
Learning Languages from Positive Data and a

Limited Number of Short Counterexamples

Sanjay Jain a,1 and Efim Kinber b

a School of Computing, National University of Singapore, Singapore 117590.
Email: sanjay@comp.nus.edu.sg

b Department of Computer Science, Sacred Heart University, Fairfield, CT
06432-1000, U.S.A. Email: kinbere@sacredheart.edu

Abstract

We consider two variants of a model for learning languages in the limit from positive
data and a limited number of short negative counterexamples (counterexamples are
considered to be short if they are smaller than the largest element of input seen
so far). Negative counterexamples to a conjecture are examples which belong to
the conjectured language but do not belong to the input language. Within this
framework, we explore how/when learners using n short (arbitrary) negative coun-
terexamples can be simulated (or simulate) using least short counterexamples or
just ‘no’ answers from a teacher. We also study how a limited number of short
counterexamples fairs against unconstrained counterexamples, and also compare
their capabilities with the data that can be obtained from subset, superset, and
equivalence queries (possibly with counterexamples). A surprising result is that just
one short counterexample can sometimes be more useful than any bounded num-
ber of counterexamples of arbitrary size. Most of results exhibit salient examples of
languages learnable or not learnable within corresponding variants of our models.

1 Introduction

Our goal in this paper is to explore how limited amount of negative data,
relatively easily available from a teacher, can help learning languages in the
limit. There is a long tradition of using two popular different paradigms for
exploring learning languages in the limit. One paradigm, learning languages
from full positive data (all correct statements of the language), was introduced

1 Supported in part by NUS grant number R252-000-127-112, R252-000-212-112
and R252-000-308-112.

Preprint submitted to Elsevier 14 February 2008

by Gold in his classical paper [Gol67]. In this model, TxtEx, the learner sta-
bilizes in the limit to a grammar generating the target language. In another
popular variant of this model, TxtBc, defined in [CL82] and [OW82] (see also
[Bār74] and [CS83]) almost all conjectures outputted by the learner are cor-
rect grammars describing the target language. The second popular paradigm,
learning using queries to a teacher (oracle) was introduced by D. Angluin in
[Ang88]. In particular, D. Angluin considered three types of queries: subset,
superset, and equivalence queries — when a learner asks if a current hypoth-
esis generates a subset or a superset of the target language, or, respectively,
generates exactly the target language. If the answer is negative, the teacher
may provide a counterexample showing where the current hypothesis errs. This
model has been used for exploring language learning primarily in the situation
when no data was available in advance (see, for example, [LZ04b], [LZ04a]).
In [JK07], the two models were combined together: a learner gets full positive
data and can query the teacher if the current conjecture is correct. On one
hand, this model reflects the fact that a learner, during a process of acquisi-
tion of a new language, potentially gets access to all correct statements. On
the other hand, this model adds another important tool, typically available,
say, to a child learning a new language: a possibility to communicate with a
teacher. Sometimes, this possibility may be really vital for successful learning.
For example, if a learner of English past tense, having received on the input
“call – called”, “fall – fell”, infers the rule implying that both past tense forms
“called, cell” and “falled, fell” are possible, then this rule can be refuted only
by counterexamples from a teacher.

In this context, subset queries are of primary interest, as they provide negative
counterexamples if the learner errs, while other types of queries may provide
positive ‘counterexamples’ eventually available on the input anyway (still, as
it was shown in [JK06], the sequel paper to [JK07], superset and equivalence
queries can make some difference even in presense of full positive data). Con-
sequently, one can consider the learner for NCEx model as defined in [JK07]
(and its variant NCBc corresponding to TxtBc — NC here stands for ‘neg-
ative counterexamples’), as making a subset query for each of its conjectures.
When a learner tests every conjecture, potentially he/she can get indefinite
number of counterexamples (still this number is, of course, finite if the learner
learns the target language in the limit correctly). In [JK06] the authors ex-
plored learning from positive data and bounded amount of additional negative
data. In this context, one can consider three different scenarios of how subset
queries and corresponding negative counterexamples (if any) can be used:

— only a bounded number (up to n) of subset queries is allowed during the
learning process; this model was considered in [JK06] under the name SubQn;

— the learner makes subset query for every conjecture until n negative answers
have been received; that is, the learner can ask potentially indefinite number

2

of questions (however, still finite if the learning process eventually gives a
correct grammar), but he is charged only when receiving a negative answer;
this model was considered in [JK06] under the name NCn;

— the learner makes subset queries for conjectures, when deemed necessary,
until n negative answers have been received; in the sequel, we will refer to
this model as GNCn, where GNC denotes ‘generalized model of learning via
negative counterexamples’.

Note that the GNCn model combines the features of the first two (we will
also demonstrate that it is stronger than each of the first two).

All three models SubQn, NCn, and GNCn provide certain complexity mea-
sure (in the spirit of [GM98]) for learning languages that cannot be learned
from positive data alone.

Negative counterexamples provided by the teacher in all these models are of
arbitrary size. Some researchers in the field considered other types of negative
data available for learners from full positive data. For example, negative data
provided to learners in the model considered in [BCJ95] is preselected – in
this situation just a very small amount of negative data can greatly enhance
learning capabilities. A similar model was considered in [Mot91].

In this paper we consider models SubQn, NCn, and GNCn when the teacher
provides a negative counterexample only if there is one whose size does not
exceed the size of the longest statement seen so far. While learning from full
positive data and negative counterexamples of arbitrary size can be interesting
and insightful on its own right, providing arbitrary examples immediately (as
it is assumed in the models under consideration) may be somewhat unrealistic
— in fact, it may significantly slow down learning process, if not making it
impossible. On the other hand, it is reasonable to assume that the teacher can
reasonably quickly provide a counterexample (if any), if its size is bounded by
the largest statement in the input seen so far. Following notation in [JK06],
we denote corresponding variants of our three models by BSubQn, BNCn,
and BGNCn, respectively. We also consider the following two variants of the
above model.

(i) The least counterexample (if any) is provided rather than an arbitrary one
(these variants are denoted by adding a prefix L as in LBSubQn, LBNCn

and LBGNCn).

(ii) Following [Ang88] and [JK06] we consider the case when the teacher,
responding to a query, answers just ‘no’ if a counterexample of the size not
exceeding the size of the largest statement seen so far exists — not providing
the actual example; otherwise, the teacher answers ‘yes’ (we add a prefix Res
to the name of a model to denote this variant).

3

It must be noted that, as it is shown in [JK06], BSubQn does not provides any
advantages over learning just from positive data. Therefore, we concentrate
on BNCn, BGNCn and their L and Res variants.

In this paper we will explore relationships between BNCn, BGNCn, NCn and
GNCn (as well as their L and Res variants). In this context, we, in particular,
demonstrate advantages that our B-variants of learning (even ResB) can have
over GNCn in terms of the number of mind changes needed to arrive to the
right conjecture. We consider also learning with bounded number of two other
types of queries, superset and equivalence, and discuss how their capabilities
in the presense of full positive data fair against B and ResB types of learning
with bounded numbers of counterexamples/‘no’ — answers (as it was noted
above, even though superset and equivalence queries may provide positive
‘counterexamples’, there are circumstances when this can help even in the
presense of full positive data — see, for example, Theorems 19 and 22 in
[JK06]).

Most of our results provide salient examples of classes learnable (or not learn-
able) within corresponding models.

The paper has the following structure. In Section 2 we introduce necessary
notation and definitions needed for the rest of the paper. In particular, we de-
fine some variants of the classical Gold’s model of learning from texts (positive
data): TxtEx — when the learner stabilizes to a correct (or nearly correct)
conjecture generating the target language, and TxtBc — its behaviorally
correct counterpart. In Section 3 we define learnability from positive data via
uniformly bounded number of queries to the teacher (oracle). In particular, we
define learning via queries returning the least one or no counterexamples (just
the answers ‘yes’ or ‘no’ in the latter case). In all these models the learning
algorithm is charged for every query that it makes. This section also gives the
reader general understanding of how learning from positive data via subset
queries works.

In Section 4, for both major models of learnability in the limit, TxtEx and
TxtBc, we define two variants of learning from positive data and a uniformly
bounded number of counterexamples: NCn and GNCn, where the learner
makes subset queries and is charged for every negative answer from a teacher
(rather than for every query, as in the query model in Section 3). We then
define the main models considered in this paper: BNCn and BGNCn, as well
as Res variants of both. We also formally define the L variant for all these
models. In addition, we establish some useful facts regarding the model GNC,
as it is introduced in this paper for the first time.

In Section 5 we explore relationships between different bounded negative coun-
terexample models. In particular, we study the following two problems: un-

4

der which circumstances, (a) B-learners receiving just answers ‘yes’ or ‘no’
can simulate the learners receiving short (possibly, even least) counterexam-
ples; (b) learners receiving arbitrary short counterexamples can simulate the
ones receiving the least short counterexamples. First, we note that in all the
variants of the paradigms TxtEx and TxtBc, an LBNCn-learner can be al-
ways simulated by a ResBNC2n−1-learner: 2n− 1 ‘no’ answers are enough to
simulate n explicit negative counterexamples (similar fact holds also for the
LBGNCn-learners). Moreover, for the Bc∗ type of learnability (when almost
all conjectures contain any finite number of errors), the number 2n − 1 in
the above result drops to n (Theorem 27; note that, for learning via limited
number of arbitrary or least counterexamples, the number 2n − 1 could not
be lowered even for Bc∗-learners, as shown in [JK06]). On the other hand,
the number 2n − 1 of negative answers/counterexamples cannot be lowered
for the learning types Ex∗ (when any finite number of errors in the limiting
correct conjecture) and Bcm (when the number of errors in almost all conjec-
tures is uniformly bounded by some m) for both tasks (a) and (b). Namely,
there exist LBNCnEx-learnable classes of languages that cannot be learned
by BGNC2n−2Bcm or BGNC2n−2Ex∗-learners (Theorem 24) and there exist
BNCnEx-learnable classes that cannot be learned by ResBNC2n−2Bcm or
ResBNC2n−2Ex∗-learners (Theorem 25 and Theorem 26). We also show that
a LBNCEx∗-learner can be always simulated by a ResBNCBc-learner —
when the number of negative answers/counterexamples is unbounded.

In Section 6 we explore relationships between our models when the counterex-
amples considered are short or unconstrained. First, we demonstrate how short
counterexamples can be of advantage over unconstrained ones while learning
from positive data and a bounded number of counterexamples. A somewhat
surprising result is that sometimes one ‘no’ answer, just indicating that a
short counterexample exists, can do more than any number n of arbitrary
(or even least) counterexamples used by (the strongest) LGNCnBc∗-learners
(Theorem 33). Note that the advantages of least examples/counterexamples
in speeding up learning has been studied in other situations also, such as
learning of non-erasing pattern languages ([WZ94]). However, in our model of
BNC-learning versus LNC-learning, the LNC-learner does get least coun-
terexamples, and BNC learner gets just a counterexample, if there exists
one below the largest positive data seen so far. This seems on the surface
to hurt, as BNC-learner is likely to get less (negative) data. In fact, that
is the case when we do not bound the number of counterexamples received.
However, when we consider counting/bounding, there is a charge for every
counterexample. Consequently, a BNC-learner is not being charged for (un-
necessary) negative data, if it does not receive it. As a result, the possibility
of getting negative data which are ≤ largest positive data seen in the input
so far can be turned to an advantage — in terms of cost of learning. This
is what is exploited in getting this result. We also show that sometimes a
ResBNC1Ex-learner can use just one mind change (and one ‘no’ answer wit-

5

nessing existence of a short counterexample) to learn classes of languages not
learnable by any GNCEx-learner using any bounded number of mind changes
and an unbounded (finite) number of arbitrary counterexamples (Theorem 35).
On the other hand, least counterexamples used by NC-type learners make a
difference: any LBNCEx-learner using at most m mind changes and any (un-
bounded) number of counterexamples can be simulated by a LNCm-learner
using at most m mind changes and at most m least counterexamples.

In Section 7 we study how learning via limited number of short counterexam-
ples fairs against learning via finite number of subset, superset, and equiva-
lence queries (note that, as shown in [JK06], if answers ‘no’/counterexamples
to queries are of B-type (i.e. constrained to be short), then they do not give
any advantage over regular learnability by TxtEx or TxtBc-learners, thus
we consider here only queries returning arbitrary or least counterexamples
or just ‘no’ answers assuming existence of a counterexample). In some cases,
just one query, providing only the answer, without associated counterexample,
can give one a learning advantage compared to any number n of least short
counterexamples used by BNCnBc or BGNCnBc-learners (sometimes even
making errors in almost all correct conjectures). On the other hand Bcm and
Ex∗-learners using any finite number of superset queries can be simulated by
ResBNCBc-learners making just one error in almost all correct conjectures
if an unbounded number of ‘no’ answers is allowed (Theorem 42). Conversely,
one restricted ‘no’ answer (just assuming existence of a short counterexample)
can sometimes do better than any (bounded) number of queries of any type
while getting least counterexamples.

We hope that our models and results shed a new light on how limited negative
data can help learning languages in the limit.

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol
N denotes the set of natural numbers, {0, 1, 2, 3, . . .}. Symbols ∅, ⊆, ⊂, ⊇,
and ⊃ denote empty set, subset, proper subset, superset, and proper superset,
respectively. D0, D1, . . . , denotes a canonical recursive indexing of all the finite
sets [Rog67, Page 70]. We assume that if Di ⊆ Dj then i ≤ j (the canonical
indexing defined in [Rog67] satisfies this property). Cardinality of a set S
is denoted by card(S). Im denotes the set {x | x ≤ m}. The maximum and
minimum of a set are denoted by max(·),min(·), respectively, where max(∅) =
0 and min(∅) = ∞. L1∆L2 denotes the symmetric difference of L1 and L2,
that is L1∆L2 = (L1 − L2) ∪ (L2 − L1). For a natural number a, we say that
L1 =a L2, iff card(L1∆L2) ≤ a. We say that L1 =∗ L2, iff card(L1∆L2) < ∞.
Thus, we take n < ∗ < ∞, for all n ∈ N . If L1 =a L2, then we say that L1 is

6

an a-variant of L2.

We let 〈·, ·〉 stand for an arbitrary, computable, bijective mapping from N ×N
onto N [Rog67]. We assume without loss of generality that 〈·, ·〉 is mono-
tonically increasing in both of its arguments. We define π1(〈x, y〉) = x and
π2(〈x, y〉) = y. We can extend pairing function to multiple arguments by us-
ing 〈i1, i2, . . . , ik〉 = 〈i1, 〈i2, 〈. . . , 〈ik−1, ik〉〉〉〉.

We let {Wi}i∈N denote an acceptable numbering of all r.e. sets. Symbol E will
denote the set of all r.e. languages. Symbol L, with or without decorations,
ranges over E . By L, we denote the complement of L, that is N − L. Symbol
L, with or without decorations, ranges over subsets of E . By Wi,s we denote
the set Wi enumerated within s steps, in some standard computable method
of enumerating Wi.

We now present concepts from language learning theory. The next definition
introduces the concept of a sequence of data.

Definition 1 (a) A sequence σ is a mapping from an initial segment of N
into (N ∪ {#}). The empty sequence is denoted by Λ.

(b) The content of a sequence σ, denoted content(σ), is the set of natural
numbers in the range of σ.

(c) The length of σ, denoted by |σ|, is the number of elements in σ. So, |Λ| = 0.

(d) For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n]. So,
σ[0] is Λ.

