such that each branching node contains at most k 0’s.

Theorem 26. The following conditions are equivalent for relational structures A:

(1) A is isomorphic to a tree-automatic structure with domain B ⊆ CΣ
k for some finite alphabet Σ;

(2) A is isomorphic to a tree-automatic structure with domain B such that tr(
⋃
t∈B dom(t)) ≤ k + 1;

(3) A is isomorphic to an ωk+1-automatic structure.

Proof. The implication from (1) to (2) holds since tr(T ) = k + 1 for T =
⋃
t∈CΣ

k
dom(t). The implication

from (2) to (3) can easily be proven in a way similar to the proof of Theorem 19, part (3)⇒(2), and using
the result of Neeman [29, Theorem 7] that any nondeterministic ωk+1-automaton can be replaced by a
deterministic ωk+1-automaton. Since the argument is analogous to the proof in Theorem 19, we only sketch
the idea here. Using the mapping Λ given in the proof Theorem 19, one can map each node s in T to an
ordinal val(s) < ωk+1 as follows: for a node s in T , if Λ(s) = bckabck−1a . . . bcia, where i ≥ 0, then

val(s) = ωk(2ck + 1) + ωk−1(2ck−1 + 1) + . . .+ ωi(2ci + 1);

if Λ(s) = bckabck−1a . . . bci , where i ≥ 0, then

val(s) = ωk(2ck + 1) + ωk−1(2ck−1 + 1) + . . .+ ωi(2ci).

Then, each Σ-tree t ∈ CΣ
k can be mapped to a ωk+1-word wt with domain {val(s) | s ∈ dom(t)} and

wt(val(s)) = t(s). Now the different Σ-trees t and t′ in CΣ
k can be compared in a way similar to Theorem 19

by defining t ≤ t′ iff (i) wt = wt′ or (ii) dom(wt) 6= dom(wt′) and for the largest u ∈ (dom(wt′)−dom(wt))∪
(dom(wt)−dom(wt′)), u belongs to dom(wt′) or (iii) dom(wt) = dom(wt′) and wt(u) < wt′(u) for the largest
u in dom(wt) such that wt(u) 6= wt′(u). The rest of the argument is straightforward and similar to the proof
of Theorem 19 and is therefore omitted.

To prove the implication from (3) to (1), let T =
⋃
t∈CΣ

k
dom(t). We consider the bijection g : ωk+1 → T

defined by g(ωkmk + ωk−1mk−1 + ... + m0) = 1mk01mk−10...1m0 and its inverse f :T → ωk+1 (note that f
is partial).

We consider for each finite ωk+1-word w over a finite alphabet Σ the Σ∪{�}-tree t such that the branching
nodes of dom(t) are the prefixes of elements of g[dom(w)], t(u) = w(f(u)) for all u ∈ g[dom(w)], and t(u) = �
otherwise. This defines a bijection from the set of finite ωk+1-words to a tree regular subset of C

Σ∪{�}
k .

We simulate the deterministic ωk+1-automaton Q by a nondeterministic tree automaton as follows. The
states of the tree automaton are of the form (s1, s2, X1, X2, i). Intuitively, the tree-automaton being at
state (s1, s2, X1, X2, i) at a tree-node means that if the automaton Q starts at state s1, with the states in
X1 having been already visited infinitely often, then after processing the corresponding section (above the
tree-node having the state s1) of the input word, the automaton Q ends up in state s2 having visited states
in X2 infinitely often; here i denotes the number of 0-branches having been taken from the root to reach the
current tree-node. Thus, at the root, the starting state of the tree-automaton is (s1, s2, X1, X2, 0), where
s1 is the starting state of the automaton Q, X1 = ∅, s2 is the guessed accepting state after processing the
whole word and X2 is the guessed set of states which are visited infinitely often.

If at a tree-node the state is (s1, s2, X1, X2, i), then on the 0-branch child, the state is (s1, s
′
2, X1, X

′
2, i+1)

and on the 1-branch the state is (s′2, s2, X
′
2, X2, i), where s′2 is a guessed state after having read the subword

of the input corresponding to the 0-child. At a leaf node with state (s1, s2, X1, X2, i), the tree-automaton
accepts iff either i = k + 1 and s1 = s2, X1 = X2, or i ≤ k, and the automaton Q starting in state s1, after
seeing ωk+1−i �’s would end up in state s2 and X2 = (X1 unioned with the set of states visited infinitely
often in the above process). It is easy to verify that the above tree-automaton will be able to simulate the
ωk+1-automaton Q. �

Note that a similar connection has been studied by Finkel and Todorcevic in [10, Proposition 3.4]. Through
this correspondence we obtain by [35, Proposition 16] the following corollary.
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Corollary 27. The CB-rank of every scattered tree-automatic linear order is below ωω. In particular, every
tree-automatic ordinal is below ωω

ω

(see [9]).