Intuitively, #’s represent pauses in the presentation of data. We let σ, τ , and
γ, with or without decorations, range over finite sequences. We denote the
sequence formed by the concatenation of τ at the end of σ by σ⋄τ . For ease of
notation, we often drop ⋄, and just use στ to denote concatenation of σ and
τ . Sometimes we abuse the notation and use σx to denote the concatenation
of sequence σ and the sequence of length 1 which contains the element x. SEQ
denotes the set of all finite sequences.

Definition 2 [Gol67] (a) A text T for a language L is a mapping from N
into (N ∪ {#}) such that L is the set of natural numbers in the range of T .
T (i) represents the (i + 1)-th element in the text.

(b) The content of a text T , denoted by content(T), is the set of natural
numbers in the range of T ; that is, the language which T is a text for.

(c) T [n] denotes the finite initial sequence of T with length n.

Definition 3 [Gol67] A language learning machine from texts is an algorith-

7

mic device which computes a mapping from SEQ into N .

We let M, with or without decorations, range over learning machines. M(T [n])
is interpreted as the grammar (index for an accepting program) conjectured by
the learning machine M on the initial sequence T [n]. We say that M converges
on T to i, (written: M(T)↓ = i) iff (∀∞n)[M(T [n]) = i].

There are several criteria for a learning machine to be successful on a language.
Below we define some of them. All of the criteria defined below are variants
of the Ex-style and Bc-style learning described in the Introduction; in addi-
tion, they allow a finite number of errors in almost all conjectures (uniformly
bounded, or arbitrary).

Definition 4 [Gol67,CL82] Suppose a ∈ N ∪ {∗}.

(a) M TxtExa-identifies a text T just in case (∃i | Wi =a content(T))
(∀∞n)[M(T [n]) = i].

(b) M TxtExa-identifies an r.e. language L (written: L ∈ TxtExa(M)) just
in case M TxtExa-identifies each text for L.

(c) M TxtExa-identifies a class L of r.e. languages (written: L ⊆
TxtExa(M)) just in case M TxtExa-identifies each language from L.

(d) TxtExa = {L ⊆ E | (∃M)[L ⊆ TxtExa(M)]}.

Definition 5 [CL82] Suppose a ∈ N ∪ {∗}.

(a) M TxtBca-identifies a text T just in case (∀∞n)[WM(T [n]) =a L].

(b) M TxtBca-identifies an r.e. language L (written: L ∈ TxtBca(M)) just
in case M TxtBca-identifies each text for L.

(c) M TxtBca-identifies a class L of r.e. languages (written: L ⊆
TxtBca(M)) just in case M TxtBca-identifies each language from L.

(d) TxtBca = {L ⊆ E | (∃M)[L ⊆ TxtBca(M)]}.

For a = 0, we often write TxtEx and TxtBc, instead of TxtEx0 and TxtBc0,
respectively.

Definition 6 [Ful90] σ is said to be a TxtEx-stabilizing sequence for M on L,
iff (i) content(σ) ⊆ L, and (ii) for all σ′ such that σ ⊆ σ′ and content(σ′) ⊆ L,
M(σ) = M(σ′).

Definition 7 [BB75,OSW86] For a ∈ N ∪ {∗}, σ is said to be a TxtExa-
locking sequence for M on L, iff (i) content(σ) ⊆ L, (ii) for all σ′ such that

8

σ ⊆ σ′ and content(σ′) ⊆ L, M(σ) = M(σ′), and (iii) WM(σ) =a L.

Theorem 8 [BB75,OSW86] Suppose a ∈ N ∪ {∗}. Suppose M TxtExa-
identifies L. Then, for all L ∈ L,

(a) there exists a TxtExa-locking sequence for M on L;

(b) for all σ such that content(σ) ⊆ L, there exists a TxtExa-locking sequence,
extending σ, for M on L.

Definition 9 (Based on [BB75,OSW86]) For a ∈ N ∪ {∗}, σ is said to be a
TxtBca-locking sequence for M on L, iff (i) content(σ) ⊆ L, and (ii) for all
σ′ such that σ ⊆ σ′ and content(σ′) ⊆ L, WM(σ′) =a L.

Theorem 10 (Based on [BB75,OSW86]) Suppose a ∈ N ∪ {∗}. Suppose M
TxtBca-identifies L. Then, for all L ∈ L,

(a) there exists a TxtBca-locking sequence for M on L;

(b) for all σ such that content(σ) ⊆ L, there exists a TxtBca-locking sequence,
extending σ, for M on L.

Similar stabilizing sequence/locking sequence results can be obtained for the
criteria of inference discussed below.

We let INIT = {L | (∃i)[L = {x | x ≤ i}]}.

For any L, let cyl(L) = {〈i, x〉 | i ∈ L, x ∈ N}. Let cyl(L) = {cyl(L) | L ∈ L}.

Let CYLi denote the language {〈i, x〉 | x ∈ N}.

Let FINITE denote the class of all finite languages.

The following proposition is useful in proving many of our results.

Proposition 11 [Gol67] Suppose L is an infinite language, S ⊆ L, and L−S
is infinite. Let C0 ⊆ C1 ⊆ · · · be an infinite sequence of finite sets such that
⋃

i∈N Ci = L. Then {L} ∪ {S ∪ Ci | i ∈ N} is not in TxtBc∗.

3 Learning with Queries

In this section we define learning with queries. The learning criteria consid-
ered in this section are essentially from [JK06]. The kind of queries [Ang88]
considered are

9

(i) subset queries, i.e., for a queried language Q, ‘is Q ⊆ L?’, where L is the
language being learned;

(ii) equivalence queries, i.e., for a queried language Q, ‘is Q = L?’, where L is
the language being learned;

(iii) superset queries, i.e., for a queried language Q, ‘is Q ⊇ L?’, where L is
the language being learned.

In the model of learning, the learner is allowed to ask queries such as above
during its computation. If the answer to query is ‘no’, we additionally can
have the following possibilities:

(a) Learner is given an arbitrary counterexample (for subset query, counterex-
ample is a member of Q − L; for equivalence query the counterexample is
a member of L∆Q; for superset query the counterexample is a member of
L − Q);

(b) Learner is given the least counterexample;

(c) Learner is just given the answer ‘no’, without any counterexample.

We would often also consider bounds on the number of queries. We first for-
malize the definition of a learner which uses queries.

Definition 12 [JK06] A learner using queries, can ask a query of the form
‘Wj ⊆ L?’ (‘Wj = L?’, ‘Wj ⊇ L?’) on any input σ. Answer to the query is ‘yes’
or ‘no’ (along with a possible counterexample). Then, based on input σ and
answers received for queries made on prefixes of σ, M outputs a conjecture
(from N).

We assume (without loss of generality for the learning criteria considered in
this paper) that on any particular input σ, M asks at most one query. Also
note that the queries we allow are for recursively enumerable languages, which
are posed to the teacher using a grammar (index in an acceptable numbering
of all recursively enumerable languages) for the language.

We now formalize learning via subset queries.

Definition 13 [JK06] Suppose a ∈ N ∪ {∗}.

(a) M SubQaEx-identifies a language L (written: L ∈ SubQaEx(M)) iff for
any text T for L, it behaves as follows:

(i) The number of queries M asks on prefixes of T is bounded by a (if a = ∗,
then the number of such queries is finite). Furthermore, all the queries are
of the form ‘Wj ⊆ L?’

10

(ii) Suppose the answers to the queries are made as follows. For a query
‘Wj ⊆ L?’, the answer is ‘yes’ if Wj ⊆ L, and the answer is ‘no’ if Wj−L 6= ∅.
For ‘no’ answers, M is also provided with a counterexample, x ∈ Wj − L.
Then, for some k such that Wk = L, for all but finitely many n, M(T [n])
outputs the grammar k.

(b) M SubQaEx-identifies a class L of languages (written: L ⊆
SubQaEx(M)) iff it SubQaEx-identifies each L ∈ L.

(c) SubQaEx = {L | (∃M)[L ⊆ SubQaEx(M)]}.

LSubQaEx-identification and ResSubQaEx-identification can be defined
similarly, where for LSubQaEx-identification the learner gets the least coun-
terexample for ‘no’ answers, and for ResSubQaEx-identification, the learner
does not get any counterexample along with the ‘no’ answers.

For a, b ∈ N ∪ {∗}, for I ∈ {Exb,Bcb}, one can similarly define
SubQaI, SupQaI, EquQaI, LSubQaI, LSupQaI, LEquQaI, ResSubQaI,
ResSupQaI, and ResEquQaI.

For identification with queries, where there is a bound n on the number of
queries asked, we will assume without loss of generality that the learner never
asks more than n queries, irrespective of whether the input language belongs
to the class being learned, or whether the answers given to earlier queries are
correct.

4 Learning with Negative Counterexamples to Conjectures

In this section we define two models of learning languages from positive data
and negative counterexamples to conjectures. Both models are based on the
general idea of learning from positive data and subset queries for the conjec-
tures.

Intuitively, for learning with negative counterexamples to conjectures, we may
consider the learner being provided a text, one element at a time, along with
a negative counterexample to the latest conjecture, if any. (One may view this
counterexample as a response of the teacher to the subset query when it is
tested if the language generated by the conjecture is a subset of the target
language). One may model the list of counterexamples as a second text for
negative counterexamples being provided to the learner. Thus the learning
machines get as input two texts, one for positive data, and other for negative
counterexamples.

We say that M(T, T ′) converges to a grammar i, iff for all but finitely many

11

n, M(T [n], T ′[n]) = i.

First, we define the basic model of learning from positive data and negative
counterexamples to conjectures. In this model, if a conjecture contains ele-
ments not in the target language, then a counterexample is provided to the
learner. NC in the definition below stands for ‘negative counterexample’.

Definition 14 [JK07] Suppose a ∈ N ∪ {∗}.

(a) M NCExa-identifies a language L (written: L ∈ NCExa(M)) iff for all
texts T for L, and for all T ′ satisfying the condition:

(T ′(n) ∈ Sn, if Sn 6= ∅) and (T ′(n) = #, if Sn = ∅),
where Sn = L ∩ WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.

(b) M NCExa-identifies a class L of languages (written: L ⊆ NCExa(M)),
iff M NCExa-identifies each language in the class.

(c) NCExa = {L | (∃M)[L ⊆ NCExa(M)]}.

For LNCExa criteria of inference, we provide the learner with the least coun-
terexample rather than an arbitrary one. The criteria LNCExa of learning
can thus be defined similarly to NCExa, by requiring (T ′(n) = min(Sn), if
Sn 6= ∅) and (T ′(n) = #, if Sn = ∅) in clause (a) above (instead of T ′(n) being
an arbitrary member of Sn).

Similarly, one can define ResNCExa, where the learner is just told that the
latest conjecture is or is not a subset of the input language, but is not provided
any counterexamples in the case of ‘no’ answer.

For BNCExa criteria of inference, we update the definition of Sn in clause (a)
of the definition of NCExa-identification as follows: Sn = L ∩ WM(T [n],T ′[n]) ∩
{x | x ≤ max(content(T [n]))}.

We can similarly define the criteria of inference ResBNCExa and LBNCExa,
as well as NCBca, LNCBca, ResNCBca, BNCBca, ResBNCBca and
LBNCBca. We refer the reader to [JK07] for more details, discussion and
results about the various variations of NCI-criteria.

Similarly, one can define the models BSubQaI for the learning via a finite
number of subset queries. However, we will not consider these criteria of learn-
ing, as they have been shown to be same as I in the paper [JK06].

For m ∈ N , one may also consider the model, NCmI, where, for learning a
language L, the NCmI learner is provided counterexamples only for its first m

12

conjectures which are not subsets of L. For remaining conjectures, the answer
provided is always #. In other words, the learner is ‘charged’ only for the first
m negative counterexamples, and the subset queries for later conjectures are
not answered. Following is the formal definition.

Definition 15 [JK06] Suppose a ∈ N ∪ {∗}, and m ∈ N .

(a) M NCmExa-identifies a language L (written: L ∈ NCmExa(M)) iff for
all texts T for L, and for all T ′ satisfying the condition:

(T ′(n) ∈ Sn, if Sn 6= ∅ and card({r | r < n and T ′(r) 6= #}) < m);
(T ′(n) = #, if Sn = ∅ or card({r | r < n and T ′(r) 6= #}) ≥ m),

where Sn = L ∩ WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.

(b) M NCmExa-identifies a class L of languages (written: L ⊆ NCmExa(M)),
iff M NCmExa-identifies each language in the class.

(c) NCmExa = {L | (∃M)[L ⊆ NCmExa(M)]}.

For a ∈ N ∪ {∗} and I ∈ {Exa,Bca}, one can similarly define BNCmI,
LBNCmI, ResBNCmI and LNCmI, ResNCmI and NCmBca.

GNCI-identification model is same as the model of NCI-identification, ex-
cept that counterexamples are provided to the learner only when it explicitly
requests for such via a ‘is this conjecture a subset of the target language’
question (which we refer to as a conjecture-subset question). This clearly
does not make a difference if there is no bound on the number of questions
asked resulting in counterexamples. However when there is such a bound, then
this may make a difference, as the GNC-learner may avoid getting a coun-
terexample on some conjectures by not asking the conjecture-subset question.
Thus, we will only deal with GNC model when there is a requirement of a
bounded number of counterexamples. For a ∈ N ∪ {∗} and I ∈ {Exa,Bca},
one can define GNCmI, LGNCmI, ResGNCmI and BGNCmI, LBGNCmI,
ResBGNCmI, similarly to NC variants.

Note a subtle difference between models LBGNCn and LGNCn: in the
model LBGNCn, the teacher provides the shortest counterexample only if
it is smaller than some element of the input, whereas there is no such require-
ment for LGNCn (the same is true also for NC-variant).

Note that, similar to Theorems 8 and 10, one can establish corresponding
results for above defined criteria too. For example, for NCEx-identification,
if M NCEx-identifies L, then there exists a (σ, σ′) such that content(σ) ⊆ L,
σ′ is a valid sequence of counterexamples for M on input σ (for the input

13

language being L) and for all (τ, τ ′) such that σ ⊆ τ , σ′ ⊆ τ ′, content(τ) ⊆ L,
and τ ′ is a valid sequence of counterexamples for M on input τ (for the input
language being L), M(τ, τ ′) = M(σ, σ′) is a grammar for L. In some cases, we
would just refer to σ above as a locking sequence with σ′ being implicit.

In the rest of the section, we establish some useful facts about GNC-style
learners (without requirement for counterexamples being short), as this model
is defined here for the first time.

Proposition 16 Suppose n ∈ N .

(a) LNCnI ⊆ LGNCnI.

(b) NCnI ⊆ GNCnI.

(c) ResNCnI ⊆ ResGNCnI.

(d) LSubQnI ⊆ LGNCnI.

(e) SubQnI ⊆ GNCnI.

(f) ResSubQnI ⊆ ResGNCnI.

Proof. (a), (b) and (c) follow from the corresponding definitions. As subset
queries made by a query learner can be made by a GNC learner (by using
the query as its conjecture and making the conjecture-subset query), without
getting any other counterexamples, (d), (e) and (f) also hold.

Corollary 17 ResGNC1Ex − LNCnBc∗ 6= ∅.

Proof. [JK06] showed that ResSubQ1Ex − LNCnBc∗ 6= ∅. Corollary now
follows from Proposition 16.

Theorem 18 [JK06] Suppose n ∈ N .

(a) ResGNC1Ex − LSubQnBc∗ 6= ∅.

(b) ResGNC1Bc − LSubQ∗Bc∗ 6= ∅.

(c) ResGNC1Ex − LEquQnBc∗ 6= ∅.

(d) ResGNC1Ex − LSupQ∗Bc∗ 6= ∅.

Proof. [JK06] showed these diagonalizations for ResNC1Ex. Theorem now
follows using Proposition 16.

14

(a), (b) above are strongest possible as ResSubQ∗Exa = NCExa (see
[JK06]), and thus, ResSubQ∗Exa contains ResGNCExa. Similarly, (c)
above is strongest as LEquQ∗Ex contains E (see [JK06]).

[JK06] showed ResEquQ1Ex ∩ ResSupQ1Ex − NCBc 6= ∅, which also
gives us ResEquQ1Ex∩ResSupQ1Ex−GNCBc 6= ∅ and ResEquQ1Ex∩
ResSupQ1Ex − GNCEx∗ 6= ∅ (note that LNCEx∗ ⊆ NCBc, [JK07], and
GNC model is same as NC model for unbounded number of counterexam-
ples).

Similarly the proof of ResSupQ1Ex − LNCnBcm 6= ∅ in [JK06] (based on
the proof of (ResEquQ1Ex ∩ ResSupQ1Ex) − NCBc 6= ∅ there), can also
be used to show that (ResSupQ1Ex ∩ ResEquQ1Ex) − LGNCnBcm 6=
∅. Note that this is the strongest possible result for superset queries,
as ResSupQ∗Bc∗ = TxtBc∗ ⊆ LGNC0Bc∗, and ResEquQnBc∗ ⊆
ResSubQnBc∗ ⊆ ResGNCnBc∗. (In contrast, note that ResEquQ1Ex −
LNCnBc∗ 6= ∅ [JK06]).

Theorem 19 Suppose n ∈ N . EquQ2Ex − LGNCnBc∗ 6= ∅.

Proof. Let L = {L | (∃i)[L ⊆ CYLi and [L = Wi or (∃j)[L = Wi ∪
{〈i, 〈j, x〉〉 | x ∈ N}] or card(L) < ∞]]}.

It is easy to verify that L ∈ EquQ2Ex, as a learner can output a grammar
for ∅, until an element in the input appears. If this element is of the form
〈i, x〉, then the learner asks an equivalence query for Wi. If true, then the
learner knows the input language. Otherwise, the learner gets a counterexam-
ple 〈i, 〈j, x〉〉 for some j, x. Then the learner asks the query for the language
Wi ∪ {〈i, 〈j, x〉〉 | x ∈ N}. If the answer is yes, then the learner again knows
the input language. Otherwise the input language must be finite, and one can
easily learn it.

Suppose by way of contradiction that M LGNCnBc∗-identifies L. Then by
Kleene’s Recursion Theorem [Rog67] there exists an e such that We may be
defined as follows. We assume without loss of generality that M would not ask
any more conjecture-subset question after having received n counterexamples,
on all inputs, even those outside the class.

Intuitively, the idea of diagonalization is to find an initial segment σ (contained
in CYLe) on which one can force largest number of (least) counterexamples
for M. This is achieved by looking for the lexicographically least sequence of
counterexample text, where # is taken to be larger than any positive element.
During this process, We would consist of the initial segments tested for above,
but exclude the potential counterexamples. Using the lexicographically least
sequence of counterexamples (found in the limit), one can use Proposition 11
along with We ∪ {〈e, 〈j, x〉〉 | x ∈ N}, for an appropriate j, and its finite

15

subsets to do the diagonalization. We now proceed formally.

Let σ0 = σ′
0 = Λ. Let W s

e denote We enumerated before stage s. Let S0 = ∅.
Intuitively, Ss denotes the set of elements we have decided to be out of We.
Go to stage 0.

Stage s
Invariants we have are

(a) content(σs) ⊆ W s
e ⊆ CYLe − Ss and content(σ′

s) ⊆ Ss.
(b) |σs| = |σ′

s|, and σ′
s has at most n non-# entries.

(c) The counterexamples, when present, are correct in the sense that, for
w < |σs|, σ′

s(w) ∈ {#} ∪ (WM(σs[w],σ′
s[w]) − We).

(d) If one treats # > any member of N , then σ′
r#

∞ is lexicographically
larger than σ′

r+1#
∞. Note that this, along with (b), implies that the

number of stages is finite.
1. Dovetail steps 2 and 3 until one of them succeeds. If step 2 succeeds, before

step 3 does, if ever, then go to step 4. If step 3 succeeds, before step 2
does, if ever, then go to step 5.

2. Search for a w < |σs| such that M(σs[w], σ′
s[w]) asks a conjecture-subset

question and WM(σs[w],σ′
s[w])−W s

e contains an element z < σ′
s(w) (where

we take # to be ∞).
3. Search for a σ ⊇ σs such that content(σ) ⊆ CYLe − Ss, and

M(σ, σ′
s#

|σ|−|σs|) asks a conjecture-subset query and WM(σ,σ′
s#

|σ|−|σs|)

enumerates an element z not in W s
e ∪ content(σ).

4. If step 2 succeeds, then let σs+1 = σs[w]#, and σ′
s+1 = σ′

s[w]⋄z. Let
Ss+1 = Ss ∪ {z}. W s+1

e = W s
e and go to stage s + 1.

5. If step 3 succeeds, then let σs+1 = σ#, and σ′
s+1 = σ′

s#
|σ|−|σs|z. Let

Ss+1 = Ss ∪ {z}. Let W s+1
e = W s

e ∪ content(σ) and go to stage s + 1.
End stage s

It is easy to verify that the invariants are satisfied; specially note that (d)
holds as σ′

s+1#
∞ is lexicographically smaller than σ′

s#
∞, based on either step

4 or step 5 being executed.

Thus the number of stages is finite. Let s be the last stage that is executed.
As step 2 did not succeed, answers given by σ′

s form correct least counterex-
ample sequence for σs, for any language L such that We = W s

e ⊆ L ⊆
CYLe − Ss. Furthermore, as step 3 did not succeed, for any σ ⊇ σs such
that content(σ) ⊆ CYLe − Ss, if M(σ, σ′

s#
|σ|−|σs|) asks a conjecture-subset

question, then W
M(σ,σ′

s#
|σ|−|σs|) ⊆ W s

e ∪ content(σ). It follows that for any text
T extending σs for a language L such that W s

e ⊆ L ⊆ CYLe − Ss, σ′
s#

∞ is a
valid sequence of counterexamples. Let j be any number such that Ss does not
contain any element of the form 〈e, 〈j, x〉〉. Thus, M needs to TxtBc∗ identify

16

We∪{〈e, 〈j, x〉〉 | x ∈ N} and all finite subsets of it which contain We, without
getting any more counterexamples. An impossible task by Proposition 11.

Theorem 20 Suppose n ∈ N , and I ∈ Ex,Bc.

(a) (ResNCn+1Ex∩ResSubQn+1Ex∩ResEquQn+1Ex)−LGNCnBc∗ 6= ∅.

(b) LGNCnEx − GNC2n−2Bc∗ 6= ∅.

(c) GNCnEx − ResGNC2n−2Bc∗ 6= ∅.

(d) LGNCnI ⊆ ResGNC2n−1I.

Proof. (a) [JK06] showed that (ResNCn+1Ex ∩ ResSubQn+1Ex ∩
ResEquQn+1Ex)−LNCnBc∗ 6= ∅. The proof can be easily modified to show
part (a).

(b) Theorem 24 below shows LBNCnEx − BGNC2n−2Bcm 6= ∅, using a
class Cn. Cn can easily be seen to be in LGNCnEx. The diagonalization can
be modified to show that Cn 6∈ GNC2n−2Bc∗. Essentially, instead of look-
ing for a counterexample below the largest value in the input, we look for
any possible counterexample. Here even diagonalization against Bc∗ works,
as Bc∗-identification is enough to guarantee the existence of σ as needed at
(steps corresponding to) steps 1.2 and 3.2. We omit the details.

(c) [JK06] showed that NCnEx − ResNC2n−2Bc∗ 6= ∅. This proof can be
easily modified to show that GNCnEx−ResGNC2n−2Bc∗ 6= ∅. We omit the
details.

(d) [JK06] showed that LNCnI ⊆ ResNC2n−1I. Similar proof shows this
result also.

Thus, below we will deal only with separations/simulations where at least one
of the party involves bounded negative counterexamples.

5 Relations Among Bounded Negative Counterexample Models

In this section we establish relationships between B-variants of NC and GNC-
models when any short, or the least short counterexamples, or just the ‘no’
answers about existence of short counterexamples are used.

First we establish that, similarly to the known result about NC-model
([JK06]), number of counterexamples matters to the extent that n + 1 ‘no’

17

answers used by BNCEx-style learners can sometimes do more that n least
counterexamples obtained by LBGNCBc∗-style learners.

Theorem 21 Suppose n ∈ N . ResBNCn+1Ex − LBGNCnBc∗ 6= ∅.

Proof. Proof of ResNCn+1Ex − LNCnBc∗ 6= ∅ in [JK06] can easily be
modified to show this result.

The next result gives advantages of GNC model.

Theorem 22 For all n,m ∈ N , ResBGNC1Ex − LBNCnBcm 6= ∅.

ResBGNC1Ex − LBNCnEx∗ 6= ∅.

Proof. The proof of ResSubQ1Ex − LNCnBc∗ from [JK06] can be easily
adopted to prove this theorem (however, only for Ex∗ and Bcm cases. The
proof for Bc∗ case does not carry over). We omit the details.

Our main results in this section deal with the following problems: if and un-
der which conditions, (a) B-learners receiving just ‘yes’ or ‘no’ answers can
simulate learners receiving (up to) n short (or, possibly, even least short) coun-
terexamples, and (b) learners using arbitrary short counterexamples can sim-
ulate the ones receiving (up to) n least short counterexamples. As our results
indicate, in both cases such a simulation is quite possible (thus, for example,
a “smart” learner can quite compensate for the lack of actual counterexam-
ples) at the expense of just nearly doubling the number of necessary negative
answers/counterexamples. More specifically, we establish that, for both tasks
(a) and (b), for the Bcm and Ex∗ types of learnability, 2n−1 is the upper and
the lower bound on the number of negative answers/examples needed for such
a simulation. These results are similar to the corresponding results in [JK06]
for the model NC, however, there is also an interesting difference: as it will
be shown below, for Bc∗-learnability, the bound 2n− 1 can be lowered to just
n (for NCBc∗-learners, the lower bound 2n − 1 still holds).

First we establish the upper bound 2n − 1 for both tasks (a) and (b).

Theorem 23 For all n ∈ N,n ≥ 1,

(a) LBNCnI ⊆ ResBNC2n−1I.

(b) LBGNCnI ⊆ ResBGNC2n−1I.

Proof. Proof of LNCnI ⊆ ResNC2n−1I from [JK06] can be used to show
this theorem also.

18

Our next result shows that, for the Bcm and Ex∗ types of learnability, the
bound 2n− 1 is tight in the strongest sense for the task (b). Namely, we show
that BNC-learners using n least short counterexamples cannot be simulated
by BGNC-learners using 2n − 2 (arbitrary short) counterexamples.

Theorem 24 Suppose n ∈ N and n ≥ 1.

(a) LBNCnEx − BGNC2n−2Bcm 6= ∅.

(b) LBNCnEx − BGNC2n−2Ex∗ 6= ∅.

Proof. This proof is a modification of the proof of LNCnEx−NC2n−2Bc∗ 6=
∅ from [JK06]. We give details as there are some subtlities, and also the result
does not carry over for Bc∗. Without loss of generality assume that the pairing
function is increasing in all its arguments.

Let
E = {〈n, x, y〉 | x, y ∈ N}.
Li,k = {〈i, k, x〉 | x ∈ N}.
Xi = Li,0.
Y j

i = {〈i, 0, x〉 | x < 3j} ∪ Li,j+1.

Zj,k
i = {〈i, 0, x〉 | x < 3j + 1} ∪ {〈i, j + 1, x〉 | x ≤ k}.

U j
i = {〈i, 0, x〉 | x < 3j + 2}.

Li = {Xi} ∪ {Y j
i | j ∈ N} ∪ {U j

i | j ∈ N} ∪ {Zj,k
i | j, k ∈ N}.

Cn = {L | [L is formed by picking one language from each Li, i < n, and
then taking the union of these languages along with E]}.

Here note that U j
i are growing initial segments of Xi, and

⋃

j U j
i = Xi. Thus, by

Proposition 11, for any learner it is impossible to TxtBcm (TxtEx∗)-identify
Xi as well as all of U j

i , from just positive data.

Also Zj,k
i − {〈i, 0, 3j〉} are growing initial segments of Y j

i .

Intuitively, each L ∈ Li is either Xi or contains an initial segment of Xi, and
the least element from Xi − L indicates the form of L (i.e., whether it is Y j

i ,
Zj,k

i or U j
i , for some j, k). This allows for easy learnability when one gets n

least counterexamples. However, it will be shown below that (2n−2) negative
answers are not enough for learning the above class. E has been added to
the languages just to ensure that the language is infinite, and thus negative
counterexamples from Xi, if present, can eventually be obtained (because they
become smaller than the largest element of the input at some point).

A learner can LBNCnEx-identify the class Cn as follows. On input (σ, σ′), do
as follows.

19

Let A′ = {i | (∃j)[〈i, 0, 3j〉 ∈ content(σ′)]}. Let A′′ = {i | (∃j)[〈i, 0, 3j + 1〉 ∈
content(σ′) or 〈i, 0, 3j + 2〉 ∈ content(σ′)]}.

It would be the case that for input from Cn the sets A′, A′′ are disjoint subsets
of {i | i < n} (see below). For i ∈ A′, let ji be such that 〈i, 0, 3ji〉 ∈ content(σ′).

Output a (standard) grammar for the language:

E ∪
⋃

i∈{r|r<n}−A′−A′′

Xi ∪
⋃

i∈A′

Y ji

i ∪
⋃

i∈A′′

[content(σ) ∩ {〈i, x, y〉 | x, y ∈ N}]

Now consider any input language L ∈ Cn. By induction on the length of the
input, we claim that counterexamples received would only be of the form
〈i, 0, z〉, where i < n. Furthermore, for any given i, there is at most one such
counterexample of the form 〈i, 0, z〉 that the learner will receive — ensuring
that A′, A′′ are disjoint as claimed earlier.

Now, consider any i < n. We consider the following cases.

Case 1: There is no counterexample ever received from Xi.

In this case the language from Li, which is a subset of L, must be Xi.
Furthermore, for any future input, we will never have a counterexample of
the form 〈i, x, y〉, and thus i will never be placed in A′, A′′. Thus, Xi would
be contained in the conjectured language.

Case 2: There is a counterexample of the form 〈i, 0, 3j〉.

In this case the language from Li which is a subset of L must be Y j
i . Also,

i will be placed in A′. Furthermore, we will never have a counterexample of
the form 〈i, x, y〉, for any future input. Thus, Y j

i would be contained in the
conjectured language.

Case 3: There is a counterexample of the form 〈i, 0, 3j + 1〉 or 〈i, 0, 3j + 2〉.

In this case the language from Li, which is a subset of L, must be finite. Also,
i will be placed in A′′. Furthermore, we will never have a counterexample of
the form 〈i, x, y〉, for any future input, due to the form of conjectures made
by the learner.

From the above cases, it is easy to verify that induction hypothesis would be
satisfied, and eventually the learner would converge to a grammar for L. Thus,
Cn ∈ LBNCnEx.

20

We now show that Cn 6∈ BGNC2n−2Bcm or BGNC2n−2Ex∗. So suppose by
way of contradiction M BGNC2n−2Bcm-identifies (BGNC2n−2Ex∗-identifies)
L.