In fact the CB-rank of all tree-automatic linear orders is below ωω [15].
We now determine minord and maxord for some regular tree languages. For each k ≥ 1, let Ak denote

the regular tree language consisting of all {0}-trees where each branching node is of the form 0m1n for some
m < k and some n ∈ N.

Theorem 28. Let k ≥ 1.

(a) minord(Ak) = ωk, maxord(Ak) = ωk+1.

(b) minord(C
{0}
k ) = ωk+1, maxord(C

{0}
k ) = ωω

k+1

.

Proof. (a) We identify each tree t ∈ Ak with the tuple (a0, a1, . . . , ak−1), where ai is the largest natural
number such that 0i1ai is a branching node in t. This gives us a one-to-one correspondence between Nk
and Ak. The lexicographical order on Nk induces a tree-automatic order on Ak of order type ωk and hence
minord(Ak) ≤ ωk.

Claim 29. Suppose that ≤ is a tree-automatic well-order on Ak. Then, there exists a constant c such that
for all b0, b1, . . . , bk−1 < c, the order type of

Hb0,b1,...,bk−1
= {(ca0 + b0, ca1 + b1, . . . , cak−1 + bk−1) | ai > 0, for all i < k},

with respect to ≤ is ωk.

For ease of notation, for b̃ = (b0, b1, . . . , bk−1), let c·(a0, a1, . . . , ak−1)+b̃ denote (ca0+b0, ca1+b1, . . . , cak−1+
bk−1).

To prove the claim, note that for a0, a1, . . . , ak−1 ≥ 1, a′0, a
′
1, . . . , a

′
k−1 ≥ 1 the following hold for all

i ≤ k− 1 (where the first two items follow using Lemma 5, by taking c below as the factorial of the constant
c in the lemma).

• if ai > a′i and c · (a0, a1, . . . , ai, . . . , ak−1) + b̃ ≤ c · (a′0, a′1, . . . , a′i, . . . , a′k−1) + b̃

then c · (a0, a1, . . . , ai + 1, . . . , ak−1) + b̃ ≤ c · (a′0, a′1, . . . , a′i, . . . , , a′k−1) + b̃.

• if c · (a0, a1, . . . , ai, . . . , ak−1) + b̃ ≤ c · (a′0, a′1, . . . , a′i, . . . , a′k−1) + b̃

then c · (a0, a1, . . . , ai + 1, . . . , ak−1) + b̃ ≤ c · (a′0, a′1, . . . , a′i + 1, . . . , a′k−1) + b̃.

Since ≤ is a well-order, this implies

• c · (a0, a1, . . . , ai, . . . , ak−1) + b̃ ≤ c · (a0, a1, . . . , ai + 1, . . . , ak−1) + b̃.

We can assume without loss of generality, by possibly changing the order of the coordinates, that for all
i < k − 1

• if

– a′i = 2, ai+1 = 2,

– aj = 1 if j ≤ i or i+ 1 < j ≤ k − 1, and

– a′j = 1 if j < i or i < j ≤ k − 1,

then c · (a0, a1, . . . , ak−1) + b̃ ≤ c · (a′0, a′1, . . . , a′k−1) + b̃.

The previous four statements imply by reverse induction on i ≤ k that

• if
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– (aj = a′j for j < i),

– ai < a′i, and

– (aj , a
′
j ≥ 1, for j ≤ k − 1),

then c · (a0, a1, . . . , ai, . . . , ak−1) + b̃ ≤ c · (a′0, a′1, . . . , a′i, . . . , a′k−1) + b̃.

Thus the set {(ca0, ca1, . . . , cak−1) | ai > 0, for 0 ≤ i ≤ k−1} has order type ωk in the ordering ≤, and hence
minord(Ak) ≥ ωk. Along with the already shown part that minord(Ak) ≤ ωk, we have minord(Ak) = ωk.