Intuitively, the idea of the proof is that we try to force two counterexamples in
choosing a member of each Li, i < n−1, which forms the part of the diagonal-
izing language. The choice of a member of Ln−1 can then force non-learnability
using Proposition 11. To force the above mentioned two counterexamples for
the selected part from each Li, note that, by Proposition 11, the learner M
needs to ask a conjecture-subset question for a language containing an infinite
subset of Xi to be able to learn Xi as well as U j

i , which may form a part of the
diagonalizing language. This allows us to force one counterexample — while
committing the language part from Li to be one of Y j

i or Zj,k
i , for a fixed j.

We then use a similar trick, but for Xn−1/U
j′

n−1, to force the learner to output
an hypothesis which contains an infinite part of Y j

i , and ask a conjecture-
subset question. This would allow us to get the second counterexample (which
is from Y j

i , and thus does not constrain the choice from Ln). Details of the
implementation of the above idea are actually more complex as one needs to
be careful about the bound on the counterexamples, as well as consider the
possibilities of other counterexamples being there. We now proceed formally.

Let Im denote the set {x | x ≤ m}. We will construct the diagonalizing
language L in stages.

In stage s < n − 1, we will try to fix Fs ∈ Ls, which is contained in the
diagonalizing language L. Initially, let σ0 = Λ, σ′

0 = Λ. σs denotes the initial
segment of a target diagonalizing language constructed before the beginning
of stage s. σ′

s would denote the sequence of counterexamples/# provided to
M on input σs. The invariants below provide some properties of these sets,
in particular (d) states the set of languages which are still possible to use for
diagonalization. Intuitively, (d) states that for r ≥ s, one can still chose all
possible members of Lr, except some which are ruled out due to counterex-
amples or positive data already in σs, σ

′
s.

For s < n − 1, inductively define Fs and σs+1, σ′
s+1 as follows.

(* The construction is non-effective. *)
(* Following invariants will be satisfied:

(a) For r < s, Fr ∈ Lr.
(b) content(σs) ⊆ E ∪

⋃

r<s Fr ∪
⋃

s≤r<n Xr.
(c) σ′

s contains at most (|σ′
s| − 2s) #s. Thus, at least 2s counterex-

amples have already been provided.
(d) For s ≤ r < n, for all possibilities for Hr ∈ Lr such that Hr 6∈
{Y j

r , Zj,k
r | k ∈ N and [〈r, 0, 3j〉 ≤ max(content(σs)) or (∃x)[〈r, j+

1, x〉 ∈ content(σ′
s)]]}, answers given to M via σ′

s, on input σs are

21

consistent with the input language being E∪
⋃

r<s Fr ∪
⋃

s≤r<n Hr.
*)

1. If there exists a σ ⊇ σs such that content(σ) ⊆ E ∪
⋃

r<s Fr ∪
⋃

s≤r<n Xr,
M(σ, σ′

s#
|σ|−|σs|) asks a conjecture-subset question, and

WM(σ,σ′
s#

|σ|−|σs|) − Imax(content(σ)) contains an element of the form 〈i′, j′, k′〉
such that one of the following conditions is satisfied:

1.1. 〈i′, j′, k′〉 6∈ (E ∪
⋃

r<s Fr ∪
⋃

s≤r<n Xr)
1.2. Not 1.1, and for some j ∈ N ,

(i) i′ = s, j′ = 0, k′ ≥ 3j + 3,
(ii) for all x, 〈s, j + 1, x〉 6∈ content(σ′

s),
(iii) max(content(σ) − {max(content(σ))}) < 〈s, 0, 3j〉, and
(iv) max(content(σ)) 6∈ Xs, and
(v) M(σ[w], σ′

s#
w−|σs|) does not ask a conjecture-subset ques-

tion for min({t | σ(t) = max(content(σ))}) < w < |σ|
(that is, since the maximal element in content(σ) was seen,
σ is the first point at which M asks a subset-conjecture
question).

2. Then, pick shortest such σ (we will argue below that there must exist such
a σ).

Let τ = σ# and τ ′ = σ′
s#

|σ|−|σs|〈i′, j′, k′〉.
If step 1.1 succeeded then let j be such that (i) 〈s, j + 1, x〉 6∈ content(σ′

s)
for all x, and (ii) max(content(σ)) < 〈s, 0, 3j〉.

(* Note that answers given by τ ′ are consistent with invariant (d) for
Fs = Y j

s , or Fs = Zj,k
s for any k, as steps 1.1 and 1.2 did not succeed

on any proper prefix of σ. *)
3. If there exists a σ ⊇ τ such that content(σ) ⊆ E∪Y j

s ∪
⋃

r<s Fr∪
⋃

s<r<n Xr,
and M(σ, τ ′#|σ|−|τ |) asks a conjecture-subset question, and

WM(σ,τ ′#|σ|−|τ |) − Imax(content(σ)) contains an element of the form 〈i′′, j′′, k′′〉
such that one of the following conditions is satisfied:

3.1. 〈i′′, j′′, k′′〉 6∈ E ∪ Y j
s ∪

⋃

r<s Fr ∪
⋃

s<r<n Xr,
3.2. Not 3.1 and i′′ = s, j′′ = j + 1, and k′′ > max({k | 〈s, j + 1, k〉 ∈

content(σ)}),
4. Then, pick a shortest such σ (we will argue below that there must exist

such a σ).
Let σs+1 = σ# and σ′

s+1 = τ ′#|σ|−|τ |〈i′′, j′′, k′′〉.
If 3.1 holds, then let Fs = Y j

s .
Else (i.e., 3.2 holds), then let Fs = Zj,k

s , where k = max({x | 〈s, j +1, x〉 ∈
content(σ)}).

(* Note that we give counterexample 〈i′′, j′′, k′′〉 to WM(σ,τ ′#|σ|−|τ |). *)
(* Note that answers given by σ′

s+1 are consistent with invariant (d) for
each of above choices of Fs, as step 3.1 and 3.2 did not succeed on any
proper prefix of σ. *)

End

22

It is easy to verify that the invariants are maintained by the construction.
Specially note that the invariant (d) is maintained as explained by comments
in the construction above.

We first claim that the above construction finishes for every s < n − 1 (i.e.,
σn−1, σ

′
n−1 get defined). If not, then let s be the least number such that stage

s starts but does not finish.

Suppose the ‘If’ statement at step 2 does not hold. Now M must
BGNC2n−2Bcm-identify (BGNC2n−2Ex∗-identify) the language L = E ∪
⋃

r<s Fr ∪
⋃

s≤r<n Xr, which is a member of Cn. Suppose γ, extending σs, is a
BGNC2n−2Bcm-locking sequence (BGNC2n−2Ex∗-locking sequence) for M
on L, where the answers provided beyond σ′

s are always # (i.e., yes when-
ever the conjecture-subset question is asked). Without loss of generality as-
sume that W

M(γ,σ′
s#

|γ|−|σ′
s|)

contains L− Imax(γ), except for maybe m elements

(this clearly holds for BGNC2n−2Bcm-identification; for BGNC2n−2Ex∗-
identification, one can just take an appropriate extension of γ to ensure
this — the maximal element in the extension is larger than the maximal
element of L that is missing from W

M(γ,σ′
s#

|γ|−|σ′
s|)

). Let j be such that

3j + 2 > max({x | 〈s, 0, x〉 ∈ content(γ)}). Let H be an increasing text
for U j

s ∪ E ∪
⋃

r<s Fr ∪
⋃

s<r<n Xr. Let G be a text for a subset of E such
that G(w) > max({〈s, 0, 3j′ + 3j + 3 + m + 1〉} ∪ content(γ)), where 3j′ >
max({t | 〈s, 0, t〉 ∈ content(H[w + 1])}). Let T = γG(0)H(0)G(1)H(1) . . .,
and T ′ = σ′

s#
∞. If M(T [w], T ′[w]) does not ask a conjecture-subset ques-

tion for w ≥ |γ|, then M does not BGNC2n−2Bcm (BGNC2n−2Ex∗)-identify
U j

s ∪E∪
⋃

r<s Fr ∪
⋃

s<r<n Xr, as the counterexamples provided by T ′ are valid
for input language being U j

s ∪E ∪
⋃

r<s Fr ∪
⋃

s<r<n Xr, but M (beyond input
γ) outputs only grammars for finite variants of E ∪

⋃

r<s Fr ∪
⋃

s≤r<n Xr. On
the other hand, if M does ask a conjecture-subset question at (T [|γ|+1+2w+
v], T ′[|γ|+1+2w+v]), where 2w+v is minimal such number with w ∈ N and
v ∈ {0, 1}, then T [|γ|+1+2w+v] qualifies as being σ in step 1.2. (To see this
note that, for some j′, G(w) > 〈s, 0, 3j′+3j+3+m+1〉, where 3j′ > max({t |
〈s, 0, t〉 ∈ content(H[w + 1])}), and WM(T [|γ|+1+2w+v],T ′[|γ|+1+2w+v]) misses out
at most m of {〈s, 0, 3j′ + 3 + x〉 | x ≤ m + 1} due to the locking sequence
property of γ on L).

So assume step 2.1 or 2.2 did succeed. Suppose If statement at step 3 does
not hold. Now M must BGNC2n−2Bcm-identify (BGNC2n−2Ex∗-identify)
the language L = Y j

s ∪E∪
⋃

r<s Fr ∪
⋃

s<r<n Xr, which is a member of Cn. Sup-
pose γ, extending τ , is a BGNC2n−2Bcm-locking sequence (BGNC2n−2Ex∗-
locking sequence) for M on L, where the answers provided beyond τ ′ are
always # (i.e., yes whenever the conjecture-subset question is asked). With-
out loss of generality assume that W

M(γ,τ ′#|γ|−|τ ′|) contains L− Imax(γ), except

for maybe m elements (this clearly holds for BGNC2n−2Bcm-identification;
for BGNC2n−2Ex∗-identification, one can just take an appropriate extension

23

of γ to ensure this).

Let j′ be such that 〈n − 1, 0, j′〉 > max(content(γ)), and 〈s, j + 1, j′〉 >

max(content(γ)). Let H be an increasing text for U j′

n−1 ∪Y j
s ∪E ∪

⋃

1≤r<s Fs ∪
⋃

s<r<n−1 Xr. Let G be a text for a subset of E such that G(w) > max({〈s, j +
1, 3j′′ + 3j′ + 3 + m + 1〉} ∪ content(γ)), where 3j′′ > max({t | 〈s, j + 1, t〉 ∈
content(H[w + 1])}). Let T = γG(0)H(0)G(1)H(1) . . ., and T ′ = σ′

s#
∞. If

M(T [w], T ′[w]) does not ask a conjecture-subset question for w ≥ |γ|, then M

does not BGNC2n−2Bcm (BGNC2n−2Ex∗)-identify U j′

n−1∪Y j
s ∪E∪

⋃

r<s Fr∪
⋃

s<r<n−1 Xr, as the counterexamples provided by T ′ are valid for input lan-

guage being U j′

n−1 ∪ Y j
s ∪E ∪

⋃

r<s Fr ∪
⋃

s<r<n−1 Xr, but M (beyond input γ)
outputs only grammars for finite variants of Y j

s ∪E ∪
⋃

r<s Fr ∪
⋃

s<r<n Xr. On
the other hand, if M does ask a conjecture-subset question at (T [|γ|+1+2w+
v], T ′[|γ|+1+2w+v]), where 2w+v is minimal such number with w ∈ N and
v ∈ {0, 1}, then T [|γ|+1+2w+v] qualifies as being σ in step 3.2. (To see this
note that, for some j′′, G(w) > 〈s, j + 1, 3j′′ + 3j′ + 3 + m + 1〉, where 3j′′ >
max({t | 〈s, j +1, t〉 ∈ content(H[w+1])}), and WM(T [|γ|+1+2w+v],T ′[|γ|+1+2w+v])

misses out at most m of {〈s, j +1, 3j′′ +3+x〉 | x ≤ m+1} due to the locking
sequence property of γ on L).

Thus, σn−1, σ
′
n−1 must get defined. Now, on the input (σn−1, σ

′
n−1), M has

already received 2n− 2 negative counterexamples (two counterexamples each
during the definition of σs+1, for s < n−1). Now, M needs to BGNC2n−2Bc∗-
identify Fn−1 ∪E ∪

⋃

r<n Fr, for every possible Fn−1 ∈ Ln−1, without receiving
any more counterexamples. This is impossible, as by Proposition 11, no ma-
chine can TxtBc∗-identify Xn−1 ∪ E ∪

⋃

r<n−1 Fr, and U j
n−1 ∪ E ∪

⋃

r<n−1 Fr,
for all j.

Now we show that the bound 2n − 1 on the number of negative answers is
tight for Bc and Ex∗ types of learnability when ResBNC-learners try to
simulate BNCn-learners. In fact, we show this in the strongest possible way:
there are BNCnEx-learners that cannot be simulated by ResBNC2n−2Bcm

or ResBNC2n−2Ex∗-learners (our next theorem does it just for Bc rather
than for Bcm; the case of Bcm is addressed in Theorem 26).

Theorem 25 Suppose n ∈ N . BNCnEx − (ResBNC2n−2Bc ∪
ResBNC2n−2Ex∗) 6= ∅.

Proof. We assume without loss of generality that pairing function is in-
creasing in all its arguments. Recall that 〈x, y, z〉 = 〈x, 〈y, z〉〉. Thus, CYLj =
{〈j, x, y〉 | x, y ∈ N}, and 〈·, ·, ·〉 is increasing in all its arguments.

Consider L defined as follows.

24

For each L ∈ L, there exists a set S, card(S) ≤ n, such that the conditions
(1)–(3) hold.

(1) L ⊆
⋃

j∈S CYLj.

(2) L∩CYLj ∩{〈j, 0, x〉 | x ∈ N} contains exactly one element for each j ∈ S.
Let this element be 〈j, 0, 〈pj , qj〉〉.

(3) For each j ∈ S

(3A) Wpj
is a grammar for L ∩ CYLj or

(3B) Wpj
6⊆ L and Wpj

− L consists only of elements of the form 〈j, 1, 2x〉
or only of elements of the form 〈j, 1, 2x + 1〉. Furthermore at least one such
element is smaller than max(L) (where max(L) is taken to be ∞, for infinite
L). If this element is of the form 〈j, 1, 2z〉, then Wqj

= L ∩ CYLj. Otherwise,
L ∩ CYLj is finite.

Intuitively, L may be considered as being divided into upto n parts, each part
being subset of a cylinder, where each part satisfies the properties as given in
(2) and (3).

Above class of languages can be seen to be in BNCnEx as follows. On input
σ, for each j such that content(σ) contains an element of CYLj, find pj and qj

as defined in condition 2 above (if σ does not contain any element of the form
〈j, 0, 〈pj , qj〉〉, then grammar for ∅ is output on σ). Then for each of these j,
learner computes a grammar for:

(a) Wpj
(if it has not received any counterexample from CYLj),

(b) Wqj
(if the negative counterexample from CYLj is of the form 〈j, 1, 2z〉),

and

(c) content(σ) ∩ CYLj , otherwise.

Then, the learner outputs a grammar for the union of the languages enumer-
ated by the grammars computed for each j above. It is easy to verify that
the above learner gets at most one counterexample from each CYLj such that
CYLj intersects with the input language, and thus BNCnEx-identifies L.

We now show that L 6∈ ResBNC2n−2Bc ∪ ResBNC2n−2Ex∗. Suppose by
way of contradiction that M ResBNC2n−2Bc (ResBNC2n−2Ex∗)-identifies
L.

Intuitively, for each j ∈ S (except the last one placed in S) we would try to
force two counterexamples for M on the diagonalizing language. For forcing
the two counterexamples with respect to j ∈ S, the following is done. First,

25

two sets, Wpj
and Wqj

are being constructed. Now, suppose τi denotes the
part of input text already constructed (for the previous i elements placed
into S). If one ever finds that M on some appropriate extension σ of τi has
output a conjecture enumerating an element outside Wpj

plus content(σ),
then one can force two counterexamples by freezing such σ (which will lead to
a counterexample) and then making Wpj

enumerate all elements of the form
〈j, 1, 2x+1〉 (except those elements which have been used for counterexamples)
and then using Proposition 11 along with condition (3B) above, which will
force one more counterexample (see step 2 and Case 1 below). If M never
outputs a conjecture which enumerates an element outside Wpj

and the input
data seen so far, then at each stage s in step 3 below, we try to find two
extensions (αs and γs at stage s) on which the learner outputs a conjecture
containing an element of the form 〈j, 1, 2x〉 which does not belong to the
input data seen so far (but is bounded by the largest element in the input).
These elements are respectively, 〈j, 1, ys〉 and zs in the construction below. To
achieve this, we first make Wpj

to contain more and more elements of the form
〈j, 1, 2x〉 (which would allow us to get αs and 〈j, 1, ys〉 above), and then make
Wqj

to contain more and more elements of the form 〈j, 1, 2x〉 (which would
allow us to get γs and zs above), assuming that the learner learns the above
parts Wpj

and Wqj
respectively (where Wqj

would not contain 〈j, 1, ys〉) —
see steps 3.1 and 3.2 below. If zs 6∈ Wqj

(in particular zs = 〈j, 1, ys〉), then
one can take Wqj

to be the diagonalizing part, as this would have forced two
counterexamples (see step 3.3, If part and Subcase 3.2 below). If zs ∈ Wqj

(only tested via zs 6= 〈j, 1, ys〉 in construction below), then note that we may
not have yet achieved two counterexamples, as the element 〈j, 1, ys〉 which is
in Wpj

but missing from the input, has ys as even (see condition (3B) above).
To circumvent this problem, we place an element 〈j, 1, rs〉 (which is different
from zs) in Wpj

. Here rs would be odd (rs = ys + 1 or ys + 3; we ensure
that 〈j, 1, rs〉 would still be below the maximal element in αs). If 〈j, 1, rs〉 is
ever enumerated by the conjecture of M at αs, then we have achieved two
counterexamples — one at αs (where counterexample taken is 〈j, 1, rs〉, which
would not be in the diagonalizing language), and one at γs — the diagonalizing
language would be the finite set content(γs) ∪ Wpj

− {〈j, 1, rs〉} (see step 3.4
and Subcase 3.1 below). If the conjecture of M at αs never outputs 〈j, 1, rs〉,
then we continue with the next stage trying a similar process again. If we have
infinitely many stages, then one can get the diagonalizing language as Wpj

,
since conjectures of M at αs miss out the element 〈j, 1, rs〉 (see Case 2 below).
Here note that checking of whether the conjecture of M at αs enumerates
〈j, 1, rs〉 cannot be done effectively. Thus, in each stage, step 3.4 below checks
if some earlier 〈j, 1, yt〉 has been enumerated by the conjecture at αt. We now
proceed formally.

Let Im = {x | x ≤ m}.

26

In the construction below in the definition of τi, we will give the exact coun-
terexample to M. This is for ease of presentation (and only gives extra power
to M). (However, while exploring the different possibilities, for τi+1, we will
not give the exact value of negative counterexample; these counterexamples
only get finalized when τi+1 actually gets defined.)

Initially let τ0 = τ ′
0 = Λ. We will aim to inductively define τi+1, τ

′
i+1 for i = 0 to

i = n− 2 below. Intuitively, τ ′
i denotes the negative counterexamples received

by M on conjectures made on input τi.

τi, τ
′
i (if defined) will satisfy the following properties.

(A) |τi| = |τ ′
i | and τi ⊆ τi+1 and τ ′

i ⊆ τ ′
i+1 (if defined).

(B) content(τi) ∩ content(τ ′
i) = ∅.

(C) τ ′
i contains at least 2i answers ‘no’.

(D) Let Si = {j | (content(τi) ∪ content(τ ′
i)) ∩ CYLj 6= ∅}. Then answers re-

ceived by M (as given by τ ′
i) are consistent with any language L such

that content(τi) ⊆ L ⊆ content(τi) ∪
⋃

j 6∈Si
CYLj. (That is, for each such

input L, for each σ ⊆ τi, either τ ′
i(|σ|) is an element from WM(σ,τ ′

i
[|σ|]) ∩

Imax(content(σ)) − content(τi) or WM(σ,τ ′
i
[|σ|]) does not contain any element

from Imax(content(σ)) − content(τi)).
(E) When defined, content(τi+1)−content(τi) is a subset of some CYLj and forms

L ∩ CYLj for the diagonalizing language L (and thus this part satisfies
(2) (giving pj, qj) and ((3A) or (3B)) above (in fact it satisfies (3B))).

For i ≤ n− 2, we will inductively define τi+1 (and τ ′
i+1), non-effectively, based

on a case analysis below.

So suppose τi has been defined. Pick a j 6∈ Si such that 〈j, 0, 0〉 >
max(content(τi)). By implicit use of Kleene’s Recursion Theorem [Rog67]
choose a pj, qj such that Wpj

,Wqj
can be defined as follows.

Definition of Wpj
,Wqj

1. Enumerate 〈j, 0, 〈pj , qj〉〉 into Wpj
.

Dovetail steps 2 and 3, until step 2 exits. Here we assume that each indi-
vidual iteration in for loop of step 2 (the portion between ‘Atomic and
End Atomic’) is atomic, and executed at one go without intermediate
execution of step 3 (note that this is fine, as each iteration of the for
loop is finite).

2. For t = 1 to ∞ Do:
Atomic:

If there exists a σ ⊇ τi, such that
(a) max(content(σ)) ≤ t,
(b) |σ| ≤ t,
(c) content(σ) ⊆ (content(τi)∪Wpj

enumerated upto now), and

27

(d) W
M(σ,τ ′

i
#|σ|−|τi|) enumerates, within t steps, an element in

Imax(content(σ)) − (content(τi)∪Wpj
enumerated upto now).

Then pick least such σ, stop dovetailing step 3 and proceed to step
2.1

End Atomic
End For
2.1. Enumerate {〈j, 1, 2x+1〉 | x ∈ N}−Imax(content(σ)) into Wpj

and exit
the construction.

3. Let W s
pj

and W s
qj

denote Wpj
and Wqj

enumerated before stage s.
We will also (try to) define σs, αs, γs, zs, rs, ys in each of the stages below.
Invariants (when the corresponding values are defined):

(F) content(τi) ∪ W s
pj
⊆ content(σs) ⊆ content(τi) ∪ Wpj

.
(G) τi ⊆ σs ⊆ αs ⊆ σs+1.
(H) αs ⊆ γs.
(I) ys is always even, and rs ∈ {ys + 1, ys + 3}.
(J) Wpj

will not contain any of zs’s, except maybe zt for the last
stage t which is executed (see step 3.3).

(K) W
M(αs,τ ′

i
#|αs|−|τi|) enumerates 〈j, 1, ys〉, which is in

Imax(content(αs)) − content(αs).
(L) max(content(αs[|αs| − 1])) < 〈j, 1, ys〉 < 〈j, 1, rs〉 <

max(content(αs)) and 〈j, 1, rs〉 belongs to W s+1
pj

.
(M) 〈j, 1, rs〉 and 〈j, 1, ys〉 are not in content(γs).
(N) W

M(γs,τ ′
i
#|αs|−|τi|‘no’#|γs|−|αs|−1)

enumerates zs ∈ Imax(γs) −

content(γs).
(* ‘no’ above is the no answer (without explicitly stating the value

of counterexample). *)
Go to stage 0.
Begin Stage s
3.1 If s = 0, then let σ0 be an extension of τi such that content(σ0) =

content(τi)∪W 0
pj

. Otherwise, let σs be a proper extension of αs−1

such that content(σs) = W s
pj
∪ content(αs−1).

Let xs = 1 + max({x | 〈j, 1, x〉 ∈ W s
pj

∪ W s
qj
} ∪ {zt | t < s} ∪

content(σs)).
(* Intuitively, xs is large enough so that the construction below does

not interfere with earlier enumerations. *)
Enumerate more and more of 〈j, 1, 2x〉 such that 2x > xs into Wpj

,
until a αs ⊇ σs, and an even ys > xs are found such that:

(* Note that 2x > xs ensures that 〈j, 1, 2x〉 is not of the form zt for
any t < s. *)

(i) content(αs) ⊆ content(τi) ∪ Wpj
enumerated upto now;

(ii) 〈j, 1, ys〉 ∈ W
M(αs,τ ′

i
#

|αs|−|τ ′
i
|
)
− content(αs);

(iii) 〈j, 1, ys〉 > max(content(αs[k])), where k = |αs| − 1;
(iv) max(content(αs)) ≥ 〈j, 1, ys + 4〉.

If and when such αs, ys are found, proceed to step 3.2.

28

3.2. Enumerate Wpj
enumerated until now except for 〈j, 1, ys〉 into Wqj

.
Enumerate more and more of {〈j, 1, 2x〉 | 2x 6= ys} into Wqj

, until a
γs ⊃ αs and zs ∈ N are found such that:

(i) content(γs) ⊆ content(τi) ∪ Wqj
(enumerated until then)

(ii) zs ∈ W
M(γs,τ ′

i
#|αs|−|τi|‘no’#|γs|−|αs|−1)

∩ ((Imax(content(γs)) −

(content(γs)∪Imax(content(αs))∪Wpj
enumerated upto now))∪

{〈j, 1, ys〉}).
(* Note that by considering zs not to come from

Imax(content(αs)) (except for 〈j, 1, ys〉), we have made sure
that the answers to conjectures between τi (inclusive) and
αs (exclusive) are all #, as long as step 2 does not succeed.
Furthermore we also ensured that Wpj

would not contain
zs, except for the case when zs = 〈j, 1, ys〉. *).

If and when such γs and zs are found, proceed to step 3.3.
3.3 If zs = 〈j, 1, ys〉, then stop enumerating Wqj

, and wait until step 2
succeeds.

Else enumerate 〈j, 1, rs〉 into Wpj
, where rs = ys + 1 or rs = ys + 3,

and 〈j, 1, rs〉 6= zs, and proceed to step 3.4.
3.4 If there exists a t ≤ s, W

M(αt,τ
′
i
#|αt|−|τi|) enumerates 〈j, 1, rt〉 within

s steps, then wait until step 2 succeeds.
Otherwise proceed to stage s + 1.

End stage s

We now define τi+1, τ
′
i+1 based on a case analysis.

Case 1: Step 2 succeeds in exiting.

In this case let σ be as found in step 2 above.

Let σ′ be an extension of τ ′
i defined as follows. For |τi| ≤ m ≤ |σ|, define

σ′(m) =

#, if WM(σ[m],σ′[m]) ∩ Imax(content(σ[m])) ⊆ content(τi) ∪ Wpj
;

w, otherwise, where w is the least element in

(WM(σ[m],σ′[m]) ∩ Imax(content(σ[m]))) − (content(τi) ∪ Wpj
).

Note that the above answers/counterexamples (as given by σ′ on input σ#) are
consistent with any language L such that content(τi)∪(Wpj

∩Imax(content(σ))) ⊆
L ⊆ content(τi)∪Wpj

. Furthermore, on some γ such that τi ⊂ γ ⊆ σ, M does
receive a ‘no’ answer (as it will do so on σ, if not before).

Now, let τi+1 = α⋄〈j, 1, 2y + 1〉, where α is the smallest extension of σ# such
that for some k, |σ| + 1 ≤ k ≤ |α|,

(i) content(τi) ∪ (Wpj
∩ Imax(content(σ))) ∪ (Wpj

− {〈j, 1, 2x + 1〉 | x ∈ N}) ⊆
content(α) ⊆ content(τi) ∪ Wpj

, and

29

(ii) W
M(α[k],σ′#k−|σ′|) contains an element in Imax(content(α[k])) − content(α),

and

(iii) 〈j, 1, 2y + 1〉 6∈ Imax(content(α)) is a large number such that Wpj
−

Imax(content(α)) contains an element smaller than 〈j, 1, 2y + 1〉.

(This is to ensure that Wpj
indeed satisfies condition (3B), and has an ele-

ment of the form 〈j, 1, 2x + 1〉 which is smaller than maximum element in the
diagonalizing language).

Note that there exists such a α (satisfying (i) and (ii)). To see this, suppose
otherwise. Let γ ⊇ σ# be a ResBNC2n−2Bc (ResBNC2n−2Ex∗)-locking se-
quence for M on content(τi)∪Wpj

, where the counterexample/answers beyond
σ′ are always # (note that if α, as claimed, does not exist, then there must ex-
ist such a locking sequence γ, as all the answers beyond σ# are always ‘yes’).
Without loss of generality assume that content(γ) ⊇ content(τi) ∪ (Wpj

∩
Imax(content(σ)))∪ (Wpj

−{〈j, 1, 2x + 1〉 | x ∈ N}). Let w > max(content(γ)) be
such that 〈j, 1, 2w +3〉 ∈ Wpj

and W
M(γ,σ′#|γ|−|σ′|) contains 〈j, 1, 2w +1〉. Note

that there exists such a w as γ is a locking sequence for M on content(τi)∪Wpj
.

Now taking α = γ⋄〈j, 1, 2w + 3〉 satisfies (i) and (ii) as 〈j, 1, 2w + 1〉 6∈
content(α), but 〈j, 1, 2w + 1〉 ∈ W

M(α,σ′#|α|−|σ′|) (as γ was ResBNCnBc
(ResBNCnEx∗)-locking sequence for M on content(τi) ∪ Wpj

).

So let α and τi+1 be as claimed.

Define τ ′
i+1 as an extension of σ′ such that for |σ′| ≤ m < |τi+1|,

τ ′
i+1(m) =

#, if WM(τi+1[m],τ ′
i+1

[m]) ∩ Imax(content(τi+1[m])) ⊆ content(τi+1);

w, otherwise, where w is the least element in

WM(τi+1[m],τ ′
i+1

[m]) ∩ Imax(content(τi+1[m])) − content(τi+1);

It is easy to verify that the invariants (A), (B) are maintained. Also in-
variant (C) is maintained as M would receive at least two counterexamples
for conjectures between τi (inclusive) and τi+1 (exclusive) for the language
content(τi+1) (one at σ or before, and one between σ# and α, due to prop-
erty (ii) in the definition of α). (D) follows easily from definition of τ ′

i+1,
and (E) holds as (Wpj

− {〈j, 1, 2x + 1〉 | x ∈ N}) ⊆ content(τi+1), thus
Wpj

− content(τi+1) ⊆ {〈j, 1, 2x + 1〉 | x ∈ N} and condition (3B) is satisfied
(note that Wpj

is infinite).

Case 2: Not Case 1, and there exist infinitely many stages in step 3.

Let L = content(τi)∪Wpj
. Now, Wpj

contains all elements of the form 〈j, 1, rs〉.
However, for all t, W

M(αt,τ
′
i
#|αt|−|τi|) does not contain 〈j, 1, rt〉 (otherwise, at

some stage step 3.4 would have succeeded in finding such a t). Note here

30

that
⋃

s αs =
⋃

s σs is a text for L, and τ ′
i#

∞ is a valid sequence of an-
swers/counterexamples to M on input

⋃

s σs as step 2 did not succeed. Thus,
M does not ResBNC2n−2Bc (ResBNC2n−2Ex∗)-identify L ∈ L.