We now show that maxord(Ak) = ωk+1. Let a0 mod m denote the remainder of the division of a0

by m. Note that maxord(Ak) ≥ ωk × {0, 1, . . . ,m − 1} by using the order ≤m: (a0, a1, . . . , ak−1) ≤m
(a′0, a

′
1, . . . , a

′
k−1) iff a0 mod m < a′0 mod m or a0 mod m = a′0 mod m and (a0, a1, . . . , ak−1) is lexicograph-

ically at most (a′0, a
′
1, . . . , a

′
k−1). Thus, maxord(Ak) ≥ ωk+1.

We now prove that maxord(Ak) ≤ ωk+1 by induction on k. This holds for k = 1 by [34]. So assume
that it holds for k, and consider an ordering ≤ on Ak+1.

• By Claim 29 there exists a constant c such that for b0, b1, . . . , bk < c,

Hb0,b1,...,bk = {(ca0 + b0, ca1 + b1, . . . , cak + bk) | ai > 0, for all i ≤ k} has order type ωk+1.

• For all b < c, let Y ib = {(a0, a1, . . . , ak) | ai = b}. Then, by induction the order type of Y ib is at most
ωk+1.

Since, for any ordering of Ak+1 there exists a c such that the ordering of Ak+1 can be divided into finitely
many parts of the form given by the above two cases, we immediately have that the order type of Ak+1 is
at most ωk+2. This proves part (a).

(b) It follows from Corollary 17 in [35] and Theorem 26 thatmaxord(C
{0}
k ) = ωω

k+1

and thatminord(C
{0}
k ) ≤

ωk+1. Note that Ak+1 ⊆ C{0}k . It follows that minord(C
{0}
k ) ≥ minord(Ak+1) ≥ ωk+1. �

Theorem 30. Let A be an infinite regular tree language. Then minord(A) and maxord(A) fulfill the
following conditions:

(a) minord(A) is of the form ωαn, where n ∈ N and n ≥ 1;

(b) maxord(A) is of the form ωαn, where n ∈ N, n ≥ 1; furthermore, ωαn is not realized and if maxord(A) =
ωαn with α ≥ ω then n = 1.

Proof. (a) Suppose that β = minord(A) as witnessed by an ordering ≤ on A. Suppose that β = ωα0n0 +
...+ωαknk with α0 > ... > αk such that ni > 0 for all i ≤ k. Since ωα0n0 = (ωα1n1 + ...+ωαknk)+ωα0n0, we
obtain a tree-automatic well-order on A of type ωα0n0 as follows. Let a be such that B = {x ∈ A | x < a}
is of order type ωα0n0. Let x ≤′ y if [(x, y ∈ B or x, y ∈ A \ B) and x ≤ y] or (y ∈ B and x ∈ A \ B) for
x, y ∈ A. It is easy to verify that ≤′ has order-type ωα0n0. This proves (a).

(b) Suppose that β = maxord(A) as witnessed by an ordering ≤ on A. We first argue that β is not
realized (and thus β is a limit ordinal). Suppose by way of contradiction that ≤′ is a tree-automatic well-
order on A of order type β. If a ∈ A is the least element in ≤, then x ≤′ y iff (x ≤ y∧x 6= a∧y 6= a)∨(y = a)
defines a well-order of order type β + 1 on A. Thus, β is a limit-ordinal which is not realized.

From above, it follows that maxord(A) is of the form β = ωα0n0 + ... + ωαknk, where each ni > 0 and
α0 > α1 > . . . > αk > 0. Suppose an order ≤ on A is of order type δ ≥ ωα0n0 + ... + ωαk(nk − 1). Let
B = {x | x is a successor in ≤ ordering of A}. Consider the ordering ≤′ defined as follows. x ≤′ y iff
[(x, y ∈ B or x, y ∈ A \B) and x ≤ y] or x ∈ B and y ∈ A \B. Then there are two cases:

(i) If k > 0, then order type of ≤′ is at least m = ωα0n0 + ... + ωαknk (since, the order type of B is the
same as order type of A and the order type of A \B is at least ωγ , for any γ < α0), contradicting the
above result that m is not attained;
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(ii) If k = 0, α0 ≥ ω and n0 > 1, then also the order type of ≤′ is at least β = ωα0n0, contradicting the
above result that β is not attained.

This completes the proof. �
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