Case 3: Not Case 1, and Stage s starts but does not end.

Now consider the execution in stage s. We first claim that step 3.1 succeeds
in finding αs as required. To see this, suppose otherwise. Let γ ⊇ σs be a
ResBNC2n−2Bc (ResBNC2n−2Ex∗)-locking sequence for M on content(τi)∪
Wpj

, where the counterexample/answers beyond τ ′
i are always # (note that

as step 2 did not succeed, there must exist such γ, as all the answers be-
yond τi are ‘yes’ whenever conjecture-subset questions are asked). Here with-
out loss of generality we assume that W

M(γ,τ ′
i
#|γ|−|τi|) ⊇ Wpj

− Imax(content(γ))

(for ResBNC2n−2Bc-learnability this clearly holds; for ResBNC2n−2Ex∗-
learnability we could just replace γ by some extension (contained in Wpj

∪
content(τi)) such that this property is satisfied). Let m be an even number
which is bigger than xs +max(content(γ)). Then γ⋄〈j, 1,m+4〉 would qualify
for being αs, as 〈j, 1,m〉 > max(content(γ)) and γ had the locking sequence
property as mentioned above (and thus, W

M(γ⋄〈j,1,m+4〉,τ ′
i
#|γ|−|τi|+1) contained

〈j, 1,m〉) allowing one to take ys = m in step 3.1.

In a similar way one can argue that step 3.3 also is reached. (Here we will need
to use Wqj

instead of Wpj
and use αs instead of σs, and use τ ′

i#
|αs|−|τi|‘no’

instead of τ ′
i in the previous argument about reaching step 3.2; rest of the

argument is essentially the same).

So assume step 3.3 is reached and consider the following subcases.

SubCase 3.1: zs 6= 〈j, 1, ys〉.

Since stage s does not end, step 3.4 must have succeeded in finding a t ≤ s,
such that W

M(αt,τ
′
i
#|αt|−|τi|) enumerates 〈j, 1, rt〉.

Fix such a t.

Let X = (content(γt) ∪ Wpj
) − {〈j, 1, rt〉}. Note that X does not contain zt.

Let τi+1 = α#, where α is an extension of γt such that content(α) = X.

Define τ ′
i+1 to be extension of τ ′

i#
|αt|−|τi|〈j, 1, rt〉 as follows. For |αt| < m <

|τi+1|

τ ′
i+1(m) =

#, if WM(τi+1[m],τ ′
i+1

[m]) ∩ Imax(content(τi+1[m])) ⊆ content(τi+1);

w, otherwise, where w is the least element in

WM(τi+1[m],τ ′
i+1

[m]) ∩ Imax(content(τi+1[m])) − content(τi+1);

31

Note here that answers as given by τ ′
i+1 are correct on prefixes of αt, as step

2 did not succeed and max(content(αt[|αt| − 1])) < 〈j, 1, yt〉 < 〈j, 1, rt〉.

It is easy to verify that the invariants (A), (B) are maintained. Also invariant
(C) is maintained as M would receive at least two counterexamples between
τi (inclusive) and τi+1 (exclusive) for the language content(τi+1) (one at αt

and one at γt or before). (D) follows easily from definition of τ ′
i+1, and (E)

holds as Wpj
− content(τi+1) contains exactly 〈j, 1, rt〉. Thus, condition (3B)

in definition of L is satisfied.

SubCase 3.2: zs = 〈j, 1, ys〉.

In this case let X = content(τi)∪Wqj
. Let τi+1 = α#, where α is an extension

of γs such that content(α) = X.

Define τ ′
i+1 to be extension of τ ′

i#
|αs|−|τi|〈j, 1, ys〉 as follows. For |αs| < m <

|τi+1|

τ ′
i+1(m) =

#, if WM(τi+1[m],τ ′
i+1

[m]) ∩ Imax(content(τi+1[m])) ⊆ content(τi+1);

w, otherwise, where w is the least element in

WM(τi+1[m],τ ′
i+1

[m]) ∩ Imax(content(τi+1[m])) − content(τi+1);

Note here that answers as given by τ ′
i+1 are correct on prefixes of αs as step 2

did not succeed, and max(content(αs[|αs| − 1])) < 〈j, 1, ys〉.

It is easy to verify that the invariants (A), (B) are maintained. Also invariant
(C) is maintained as M would receive at least two counterexamples between τi

(inclusive) and τi+1 (exclusive) for the language content(τi+1) (one at αs and
one at γs or before). (D) follows easily from definition of τ ′

i+1, and (E) holds
as Wpj

− content(τi+1) has exactly the element 〈j, 1, ys〉, and condition (3B) is
satisfied.

Above cases complete the construction of τi+1.

Now once τn−1 has been defined, then we have that 2n − 2 counterexamples
have already been provided to M based on τ ′

n−1. Now, choose j 6∈ Sn−1. Let
pj, qj be such that Wpj

= {〈j, 0, 〈pj , qj〉〉} ∪ {〈j, 1, 2x + 1〉 | x ∈ N}.

Now M needs to TxtBc∗-identify content(τi) ∪ Wpj
as well as content(τi) ∪

{〈j, 1, 2x + 1〉 | x ≤ w + 1, x 6= w}, for all possible w, from any text ex-
tending τn−1 without receiving any further counterexamples beyond τn−1. An
impossible task by Proposition 11.

This proves the theorem.

32

One can extend the above proof to show that BNCnEx−ResBGNC2n−2Bc 6=
∅. The main problem to address is that in the search for αs and γs, the learner
may not be asking conjecture-subset questions, but still converge to a grammar
for content(τi)∪Wpj

and content(τi)∪Wqj
, in steps 3.1 and 3.2. To address this,

do the last step (i.e., the set Wpj
used after τn−1 is defined) first. That is, ini-

tially we (temporarily) assume that Wpsp
= {〈0, 0, 〈psp, qsp〉〉}∪{〈0, 1, 2x+1〉 |

x ∈ N} is already a subset of the diagonalizing language. Correspondingly,
we will look for counterexamples only outside Wpsp

. Furthermore, in step 3.1
we search for αs such that (in addition to (i), (ii) and (iv) of step 3.1, where
(i) now is updated to allow αs to contain members of Wpsp

), there exists a
ks such that 〈j, 1, ys〉 > max(content(αs[ks])), and M(αs[k], τ ′

i#
k−|τ ′

i
|) asks a

conjecture-subset question for k = |αs|, but does not ask a conjecture-subset
question for ks < k < |αs|. This is just to ensure similar properties as before
when the first conjecture-subset question is asked by M beyond αs[ks]. Update
in step 3.2 is simpler as we just take care of Wpsp

as mentioned above.

Analysis remains almost the same except that

— in the argument in case 1 for claiming that α exists, one now needs to
consider the least extension of γ⋄〈j, 1, 2w + 3〉 (containing elements only from
content(γ) ∪ {〈j, 1, 2w + 3〉} ∪ Wpsp

) on which a question is asked.

— case 3, where we argue that step 3.3. is reached, needs to be modified. We
again consider the locking sequence γ for content(τi)∪Wpj

∪Wpsp
, and argue

as follows. Let X = Wpj
∪ content(τi) ∪ (Wpsp

∩ Imax(content(γ))) ∪ {〈0, 1, 2 ∗
max(content(γ)) + 3〉}, and H be an increasing text for X. Then, either no
conjecture-subset question is asked by M beyond γ for the text γ⋄〈j, 1,m +
4〉⋄H(0)⋄〈j, 1,m+4+6〉⋄H(1)⋄〈j, 1,m+4+2∗6〉H(2) · · · , (in which case the
learner does not identify X which is in L) or the first time beyond γ when a
conjecture-subset question is asked, also gives us αs fulfilling the requirements
as in step 3.1. Similar (though simpler) argument works for the search of γs.
We omit the details.

One can modify the above proof to show the following.

Theorem 26 Suppose n,m ∈ N . BNCnEx − ResBNC2n−2Bcm 6= ∅.

Above theorem can be proved by considering m+1 elements 〈j, 1, rk
s 〉, k ≤ m,

instead of just 〈j, 1, rs〉 as in the Proof of Theorem 25 (note that in step 3.1 (iv),
one would correspondingly need αs(|αs|) to be larger than 〈j, 1, ys + 2m + 2〉,
so that we are able to use appropriate m values at step 3.3 Else clause.) We
omit the details.

Interestingly, if we consider behaviorally correct learners that are allowed to
make any finite number of errors in almost all correct conjectures, then n short
(even least) counterexamples can be always substituted by just n ‘no’ answers.

33

(For the model NC, the lower bound 2n − 1 for the simulation by Res-type
learners still holds even for Bc∗-learnability, as shown in [JK06]).

Theorem 27 For all n ∈ N , LBGNCnBc∗ ⊆ ResBNCnBc∗.

Proof. First note that one can simulate a LBGNCnBc∗ learner M by a
LBNCnBc∗ learner M′ as follows. If M(σ, σ′) does not ask a conjecture-subset
question, then M′(σ, σ′) is a grammar for WM(σ,σ′)−{x | x ≤ max(content(σ))};
otherwise M′(σ, σ′) = M(σ, σ′). It is easy to verify that on any input text T ,
M′ gets exactly the same counterexamples as M does, and all conjectures of
M′ are finite variants of corresponding conjectures of M. Thus, any language
LBGNCnBc∗-identified by M is LBNCnBc∗-identified by M′.

Hence, it suffices to show LBNCnBc∗ ⊆ ResBNCnBc∗.

Suppose M LBNCnBc∗-identifies L. Define M′ as follows. Suppose T is the
input text.

The idea is for M′ to output max(content(T [m])) + 1 variations of grammar
output by M on T [m]. These grammars would be for the languages: WM(T [m])−
{x | x 6= i and x ≤ max(content(T [m′]))}, where T [m′] is the input seen by
M′ when generating this i-th variant (where 0 ≤ i ≤ max(content(T [m]))).
These grammars would thus allow M′ to determine the least counterexample,
if any, that M’s output on T [m] would have generated.

Formally conjectures of M′ will be of the form P (j,m, i, s), where WP (j,m,i,s) =
Wj − {x | x 6= i and x ≤ s}.

We assume that M outputs grammar for ∅ until it sees at least one element in
the input. This is to avoid having any counterexamples until input contains at
least one element (which in turn makes the notation easier for the following
proof).

On input T [0], conjecture of M′ is P (M(Λ,Λ), 0, 0, 0).

The invariant we will have is: If M′(T [m], T ′[m]) = P (j, r, i, s), then, (i) j =
M(T [r], T ′′[r]), where T ′′[r] is the sequence of least counterexamples for M on
input T [r] (for the language content(T)), (ii) s = max(content(T [m])), (iii)
r ≤ m, (iv) i ≤ max(content(T [r])), and (v) Wj − L does not contain any
element < i. Invariant is clearly satisfied for m = 0.

Suppose M′(T [m], T ′[m]) = P (M(T [r], T ′′[r]), r, i, s). Then we define M′(T [m+
1], T ′[m + 1]) as follows.

If T ′(m) is ‘no’ answer, then let T ′′(r) = i, and let M′(T [m + 1], T ′[m + 1]) =
P (M(T [r + 1], T ′′[r + 1]), r + 1, 0,max(content(T [m + 1]))).

34

Else if i = max(content(T [r])), then let T ′′(r) = #, and let M′(T [m+1], T ′[m+
1]) = P (M(T [r + 1], T ′′[r + 1]), r + 1, 0,max(content(T [m + 1]))).

Else, M′(T [m+1], T ′[m+1]) = P (M(T [r], T ′′[r]), r, i+1,max(content(T [m+
1]))).

Now it is easy to verify that the invariant is maintained. It also follows that
T ′′ constructed as above is correct sequence of least counterexamples for M
on input T . Moreover, each restricted ‘no’ answer in T ′ corresponds to a least
counterexample in T ′′. Thus, M′ gets exactly as many counterexamples as
M does, and M′ conjectures are ∗-variants of the conjectures of M (except
that each conjecture of M is repeated finitely many times by M′, with finite
variations). It follows that M′ ResBNCnBc∗-identifies L.

Corollary 28 For all n ∈ N , LBNCnBc∗ = BNCnBc∗ = ResBNCnBc∗ =
LBGNCnBc∗ = BGNCnBc∗ = ResBGNCnBc∗.

Our next result in this section shows how BNCBc-learners using just answers
‘yes’ or ‘no’ can simulate LBNCEx∗-learners getting unbounded number of
negative answers/counterexamples.

Proposition 29 LBNCEx∗ ⊆ ResBNCBc.

Proof. As LBNCEx∗ = BNCEx∗ (see [JK07]) and ResBNCBc =
BNCBc (proof of ResNCBc = NCBc in [JK07], shows this also) it suf-
fices to show that BNCEx∗ ⊆ BNCBc.

The idea is to patch the errors of omission by using the input text and to
patch errors of commission by using the counterexamples (where we need to
be somewhat careful for errors of commission which are larger than the largest
element in the input). We now proceed formally.

Suppose M BNCEx∗-identifies L. Define M′ as follows. M′ on input σ sim-
ulates M. (We will argue below that counterexamples for any conjectures of
M are available to M′ too, so the counterexample text for M can be created
using the counterexample text for M′).

If M on input σ (with the appropriate counterexamples) outputs a grammar
p, then M′ outputs grammar H(p, σ) defined as follows. Let Sp denote the set
of counterexamples M′ has received for the conjectures H(p, ·) that M′ has
made upto now (note that p might have been output by M on some proper
prefixes of σ too).

Let Im = {x | x ≤ m}.

WH(p,σ) = content(σ)∪((Wp∩Imax(content(σ)))−Sp)∪(Wp−Imax(content(σ)))∩Xp,|σ|,

35

where Xp,m is N , if card(Wp) ≥ m, and ∅ otherwise. Note that if M would have
received a counterexample to its conjecture p, then either Sp is non-empty, or
M′ would also have received a counterexample to its conjecture H(p, σ). Thus
counterexample text for M can be constructed by M′.

We now argue that M′ would BNCBc-identify L. Let T be the input text for
L ∈ L. Suppose T ′ is the counterexample text prepared for M by M′ in the
above simulation. Then, clearly M(T, T ′) would converge to some grammar p
which is a finite variant of L. Now if L is finite, then Wp is also finite. Thus,
for all but finitely many initial segments of T , M′ would output a grammar
for WH(p,σ) = content(σ) ∪ ((Wp ∩ Imax(content(σ))) − Sp) (as Xp,m is empty for
all but finitely many m). Thus, all the errors of omission of Wp are patched, as
well as any errors of commission are patched (errors of commission which are
bigger than max(content(σ)) and are clearly not output; errors of commission
which are smaller than max(content(σ)) eventually go into Sp and are thus
patched too).

If L is infinite, then all the errors of omission of Wp are patched, as well as
any errors of commission are patched (all errors of commission in this case
eventually go into Sp).

It follows that M′ BNCBc-identifies L.

Proposition 30 (Based on [CL82]) Suppose X is an infinite language, and S
is a finite subset of X. Suppose n ∈ N . Then L = {S ⊆ L ⊆ X | card(X−L) ≤
2n + 1} 6∈ TxtBcn.

Theorem 31 For all m,n ∈ N ,

(a) TxtEx2n+1 − LBGNCmBcn 6= ∅.

(b) TxtExn+1 − LBGNCmExn 6= ∅.

(c) ResBNCmEx2n ⊆ ResBNCmBcn.

(d) BNCmEx2n ⊆ BNCmBcn.

(e) LBNCmEx2n ⊆ LBNCmBcn.

(f) ResBGNCmEx2n ⊆ ResBGNCBcn.

(g) BGNCmEx2n ⊆ BGNCmBcn.

(h) LBGNCmEx2n ⊆ LBGNCmBcn.

36

Proof. (a) Let L = {L | m ≤ card(N − L) ≤ m + 2n + 1}. It is easy to
verify that L ∈ TxtEx2n+1 (one eventually outputs a grammar for N − S,
where S is the set of least m elements missing from the input). Suppose by
way of contradiction that M LBGNCmBcn-identifies L. Define σi, σ

′
i, i ≤ m,

by induction on i, as follows.

σ0 = σ′
0 = Λ.

By induction we will have the invariants that answers given by σ′
i on σi are

consistent with any L such that content(σ) ⊆ L ⊆ N − content(σ′
i). Further-

more, card(content(σ′
i)) is at least i.

Now let σi+1 = σ#, where σ is the smallest extension, if any, of σi such
that M(σ, σ′

i#
|σ|−|σ′

i|) asks a conjecture-subset question and W
M(σ,σ′

i
#

|σ|−|σ′
i
|
)
−

content(σ) contains an element in Imax(content(σ)). If σi+1 gets defined, then
σ′

i+1 = σ′
i#

|σ|−|σi|z, where z = min(W
M(σ,σ′

i
#

|σ|−|σ′
i
|
)
− content(σ)). It is easy

to verify that the invariants are satisfied. Now, let r ≤ m be maximum such
that σr is defined. Then for any extension σ of σr, such that content(σ) ⊆
N − content(σ′

r), M gets ‘#’ answers (as either it does not ask conjecture-
subset question or W

M(σ,σ′
r#|σ|−|σ′

r|)
− content(σ) does not contain an element

in Imax(content(σ))). Thus, now M needs to TxtBcn-identify all languages in L
which contain content(σr) but do not contain content(σ′

r), an impossible task
by Proposition 30.

(b) can be proved similarly to part (a).

(c–h) This proof is based on [CL82] proof of TxtEx2n ⊆ TxtBcn (see
[JORS99] for a proof). We give the details for completeness. Suppose M
ResBNCEx2n-identifies L. Define M′ as follows.

Let P (e, A,B) be such that WP (e,A,B) = A∪(We−S), where S is the set of least
n elements in We−B (if We−B does not contain at least n elements, then we
just take S to be We −B). By induction on length of input, it will be easy to
verify that M′ receives exactly the same counterexamples at exactly the same
inputs as M does (for GNC models, M′ asks questions on the same inputs
as M does). Now on input (σ, σ′), if M′ has already received m counterexam-
ples/‘no’ answers, then M′ outputs P (M(σ, σ′), content(σ), content(σ)). Oth-
erwise, M′ outputs P (M(σ, σ′), content(σ), Imax(content(σ))).

It is easy to verify that M′ receives exactly the same counterexample sequence
as M (as before getting m counterexamples, the grammar output by M′ enu-
merates the same elements in Imax(content(σ)) − content(σ), as enumerated by
the grammar output by M). Now consider any text T for a language L ∈ L,
with T ′ being corresponding sequence of counterexamples. Suppose M(T, T ′)
converges to e. Let S ′ = We − L. Suppose t is such that

37

(i) M(T [t], T ′[t]) = e, for all t′ ≥ t,

(ii) L − We ⊆ content(T [t]),

(iii) T ′(x) = #, for all x ≥ t, and

(iv) for all x ≤ max(S ′), if x ∈ L, then x ∈ content(T [t]).

Now, consider the following cases.

Case 1: We − L contains at least n elements.

In this case, for all t′ ≥ t, S as computed by P (M(T [t′], T ′[t′]), content(T [t′]), B),
(where B = content(σ) or Imax(content(σ)), based on whether M′ gets m or
smaller number of counterexamples), consists of least n elements in S ′. Fur-
thermore, L−We ⊆ content(T [t′]). Thus, card(WM(T [t′],T ′[t′]∆L) = card(S ′)−
n ≤ n.

Case 2: We − L contains < n elements.

In this case, for all t′ ≥ t, S as computed by P (M(T [t′], T ′[t′]), content(T [t′]), B),
(where B = content(σ) or Imax(content(σ)), based on whether M′ gets m or
smaller number of counterexamples), is a superset of S ′. Furthermore, L −
We ⊆ content(T [t′]). Thus, card(WM(T [t′],T ′[t′]∆L) ≤ n − card(S ′) ≤ n.

In either case, M′ would Bcn-identify the input (in appropriate counterexam-
ple model).

6 Effects of Counterexamples Being Constrained/Not-Constrained
to be Short

In this section we explore how, within the framework of our models, short
counterexamples fair against arbitrary or least counterexamples (this includes
also the cases when just answers ‘no’ are returned instead of counterexamples).

First, we use a result from [JK06] to establish that one answer ‘no’ used by
an NCEx-learner can sometimes do more than unbounded number of least
(short) counterexamples used by Bc∗-learners.

Theorem 32 [JK06] ResNC1Ex − LBGNCBc∗ 6= ∅.

([JK07] actually showed ResNC1Ex − LBNCBc∗ 6= ∅, however the above
result follows as for unbounded number of counterexamples, GNC model does
not give any advantage over NC model).

38

Note that the advantages of least examples/counterexamples in speeding up
learning has been studied in other situations also, such as learning of non-
erasing pattern languages ([WZ94]). However, in our model of BNC-learning
versus LNC-learning, the LNC-learner does get least counterexamples, and
BNC learner gets just a counterexample, if there exists one below the max-
imal positive data seen so far. This seems on the surface to hurt, as BNC-
learner is likely to get less (negative) data. In fact, that is the case as [JK07]
showed that, for a ∈ N ∪ {∗}, for I ∈ {Exa,Bca}, LBNCI ⊂ ResNCI.
However, when we consider counting/bounding, there is a charge for every
counterexample. Consequently, a BNC-learner is not being charged for (un-
necessary) negative data, if it does not receive it. As a result, the possibility
of getting negative data which are ≤ maximal positive data seen in the input
so far can be turned to an advantage — in terms of cost of learning. This
is what is exploited in getting the following result. It shows that one short
counterexample can sometimes give a learner more than any bounded num-
ber of least counterexamples (perhaps, it would be interesting to explore if
there exist practically interesting classes of concepts – say, patterns of finite
automata/regular expressions – where a similar effect of saving a number of
short counterexamples for overinclusive conjectures in a query learning model
over a number of least counterexamples would take place). The proof features
an Ex-learner using just one bounded negative answer that cannot be simu-
lated by an LNCnBc∗-learner for any n.

Theorem 33 For all n ∈ N , ResBNC1Ex − LGNCnBc∗ 6= ∅.

Proof. Assume without loss of generality that 〈·, ·〉 is monotonically increas-
ing in both its arguments. Note that this implies 〈i, 0〉 ≥ i.

Let Aj
k = {〈k, x〉 | x ≤ j}.

Let
L = {L | (∃S | card(S) < ∞)(∃f : S → N)[
1. [k, k′ ∈ S ∧ k < k′] ⇒ [〈k, f(k)〉 < 〈k′, 0〉] ∧

2. [L = CYLmax(S) ∪
⋃

k∈S−max(S) A
f(k)
k or

L = {〈max(S), f(max(S) + 2)〉} ∪
⋃

k∈S A
f(k)
k]

]}.

Intuitively, L above consists of some initial portions of cylinders, plus maybe
a full cylinder. The cylinders are placed far apart from each other to avoid
interference: maximal element in a cylinder with smaller index is smaller than
the minimal element of a cylinder with larger index. This allows for learning
with atmost one bounded negative counterexample. However, using technique
similar to that used in Proposition 11, for unconstrained counterexamples, one

39

can show that a learner needs arbitrarily large number of counterexamples to
learn the above class. We now proceed formally.

To see that L ∈ ResBNC1Ex consider the following learner. On input
σ, if no ‘no’ answers are yet received, then the learner first computes k =
max({j | 〈j, x〉 ∈ content(σ)}). Then it outputs a grammar for L = CYLk ∪
(content(σ) − CYLk). If there is a ‘no’ answer which has been received, then
the learner outputs a grammar for content(σ). It is easy to verify that the
above learner ResBNC1Ex-identifies L.

Now suppose by way of contradiction that some M LGNCnBc∗-identifies L.
Let σ0 = σ′

0 = Λ, k0 = 0. Inductively define σi+1, σ′
i+1, f(ki), ki+1 (for i < n)

as follows.

Let σ be smallest extension of σi, if any, such that content(σ) ⊆ CYLki
∪

⋃

i′<i A
f(ki′)
ki′

and M asks a conjecture-subset question on (σ, σ′
i#

|σ|−|σi|) and

W
M(σ,σ′

i
#|σ|−|σi|) contains an element which is not in CYLki

∪
⋃

i′<i A
f(ki′)
ki′

or is

larger than max(content(σ)).

If there is such a σ, then let σi+1 = σ#, and σ′
i+1 = σ′

i#
|σ|−|σi|w (where w

is the least element in W
M(σ,σ′

i
#|σ|−|σi|) which is not in CYLki

∪
⋃

i′<i A
f(ki′)
ki′

or

is larger than max(content(σ))). Let f(ki) = max({y | 〈ki, y〉 ∈ content(σ)}).
Let ki+1 be such that ki+1 > 〈ki, f(ki)〉 and no element from CYLki+1

is present
in content(σ′

i+1).

Let m be the largest value such that σm, σ′
m are defined above. Now, M has

to TxtBc∗-identify both CYLkm
∪

⋃

i<m A
f(km)
km

and Ar
km

∪ {〈km, r + 2〉} ∪
⋃

i<m A
f(ki)
ki

, for all possible r, without any further counterexamples. An im-
possible task by Proposition 11.

The above is the strongest possible result, as ResNCI contains LBNCI (as
shown in [JK07]).

We now consider the complexity (mind change [CS83]) advantages of having
only short counterexamples. For this purpose, we need to modify the defini-
tion of learner slightly, to avoid biasing the number of mind changes. (This
modification is used only for the rest of the current section).

Definition 34 A learner is a mapping from SEQ to N ∪ {?}.

A learner M TxtExn-identifies L, iff it TxtEx-identifies L, and for all texts
T for L ∈ L, card({m |? 6= M(T [m]) 6= M(T [m + 1])}) is bounded by n.

One can similarly define the criteria with mind change bounds for learners
receiving counterexamples.

40

Our next result demonstrates that there exists a TxtEx-learnable class (that
is, learnable just from positive data — without any subset queries) that can
be learned by a BNC1Ex-learner using just one negative answer and at most
one mind change and cannot be learned by Ex-learners using any number
of arbitrary counterexamples and any bounded number of mind changes. It
underscores the great power of even very limited negative data in learning
processes in the limit

Theorem 35 There exists a L such that

(a) L ∈ ResBNC1Ex1.

(b) L ∈ TxtEx, and thus in NCEx and GNCEx.

(c) For all m ∈ N , L 6∈ NCExm.

(d) For all m ∈ N , L 6∈ GNCExm.

Proof. Let Ln = {x | x < n or x = n + 1}.

Let L = {Ln | n ∈ N}.

Consider the following learner. Initially output a grammar for N . If and when
a ‘no’ answer is received, output a grammar for Ln, where n + 1 is the max-
imal element in the input received. It is easy to verify that above learner
ResBNC1Ex1-identifies L.

It is also easy to verify that L ∈ TxtEx as one could output, in the limit on
text T , a grammar for Ln, for the least n such that n 6∈ content(T).

We now show that L 6∈ NCExm. As the number of counterexamples are not
bounded, it follows that L 6∈ GNCExm.

Suppose by way of contradiction that M NCExm-identifies L. Then consider
the following strategy to construct a diagonalizing language.

We will construct the diagonalizing language in stages. Construction is non-
effective. We will try to define ls and us, and segments σs, σ

′
s (σ′

s is the sequence
of counterexamples), for s ≤ m + 1.

The following invariants will be satisfied.

(A) us − ls = 4m+3−s.

(B) M on proper prefixes of σs has made s different conjectures.

(C) content(σs) ⊆ {x | x < ls}.

41

(D) None of the conjectures made by M on proper prefixes of σs are for the
language Lr, for ls ≤ r ≤ us.

(E) |σ′
s| = |σs|.

(F) For r < |σs|, σ′
s(r) = #, implies WM(σs[r],σ′

s[r]) ⊆ {x | x < ls}.

(G) For r < |σs|, σ′
s(r) 6= #, implies σ′

s(r) ∈ WM(σs[r],σ′
s[r]), and σ′

s(r) > us +1.

Initially, we let l0 = 0 and u0 = l0 + 4m+3, and σ0 = σ′
0 = Λ. Note that the

invariants are satisfied.

Stage s (for s = 0 to s = m)
1. Let T be a text for Lls which extends σs.
2. Let t ≥ |σs|, be the least value, if any, such that M(T [t], T ′[t]) is a conjec-

ture different from any conjecture M(T [w], T ′[w]), for w < |σs|, where

T ′(w) =

σ′
s(w), if w < |σs|;

#, if w ≥ |σs| and M(T [w], T ′[w]) =?;

T ′(r), if w ≥ |σs| and M(T [w], T ′[w]) = M(T [r], T ′[r]),

for some r < |σs|.

(* Note that, in this step, we do not need definition of T ′(w) when
M(T [w], T ′[w]) makes a new conjecture at or beyond σs. For first such
w (which is t found above) T ′(w) will be defined below). *)

If and when such a t is found, proceed to step 3.
3. Suppose j = M(T [t], T ′[t]).

If Wj contains an element z ≥ ls + 3(us−ls)
4

, then
Let ls+1 = ls + us−ls

4
.

Let us+1 = ls + 2(us−ls)
4

.
Let σs+1 = T [t]#.
Let σ′

s+1 = T ′[t]z.
(* Note thus that M(T [t], T ′[t]) is not a correct grammar for Lr,

where ls+1 ≤ r ≤ us+1. *)
Else,

Let ls+1 = ls + 3(us−ls)
4

.
Let us+1 = us.
Let σs+1 = T [t]#.
Let σ′

s+1 = T ′[t]#.
(* Note thus that M(T [t], T ′[t]) is not a correct grammar for Lr,

where ls+1 ≤ r ≤ us+1. *)
End stage s

42

It is easy to verify that the invariants are satisfied. (A) clearly holds by defini-
tion of ls+1 and us+1 in step 3. (B) holds as one extra new conjecture is found at
stage s, before proceeding to stage s+1. (C) holds, as ls+1 ≥ ls+

us−ls
4

> ls+2,
and content(T) as defined in step 1 is a subset of Lls . (D) holds by induction,
and noting that the conjecture at T [t] as found in step 2 of stage s, is made
explicitly wrong by appropriate choice of ls+1 and us+1 in step 4. (E) easily
holds by construction. (F) and (G) hold by the definition of σ′

s+1 at step 3.

Now, if step 2 does not succeed at a stage s ≤ m, then clearly M does
not NCEx-identify Lls . On the other hand if stage m does complete then
M has already made m + 1 different conjectures (and thus at least m mind
changes) on prefixes of σm+1, which are not grammars for Llm+1

. Thus, M
cannot NCExm-identify Llm+1

.

Let X = {x | x > 0}. If we consider the class L = {Ln | n > 0} ∪ {X},
then we can get the above result using class preserving learnability (that is,
the learner always uses grammars from the numbering defining the target
class of languages for its conjectures, see [ZL95] for formal definition) for
ResBNC1Ex.

Theorem 36 For all m ∈ N ,

(a) LBNCExm ⊆ LNCmExm.

(b) LBGNCExm ⊆ LGNCmExm.

Proof. We only show part (a). Part (b) can be done similarly.

Suppose M LBNCExm-identifies L. On input σ, M′ simulates M, providing it
with counterexample z for a grammar p iff z ≤ max(content(σ)) and M′ itself
had earlier received such a counterexample z for grammar p. Then, M′ outputs
the latest conjecture of M, if M′ has not as yet received any counterexample
for this conjecture (otherwise M′ just outputs ?).

It is easy to verify that M′ LNCmExm-identifies L — the number of mind
changes is bounded by the number of mind changes of M, and the number of
counterexample received is atmost one per conjecture (with none for the final
conjectures). Theorem follows.

43

7 Comparison of Learning Via Limited Number of Short Coun-
terexamples and Finite Number of Queries

In this section we compare capabilities of BGNC and BNC-learners with
the learners using a finite number of subset, equivalence and superset queries
returning counterexamples of arbitrary or least size or just answers ‘yes’ or
‘no’ (as it was established in [JK06], bounded number of negative answers to
such queries returning short counterexamples does not add any advantages to
TxtEx or TxtBc-learners, even if a finite number of errors is allowed in the
final correct conjectures).

7.1 Query models versus short negative counterexamples

First, we refer to some facts established in [JK06].

Theorem 37 [JK06] For I ∈ {ResSubQ1Ex,ResNC1Ex,ResEquQ1Ex},
I − LBNCBc∗ 6= ∅.

As LBNCBc∗ = LGNCBc∗, we immediately have I − LGNCBc∗ 6= ∅, for
I ∈ {ResSubQ1Ex,ResNC1Ex,ResEquQ1Ex}.

For the superset queries, one can only get a slightly weaker result: learners
using just one query of this type and getting answer ‘yes’ or ‘no’ can sometimes
do better that GNCBc-learners making just bounded number of errors in
almost all correct conjectures.

Theorem 38 Suppose n,m ∈ N . ResSupQ1Ex − LBGNCnBcm 6= ∅.

Proof. Proof of ResSupQ1Ex−LNCnBcm 6= ∅ (based on cylinderification
of class in ResSupQ1Ex − LNCnBc 6= ∅) in [JK06] can easily be modified
to give this result.

Also, one superset query can sometimes do better than Bc or Ex∗-learners
using unbounded number of short least counterexamples.

Theorem 39 ResSupQ1Ex − LBNCBc 6= ∅.

Proof. [JK06] showed ResSupQ1Ex − LNCBc 6= ∅. As LBNCBc ⊆
LNCBc, theorem follows.

As LBNCBc = LBGNCBc, we also have ResSupQ1Ex−LBGNCBc 6= ∅.

Corollary 40 ResSupQ1Ex − LBNCEx∗ 6= ∅.

44

Note that Theorem 39 cannot be strengthened as Theorem 42 below shows.
(Here also note that LSupQ∗Bc∗ ⊆ TxtBc∗ [JK06].)

To prove our next result, Theorem 42, we need the following technical lemma.

Lemma 41 Suppose M SupQ∗Bc∗-identifies L, and N ∈ L. Then, there
exists a finite set SN such that for all L ∈ L, SN ⊆ L ⇒ L =∗ N — in
particular, L is infinite.

Proof. Let M be as in the hypothesis of the lemma, and σ be a SupQ∗Bc∗-
locking sequence for M on N (i.e., for any τ such that σ ⊆ τ , (i) M does
not ask any questions beyond σ on τ , and (ii) M on τ outputs a grammar for
finite variant of N .)

Let SN = content(σ) ∪ {x | x is a counterexample provided to some question
of M on a prefix of σ, when learning the language N}. Now let L ⊇ SN be
a member of L. Then, for any text T for L, which extends σ, by hypothesis
about σ, we have that M does not ask any questions beyond σ, and only
outputs grammars for a finite variant of N . As M SupQ∗Bc∗-identifies L,
lemma follows.

The next theorem shows that ResBNCBc1 learners, making just one error
in almost all correct conjectures and using a finite number of negative short
counterexamples, can simulate any Bcm-learner using a finite number of su-
perset queries. Intuitively, the technique used is similar to that of showing
that the class of infinite r.e. sets can be BNCBc1-learnt [JK07]. Additionally,
the conjectures of the SupQ-learner are used to handle finite sets, by out-
putting the input data (plus one negative element), when the SupQ-learner
conjectures finite sets — here one needs to carefully search for and verify the
answers to the SupQ-learner.

Theorem 42 Suppose m ∈ N . SupQ∗Bcm ⊆ ResBNCBc1.

Proof. Suppose M SupQ∗Bcm-identifies L. If N ∈ L, then let SN be as
given by Lemma 41. Otherwise let SN = N .

Define M′ as follows (note that definition of M′ depends on SN , and thus is not
effective in M). We will define M′ as just outputting a sequence of conjectures
on input T and receiving answers of yes/no for each of its conjectures being
subset/not subset of input (restricted to maximum element of the input data).
Let (Qq

1, Q
q
2), q ∈ N , be an ordering of all pairs of finite sets such that each

pair of finite sets appears infinitely often in the ordering. Intuitively, each pair
is a guess at the set of questions asked by M on input T which are to be
answered as yes/no for the input language.

45

M′(T)
Let p = 0, q = 0.
Stage s
1. If no ‘no’ answer has yet been received, then

If SN 6⊆ content(T [s]) and content(T [s]) is an initial segment of N ,
then output a grammar for content(T [s]) and go to stage s + 1.

Else output a grammar for N and go to stage s + 1.
Else let z be the least element not present in content(T [s]), and go to step

2.
2. (* Here we know that the input language is not N , and it seems that the

least missing datum is z. *)
For each j ∈ Qq

2, let xj be least element such that xj ∈ content(T [s])−Wj,s

(if there is no such xj for some j ∈ Qq
2, then go to stage s + 1, with

value of q = q + 1, and p unchanged).
Dovetail steps 3 and 4.

3. If it is ever found that z ∈ content(T) or xj ∈ Wj for some j ∈ Qq
2 or

M(T) (in the simulation at step 4) asks a question beyond T [s] or asks
a question of the form ‘is Wj ⊇ L’, for j 6∈ Qq

1 ∪ Qq
2, then stop step 4

and go to stage s + 1, with q = q + 1 and p unchanged.
4. Below let gt denote the conjecture output by M(T [t]), where questions of

the form ‘is Wj ⊇ L’ for j ∈ Qq
1 are given ‘yes’ answers, and questions

of the form ‘is Wj ⊇ L’ for j ∈ Qq
2 are given ‘no’ answers with coun-

terexample xj. (If M asks a question outside Qq
1∪Qq

2, then step 3 would
eventually force the construction to go to stage s + 1.)

Go to substage s.
Substage t
4.1 If content(T [t + 1]) 6= content(T [t]), then

Output p. If Wp as a conjecture of M′ generates an answer
‘no’, then go to stage s+1, with p = p+1, and q unchanged.

4.2 Output a grammar for the language A, where:

A =

content(T [t]), if content(T [t]) 6⊆
⋂

j∈Q
q
1
Wj;

content(T [t]) ∪ {z}, if content(T [t]) ⊆
⋂

j∈Q
q
1
Wj

and card(Wgt
) ≤ t;

content(T [t]) ∪ Wp ∪ {z}, otherwise.

If A is a subset of input language, then go to stage s + 1, with
q = q + 1 and p unchanged.

4.3 Output a grammar for the language B where:

B =

content(T [t]), if content(T [t]) 6⊆ Wp;

content(T [t]) ∪ {z}, if content(T [t]) ⊆ Wp

card(Wgt
) ≤ t;

content(T [t]) ∪ Wp ∪ {z}, otherwise.

46

If B is a subset of input language, then go to stage s + 1, with
p = p + 1 and q unchanged.

Otherwise go to substage t + 1.
End substage t.

End Stage s

Now suppose a text T for L ∈ L is given.

If L = N , then clearly M′ will never leave step 1, and for all but finitely many
s output a grammar for N .

If L 6= N , but L ∈ INIT, then also M′ will never leave step 1, and for all but
finitely many s, output a grammar for L.

Otherwise, M will eventually get a counterexample in step 1 (as otherwise,
M′ will almost always output a grammar for N in step 1, and the input is
neither N nor in INIT — eventually leading to a counterexample).

Now, let z be the minimal element which does not belong to L. Note that for
all stages s such that the minimal element missing in T [s] is not z, M′ will
change stage either due to step 1, step 2, step 3 or step 4.2. Thus, eventually
the value of z as computed in step 2 will indeed be the minimal element
missing from content(T), and this value will not change thereafter.

We first claim that there are finitely many stages. First note that, after z
in the construction achieves its final value, if p achieves a value such that
Wp = L, it will never change its value (as the conjecture at step 4.1 will
not contain a counterexample, and conjecture of B at step 4.3 will produce a
counterexample). Thus value of p eventually stabilizes. Furthermore, at every
stage after first counterexample is received in step 1, a change of stage is
accompanied by increment in value of either p or q. Thus, we have that either
there are finitely many stages or there exists a stage s such that at stage s
value of q is such that (i) Qq

1, Q
q
2 are respectively the set of j such that M

asks a question of the form ‘is Wj ⊇ L’ on T and gets yes/no answers where
the counterexamples provided are the least ones, and (ii) M does not ask any
questions beyond T [s], and (iii) for each j ∈ Qq

2, min(L−Wj) ∈ content(T [s]),
and (iv) for each j ∈ Qq

2, {x | x ∈ L, x < min(L − Wj)} ⊆ Wj,s, and (v)
(∀y < z)[y ∈ content(T [s − 1])] and (∃y > z)[y ∈ content(T [s − 1])], and (vi)
value of p has achieved its final value before stage s, and M′ has received a
counterexample before stage s.

Now we claim that M′ will not go beyond stage s. It has already received a
counterexample, so step 1 would not change the stage. Step 2 also does not
change the stage by (iii) and (iv) above. At stage s step 3 would not succeed
by hypothesis (i) to (v) above. In step 4.2, in each substage, counterexample

47

would be provided for the conjecture A (as z or some value < z). Steps 4.1,
4.3 do not change the stage, as p has stabilized.

Thus, let s be the last stage that is executed. Now since step 3 never succeeds,
we have that M will not ask any more questions beyond T [s], and all the
answers given to M on questions asked on prefixes of T [s] in the simulation at
step 4 are correct (otherwise either step 3 would succeed, or first clause in the
definition of A at step 4.2 would ensure that M does not get a counterexample
in some substage t).

Now if L is finite, then for all but finitely many substages card(Wgt
) ≤ t,

and content(T [t]) = L, and hence M′ would output a conjecture for L ∪ {z}.
On the other hand if L is infinite, then for all but finitely many substages t,
card(Wgt

) > t, and hence M′ would output a conjecture for Wp∪{z}. Here note
that Wp ⊆ L (as step 4.1 did not produce a counterexample at each substage)
and Wp ⊇ L (as at step 4.3, conjecture of B produced a counterexample in
each substage).

It follows that M′ eventually outputs conjectures for L or L ∪ {z}. Thus, M′

BNC1Bc1-identifies L.

In fact, the above proof showed that
⋃

m∈N SupQ∗Bcm(M) is contained in
BNCBc1(M′). Thus, we also have the following.

Theorem 43 SupQ∗Ex∗ ⊆ ResBNCBc1.

7.2 Short negative counterexample versus query models

Conversely, one ‘no’ answer, assuming existence of a short counterexample,
can sometimes do better than any number queries of any type returning least
counterexamples (for the model LSubQ we have two different variants of a
solution to the problem in question).

Theorem 44 [JK06] Suppose n ∈ N .

(a) ResBNC1Ex − LSubQnBc∗ 6= ∅.

(b) ResBNC1Bc − LSubQ∗Bc∗ 6= ∅.

(c) ResBNC1Ex − LEquQnBc∗ 6= ∅.

(d) ResBNC1Ex − LSupQ∗Bc∗ 6= ∅.

48

Proof. [JK06] showed these diagonalizations for ResNC1 instead of
ResBNC1 above. The proof there also works for ResBNC1.

(a), (b) above is the strongest possible for diagonalization from BNC
model against SubQ model, as ResSubQ∗Exa = NCExa = LNCExa

[JK06,JK07] and LBNCExa ⊆ LNCExa [JK07], and thus, ResBNCExa ⊆
LBNCExa ⊆ ResSubQ∗Exa. Similarly, (c) above is the strongest as E ∈
LEquQ∗Ex [JK06].

8 Acknowledgements

Preliminary version of the paper appeared in COLT’ 2006. We thank the
anonymous referees of COLT’ 2006 and this journal for several helpful com-
ments.

References

[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342,
1988.

[Bār74] J. Bārzdiņš. Two theorems on the limiting synthesis of functions. In
Theory of Algorithms and Programs, vol. 1, pages 82–88. Latvian State
University, 1974. In Russian.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive
inference. Information and Control, 28:125–155, 1975.

[BCJ95] G. Baliga, J. Case, and S. Jain. Language learning with some negative
information. Journal of Computer and System Sciences, 51(5):273–285,
1995.

[CL82] J. Case and C. Lynes. Machine inductive inference and language
identification. In M. Nielsen and E. M. Schmidt, editors, Proceedings of the
9th International Colloquium on Automata, Languages and Programming,
volume 140 of Lecture Notes in Computer Science, pages 107–115.
Springer-Verlag, 1982.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193–220, 1983.

[Ful90] M. Fulk. Prudence and other conditions on formal language learning.
Information and Computation, 85:1–11, 1990.

[GM98] W. Gasarch and G. Martin. Bounded Queries in Recursion Theory.
Birkhauser, 1998.

49

[Gol67] E. M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[JK06] S. Jain and E. Kinber. Learning languages from positive data and a finite
number of queries. Information and Computation, 204(1):123–175, 2006.

[JK07] S. Jain and E. Kinber. Learning languages from positive data and negative
counterexamples. Journal of Computer and System Sciences, 2007. To
appear.

[JORS99] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An
Introduction to Learning Theory. MIT Press, Cambridge, Mass., second
edition, 1999.

[LZ04a] S. Lange and S. Zilles. Comparison of query learning and Gold-style
learning in dependence of the hypothesis space. In Shai Ben-David,
John Case, and Akira Maruoka, editors, Algorithmic Learning Theory:
Fifteenth International Conference (ALT’ 2004), volume 3244 of Lecture
Notes in Artificial Intelligence, pages 99–113. Springer-Verlag, 2004.

[LZ04b] S. Lange and S. Zilles. Replacing limit learners with equally powerful
one-shot query learners. In John Shawe-Taylor and Yoram Singer, editors,
Proceedings of the Seventeenth Annual Conference on Learning Theory,
volume 3120 of Lecture Notes in Artificial Intelligence, pages 155–169.
Springer-Verlag, 2004.

[Mot91] T. Motoki. Inductive inference from all positive and some negative data.
Information Processing Letters, 39(4):177–182, 1991.

[OSW86] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An
Introduction to Learning Theory for Cognitive and Computer Scientists.
MIT Press, 1986.

[OW82] D. Osherson and S. Weinstein. Criteria of language learning. Information
and Control, 52:123–138, 1982.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

[WZ94] R. Wiehagen and T. Zeugmann. Ignoring data may be the only way
to learn efficiently. Journal of Experimental and Theoretical Artificial
Intelligence, 6:131–144, 1994.

[ZL95] T. Zeugmann and S. Lange. A guided tour across the boundaries
of learning recursive languages. In K. Jantke and S. Lange, editors,
Algorithmic Learning for Knowledge-Based Systems, volume 961 of
Lecture Notes in Artificial Intelligence, pages 190–258. Springer-Verlag,
1995.

50

